首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test the hypothesis that impaired mitochondrial respiration limits cardiac performance at warm temperatures, and examine if any effect(s) are sex-related, the consequences of high temperature on cardiac mitochondrial oxidative function were examined in 10 °C acclimated, sexually immature, male and female Atlantic cod. Active (State 3) and uncoupled (States 2 and 4) respiration were measured in isolated ventricular mitochondria at 10, 16, 20, and 24 °C using saturating concentrations of malate and pyruvate, but at a submaximal (physiological) level of ADP (200 µM). In addition, citrate synthase (CS) activity was measured at these temperatures, and mitochondrial respiration and the efficiency of oxidative phosphorylation (P:O ratio) were determined at [ADP] ranging from 25–200 µM at 10 and 20 °C. Cardiac morphometrics and mitochondrial respiration at 10 °C, and the thermal sensitivity of CS activity (Q10=1.51), were all similar between the sexes. State 3 respiration at 200 µM ADP increased gradually in mitochondria from females between 10 and 24 °C (Q10=1.48), but plateaued in males above 16 °C, and this resulted in lower values in males vs. females at 20 and 24 °C. At 10 °C, State 4 was ~10% of State 3 values in both sexes [i.e. a respiratory control ratio (RCR) of ~10] and P:O ratios were approximately 1.5. Between 20 and 24 °C, State 4 increased more than State 3 (by ~70 vs. 14%, respectively), and this decreased RCR to ~7.5. The P:O ratio was not affected by temperature at 200 μM ADP. However, (1) the sensitivity of State 3 respiration to increasing [ADP] (from 25 to 200 μM) was reduced at 20 vs. 10 °C in both sexes (Km values 105±7 vs. 68±10 μM, respectively); and (2) mitochondria from females had lower P:O values at 25 vs. 100 μM ADP at 20 °C, whereas males showed a similar effect at 10 °C but a much more pronounced effect at 20 °C (P:O 1.05 at 25 μM ADP vs. 1.78 at 100 μM ADP). In summary, our results demonstrate several sex-related differences in ventricular mitochondrial function in Atlantic cod, and suggest that myocardial oxidative function and possibly phosphorylation efficiency may be limited at temperatures of 20 °C or above, particularly in males. These observations could partially explain why cardiac function in Atlantic cod plateaus just below this species׳ critical thermal maximum (~22 °C) and may contribute to yet unidentified sex differences in thermal tolerance and swimming performance.  相似文献   

2.
The thermotolerance of the sun-exposed peel and the shaded peel of ‘Fuji’ apple (Malus domestica Borkh.) fruit was evaluated by measuring pigments, chlorophyll a fluorescence transients and O2 evolution or uptake after exposure to 25, 35, 40, 42, 44, 46 or 48 °C for 30 min in the dark. A major effect of heat stress at 46–48 °C on the chlorophyll a fluorescence transients was the appearance of a very clear K step at 200–300 μs for both peel types. The K step was slightly more pronounced in the sun-exposed peel than in the shaded peel, suggesting that the resistance of oxygen-evolving complex to heat stress is slightly lower in the sun-exposed peel than in the shaded peel. Minimal fluorescence (FO), relative to the value at 25 °C, increased to a greater extent in the shaded peel than in the sun-exposed peel after exposure to 46–48 °C, but the temperature dependencies of FO changes were similar for both peel types. Maximum quantum yield of PSII (FV/FM) decreased to a similar extent in the sun-exposed peel and the shaded peel as temperature rose from 25 to 44 °C, but the sun-exposed peel reached slightly lower values at 46–48 °C. Correspondingly, gross O2 evolution rate, relative to that at 25 °C, was also slightly lower in the sun-exposed peel than in the shaded peel at 46–48 °C. In response to heat stress, the ratio of QA-reducing reaction centers (RCs) to total RCs and the ratio of QB-reducing RCs to QA-reducing RCs decreased, but both of them decreased to lower values in the sun-exposed peel than in the shaded peel at 46–48 °C, indicating that the capacity of electron transfer between P680+ and QB via QA was damaged to a greater extent in the sun-exposed peel than in the shaded peel. At each given temperature, dark respiration was similar between the two peel types. Overall, it appears that the exposure to higher surface temperature under high light does not make the sun-exposed peel more tolerant of heat stress than the shaded peel of apple fruit.  相似文献   

3.
Thermal limits of insects can be influenced by recent thermal history: here we used thermolimit respirometry to determine metabolic rate responses and thermal limits of the dominant meat ant, Iridomyrmex purpureus. Firstly, we tested the hypothesis that nest surface temperatures have a pervasive influence on thermal limits. Metabolic rates and activity of freshly field collected individuals were measured continuously while ramping temperatures from 44 °C to 62 °C at 0.25 °C/minute. At all the stages of thermolimit respirometry, metabolic rates were independent of nest surface temperatures, and CTmax did not differ between ants collected from nest with different surface temperatures. Secondly, we tested the effect of brain control on upper thermal limits of meat ants via ant decapitation experiments (‘headedness’). Decapitated ants exhibited similar upper critical temperature (CTmax) results to living ants (Decapitated 50.3±1.2 °C: Living 50.1±1.8 °C). Throughout the temperature ramping process, ‘headedness’ had a significant effect on metabolic rate in total (Decapitated CO2 140±30 µl CO2 mg−1 min−1: Living CO2 250±50 CO2 mg−1 min−1), as well as at temperatures below and above CTmax. At high temperatures (>44 °C) pre- CTmax the relationships between I. purpureus CTmax values and mass specific metabolic rates for living ants exhibited a negative slope whilst decapitated ants exhibited a positive slope. The decapitated ants also had a significantly higher Q10:25–35 °C when compared to living ants (1.91±0.43 vs. 1.29±0.35). Our findings suggest that physiological responses of ants may be able to cope with increasing surface temperatures, as shown by metabolic rates across the thermolimit continuum, making them physiologically resilient to a rapidly changing climate. We also demonstrate that the brain plays a role in respiration, but critical thermal limits are independent of respiration levels.  相似文献   

4.
To test whether the effects of feeding on swimming performance vary with acclimation temperature in juvenile southern catfish (Silurus meridionalis), we investigated the specific dynamic action (SDA) and swimming performance of fasting and feeding fish at acclimation temperatures of 15, 21, 27, and 33 °C. Feeding had no effect on the critical swimming speeding (Ucrit) of fish acclimated at 15 °C (p = 0.66), whereas it elicited a 12.04, 18.70, and 20.98% decrease in Ucrit for fish acclimated at 21, 27 and 33 °C, respectively (p < 0.05). Both the maximal postprandial oxygen consumption rate (VO2peak) and the active metabolic rate (VO2active, maximal aerobic sustainable metabolic rate of fasting fish) increased significantly with temperature (p < 0.05). The postprandial maximum oxygen consumption rates during swimming (VO2max) were higher than the VO2active of fasting fish at all temperature groups (p < 0.05). The VO2max increased with increasing temperature, but the relative residual metabolic scope (VO2max? VO2peak) during swimming decreased with increasing in temperature. The present study showed that the impairment of postprandial swimming performance increased with increasing temperature due to the unparalleled changes in the catfish's central cardio-respiratory, peripheral digestive and locomotory capacities. The different metabolic strategies of juvenile southern catfish at different temperatures may relate to changes in oxygen demand, imbalances in ion fluxes and dissolved oxygen levels with changes in temperature.  相似文献   

5.
A 30 day feeding trial was conducted using a freshwater fish, Labeo rohita (rohu), to determine their thermal tolerance, oxygen consumption and optimum temperature for growth. Four hundred and sixteen L. rohita fry (10 days old, 0.385±0.003 g) were equally distributed between four treatments (26, 31, 33 and 36 °C) each with four replicates for 30 days. Highest body weight gain and lowest feed conversion ratio (FCR) was recorded between 31 and 33 °C. The highest specific growth rate was recorded at 31 °C followed by 33 and 26 °C and the lowest was at 36 °C. Thermal tolerance and oxygen consumption studies were carried out after completion of growth study to determine tolerance level and metabolic activity at four different acclimation temperatures. Oxygen consumption rate increased significantly with increasing acclimation temperature. Preferred temperature decided from relationship between acclimation temperature and Q10 values were between 33 and 36 °C, which gives a better understanding of optimum temperature for growth of L. rohita. Critical thermal maxima (CTMax) and critical thermal minima (CTMin) were 42.33±0.07, 44.81±0.07, 45.35±0.06, 45.60±0.03 and 12.00±0.08, 12.46±0.04, 13.80±0.10, 14.43±0.06, respectively, and increased significantly with increasing acclimation temperatures (26, 31, 33 and 36 °C). Survival (%) was similar in all groups indicating that temperature range of 26–36 °C is not fatal to L. rohita fry. The optimum temperature range for growth was 31–33 °C and for Q10 values was 33–36 °C.  相似文献   

6.
《Journal of Asia》2014,17(3):349-354
Temperature-dependent development of Spodoptera exigua (Hübner) were evaluated at eight constant temperatures of 12, 15, 20, 25, 30, 33, 34 and 36 °C with a variation of 0.5 °C on sugar beet leaves. No development occurred at 12 °C and 36 °C. Total developmental time varied from 120.50 days at 15 °C to 14.50 days at 33 °C. As temperature increased from 15 °C to 33 °C, developmental rate (1/developmental time) of S. exigua increased but declined at 34 °C. The lower temperature threshold (Tmin) was estimated to be 12.98 °C and 12.45 °C, and the thermal constant (K) was 294.99 DD and 311.76 DD, using the traditional and Ikemoto–Takai linear models, respectively. The slopes of the Ikemoto–Takai linear model for different immature stages were different, violating the assumption of rate isomorphy. Data were fitted to three nonlinear models to predict the developmental rate and estimate the critical temperatures. The Tmin values estimated by Lactin-2 (12.90 °C) and SSI (13.35 °C) were higher than the value estimated by Briere-2 (8.67 °C). The estimated fastest development temperatures (Tfast) by the Briere-2, Lactin-2 and SSI models for overall immature stages development of S. exigua were 33.4 °C, 33.9 °C and 32.4 °C, respectively. The intrinsic optimum temperature (TΦ) estimated from the SSI model was 28.5 °C, in which the probability of enzyme being in its native state is maximal. The upper temperature threshold (Tmax) values estimated by these three nonlinear models varied from 34.00 °C to 34.69 °C. These findings on thermal requirements can be used to predict the occurrence, number of generations and population dynamics of S. exigua.  相似文献   

7.
Temperature compensation in whole-animal metabolic rate is one of the responses thought, controversially, to characterize insects from low temperature environments. Temperature compensation may either involve a change in absolute values of metabolic rates or a change in the slope of the metabolic rate – temperature relationship. Moreover, assessments of compensation may be complicated by animal responses to fluctuating temperatures. Here we examined whole animal metabolic rates, at 0 °C, 5 °C, 10 °C and 15 °C, in caterpillars of the sub-Antarctic moth, Pringleophaga marioni Viette (Tineidae), following one week acclimations to 5 °C, 10 °C and 15 °C, and fluctuating temperatures of 0–10 °C, 5–15 °C, and 10–20 °C. Over the short term, temperature compensation was found following acclimation to 5 °C, but the effect size was small (3–14%). By comparison with caterpillars of 13 other lepidopteran species, no effect of temperature compensation was present, with the relationship between metabolic rate and temperature having a Q10 of 2 among species, and no effect of latitude on temperature-corrected metabolic rate. Fluctuating temperature acclimations for the most part had little effect compared with constant temperatures of the same mean value. Nonetheless, fluctuating temperatures of 5–15 °C resulted in lower metabolic rates at all test temperatures compared with constant 10 °C acclimation, in keeping with expectations from the literature. Absence of significant responses, or those of large effect, in metabolic rates in response to acclimation, may be a consequence of the unpredictable temperature variation over the short-term on sub-Antarctic Marion Island, to which P. marioni is endemic.  相似文献   

8.
《Aquatic Botany》2005,81(2):157-173
The main photosynthesis and respiration parameters (dark respiration rate, light saturated production rate, saturation irradiance, photosynthetic efficiency) were measured on a total of 23 macrophytes of the Thau lagoon (2 Phanerogams, 5 Chlorophyceae, 10 Rhodophyceae and 6 Phaeophyceae). Those measurements were performed in vitro under controlled conditions, close to the natural ones, and at several seasons. Concomitantly, measurements of pigment concentrations, carbon, phosphorous and nitrogen contents in tissues were performed. Seasonal intra-specific variability of photosynthetic parameters was found very high, enlightening an important acclimatation capacity. The highest photosynthetic capacities were found for Chlorophyceae (e.g. Monostroma obscurum thalli at 17 °C, 982 μmol O2 g−1 dw h−1 and 9.1 μmol O2 g−1 dw h−1/μmol photons m−2 s−1, respectively for light saturated net production rate and photosynthetic efficiency) and Phanerogams (e.g. Nanozostera noltii leaves at 25 °C, 583 μmol O2 g−1 dw h−1 and 2.6 μmol O2 g−1 dw h−1/μmol photons m−2 s−1 respectively for light saturated net production rate and photosynthetic efficiency). As expected, species with a high surface/volume ratio were found to be more productive than coarsely branched thalli and thick blades shaped species. Contrary to Rd (ranging 6.7–794 μmol O2 g−1 dw h−1, respectively for Rytiphlaea tinctoria at 7 °C and for Dasya sessilis at 25 °C) for which a positive relationship with water temperature was found whatever the species studied, the evolution of P/I curves with temperature exhibited different responses amongst the species. The results allowed to show summer nitrogen limitation for some species (Gracilaria bursa-pastoris and Ulva spp.) and to propose temperature preferences based on the photosynthetic parameters for some others (N. noltii, Zostera marina, Chaetomorpha linum).  相似文献   

9.
Thermal acclimation capacity was investigated in adults of three tropical marine invertebrates, the subtidal barnacle Striatobalanus amaryllis, the intertidal gastropod Volegalea cochlidium and the intertidal barnacle Amphibalanus amphitrite. To test the relative importance of transgenerational acclimation, the developmental acclimation capacity of A. amphitrite was investigated in F1 and F2 generations reared at a subset of the same incubation temperatures. The increase in CTmax (measured through loss of key behavioural metrics) of F0 adults across the incubation temperature range 25.4–33.4 °C was low: 0.00 °C (V. cochlidium), 0.05 °C (S. amaryllis) and 0.06 °C (A. amphitrite) per 1 °C increase in incubation temperature (the acclimation response ratio; ARR). Although the effect of generation was not significant, across the incubation temperature range of 29.4–33.4 °C, the increase in CTmax in the F1 (0.30 °C) and F2 (0.15 °C) generations of A. amphitrite was greater than in the F0 (0.10 °C). These correspond to ARR's of 0.03 °C (F0), 0.08 °C (F1) and 0.04 °C (F2), respectively. The variability in CTmax between individuals in each treatment was maintained across generations, despite the high mortality of progeny. Further research is required to investigate the potential for transgenerational acclimation to provide an extra buffer for tropical marine species facing climate warming.  相似文献   

10.
《农业工程》2014,34(1):66-71
Burned and unburned mineral soils (0–10 cm) from a 40-year-old Chinese fir (Cunninghamia lanceolata) forest in Nanping, Fujian, China were incubated for 90 days at different temperatures (25 °C and 35 °C) and humidity [25%, 50%, and 75% of water holding capacity (WHC)] conditions. Carbon (C) mineralization of all soils was determined using CO2 respiration method. The results showed that CO2 evolution rates of the burned and control soils exhibited similar temporal patterns, and similar responses to temperature and moisture. CO2 evolution rates for all soil samples decreased with incubation time. At different humidity conditions, average rate of C mineralization and cumulative mineralized C from burned and control soils were significantly higher at 35 °C than at 25 °C. This implied that C mineralization was less sensitive to soil moisture than to temperature. In both soils at 25 °C or 35 °C, the amount of soil evolved CO2 over the 90 days incubation increased with increasing moisture content from 25% to 75% WHC. A temperature coefficient (Q10) varied with soil moisture contents. The maximum values recorded for Q10 were 1.7 in control soil and 1.6 in burned soil both at 25% WHC. However, there were no significant differences in Q10 values between the control and burned soils over all moisture ranges (P > 0.05). The data of cumulative C–CO2 released from control and burned soils were fitted to two different kinetic models. The two simultaneous reactions model described mineralization better than the first-order exponential model, which reflected the heterogeneity of substrate quality. Based on these results, it is possible to conclude that temperature and moisture are important in the controls of C mineralization, and the combined effects of these variables need to be considered to understand and predict the response of CO2 release in subtropical ecosystems to climate change.  相似文献   

11.
In order to study the different physiological bases of cold tolerance in the apical flower buds (AFB) and the lateral flower buds (LFB) of the Hanfu apple (Malus domestica Borkh), we used 4-year-old grafted Hanfu plants as material and evaluated the physiological characteristics of mitochondria in the flower buds, such as electron transport chains (cytochrome pathway and alternative pathway), H2O2 content, mitochondrial membrane permeability transition (mPT), and MDA content. AFBs and LFBs showed different changes in total respiratory rate (Vt) during low-temperature stress, except that both reached the lowest Vts at ?30 °C. The AFB Vt increased to a peak at ?25 °C and decreased sharply to its minimal value at ?30 °C, and then remained relatively low. In contrast, the LFB Vt decreased to its minimal value at ?30 °C and increased sharply to a peak at ?35 °C and then decreased again. In both AFBs and LFBs, the cytochrome pathway was still the main electron transport chain throughout the whole process, and the contributions of the cytochrome pathway (ρVcyt/Vt) and of the alternative pathway (ρValt/Vt) showed similar tendencies to those of Vt as temperature changed. Changes in the AFB mPT were different from those of AFB Vt. LFB mPT zigzagged from peaks at ?25 °C and 35 °C. The H2O2 content of the LFBs increased from ?10 °C to ?30 °C, then decreased slightly from ?30 °C to ?35 °C, and then increased again. H2O2 content in AFBs went up steadily throughout the whole process. During the early stage of low-temperature treatment, before temperatures reached ?35 °C, LFB MDA content remained relatively low and later increased. MDA content in AFBs began to increase from the beginning of treatment. It can be concluded that the higher cold tolerance of LFBs relative to AFBs could be closely related to their higher Vt and ρValt/Vt, which may aid adaptations to stress by supplying energy and metabolic substrates under low-temperature stress conditions.  相似文献   

12.
In standard laboratory environments mice are housed at 20–24 °C. However, their thermoneutral zone ranges between 26 °C and 34 °C. This challenge to homeostasis is by definition stressful, and could therefore affect many aspects of physiology and behavior. We tested the hypothesis that mice under standard laboratory conditions are not housed at a preferred temperature, and predicted that this would be evident in thermotaxis and other behavioral responses to ambient cage temperature. We assessed the temperature preferences of C57BL/6J mice in standard laboratory housing from 4 to 11 weeks of age. Forty-eight mice (24 male and 24 female in groups of three) all born on the same day were randomly assigned to one of eight age treatments. One cage of males and one cage of females were tested each consecutive week. Mice were tested in a set of three connected cages with each cage's temperature set using a water bath. On days 1–3 each group of mice was acclimated to each of the three temperatures (20 °C, 25 °C, or 30 °C) in a random order. Then each group was given free access to all temperatures on days 4–6, and video taped continuously. The location of each mouse and the occurrence of three behavioral categories (Active, Inactive, and Maintenance) were recorded by instantaneous scan samples every 10 min over the 3 days, and time budgets calculated. While both sexes chose warmer temperatures overall (P < 0.001), they preferred warmer temperatures only for maintenance and inactive behavior (P < 0.001). This effect was most pronounced in females (P = 0.017). As temperature selection varied with time of day (P < 0.001), these behavioral differences cannot be due to ambient temperature dictating behavior. We conclude that C57BL/6J mice at 20–24 °C are not housed at their preferred temperature for all behaviors or genders, and that it may not be possible to select a single preferred temperature for all mice.  相似文献   

13.
This study assessed the thermal sensitivity of mitochondrial respiration in the small crustacean Daphnia pulex. More specifically, we wanted to determine if clones that inhabit different latitudes and habitats showed differences in the thermal sensitivity of their mitochondrial function. The experimental design included two clones from temperate environments (Fence from Ontario and Hawrelak from Alberta) and two clones from subarctic environments (A24 from Manitoba and K154 from Quebec). The integrated mitochondrial function was measured with high-resolution respirometry following whole-animal permeabilization. Mitochondrial respiration was performed under six different temperatures (10, 15, 20, 25, 30, and 35 °C) in the clone Hawrelak and at two temperatures (10 and 20 °C) in the three other clones. In the clone Hawrelak, complexes I and II respiration showed higher sensitivity to temperature variation compared to complex IV respiration. Interestingly, the threshold plot showed no excess capacity of complex IV at 20 °C in this clone. The clones showed significant divergence in the ability to oxidize the complex I and complex IV substrates relative to the maximal oxidative phoshorylation capacity of mitochondria. More importantly, some of the clonal divergences were only detected under low assay temperatures, pointing toward the importance of this parameter in comparative studies. Future and more complex studies on clones from wider environmental gradients will help to resolve the link between mitochondrial function and adaptations of organisms to particular conditions, principally temperature.  相似文献   

14.
The aim of the investigation was to verify our hypothesis that extreme tolerance of newborn rodents to anoxia is determined by their ability to maintain reduced body temperature and to keep on gasping.Newborn Wistar rats were used. In separate experiments we checked (1) effect of extreme thermal conditions on rectal temperature (Tre) of the newborns in their nests; (2) effect of ambient temperature (Ta) on oxygen consumption; (3) effects of controlled changes in Tre on thermoregulatory and respiratory responses to anoxia and on anoxia tolerance.In their nests rat pups controlled Tre at 32–36 °C while the TreTa difference changed within a range of 1–20 °C. The lowest oxygen consumption of ∼24 ml O2 kg−1 min−1 was recorded at Ta of 32 °C. Pups, exposed to anoxia at their normal Tre of 33 °C, were able to decrease Tre by another 1.7 °C and they kept on extremely slow and quiescent gasping for scheduled 25 min. In contrast, rats at Tre of 37 °C and 39 °C reached a critical phase of accelerated and shallow gasping after 14.95±0.40 min and 9.25±0.30 min, respectively.In conclusion, reduced Tre and unique gasping ability make newborn rats extremely tolerant to asphyxia.  相似文献   

15.
The effect of temperature on the biology of Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae) is well understood under constant temperature conditions, but less so under more natural, fluctuating conditions. Herein we studied the influence of fluctuating temperatures on biological parameters of V. canescens. Parasitized fifth-instar larvae of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) were reared individually in incubators at six fluctuating temperature regimes (15–19.5 °C with a mean of 17.6 °C, 17.5–22.5 °C with a mean of 19.8 °C, 20–30 °C with a mean of 22.7 °C, 22.5–27.5 °C with a mean of 25 °C, 25.5-32.5 °C with a mean of 28.3 °C and 28.5–33 °C with a mean of 30 °C) until emergence and death of V. canescens adults. Developmental time from parasitism to adult eclosion, adult longevity and survival were recorded at each fluctuating temperature regime. In principle, developmental time decreased with an increase of the mean temperature of the fluctuating temperature regime. Upper and lower threshold temperatures for total development were estimated at 34.9 and 6.7 °C, respectively. Optimum temperature for development and thermal constant were 28.6 °C and 526.3 degree days, respectively. Adult longevity was also affected by fluctuating temperature, as it was significantly reduced at the highest mean temperature (7.0 days at 30 °C) compared to the lowest one (29.4 days at 17.6 °C). Survival was low at all tested fluctuating temperatures, apart from mean fluctuating temperature of 25 °C (37%). Understanding the thermal biology of V. canescens under more natural conditions is of critical importance in applied contexts. Thus, predictions of biological responses to fluctuating temperatures may be used in population forecasting models which potentially influence decision-making in IPM programs.  相似文献   

16.
Predation is a key source of seed mortality in many weed species and thus is a part of natural control. In the field, the intensity of seed predation by invertebrates varies during the course of a year. One source of this variation is fluctuations in ambient temperature. Here, the effect of temperature on seed consumption is investigated for the first time, using two abundant carabid seed predators, Pseudoophonus rufipes and Harpalus affinis (Coleoptera: Carabidae), and dandelion (Taraxacum officinale) as a model system. Field collected individuals were sexed, kept at one of six constant temperatures between 10 and 28 °C and provided with a surplus of seed. Seed consumption was recorded over a period of 4 days. Averaged over all the temperatures, the smaller H. affinis consumed 12.2 seeds day?1 and larger P. rufipes 29 seeds day?1. On average, females consumed more seeds than males. Seed consumption by both species increased with temperature. In H. affinis the increase was linear and different for males and females. In P. rufipes the consumption was similar in both sexes but curvilinear because there was no further increase in consumption above 20 °C. Assuming a linear relationship between temperature and consumption at up to 20 °C we calculated the temperature at which seed consumption ceased (?0.1 to 0.3 °C in H. affinis and 6.3–6.9 °C in P. rufipes) and the increment in seed consumption per 1 °C increase in temperature above this threshold (0.4–1.0 and 1.5–4.2 seeds individual?1 day?1, respectively) for the two species. Thus, it is possible to calculate the average daily consumption of each species over a range of temperatures up to 20 °C.  相似文献   

17.
Most reptiles thermoregulate to achieve body temperatures needed for biological processes, such as digestion and growth. Temperatures experienced during embryogenesis may also influence post-hatching growth rate, potentially through influencing post-hatching choice of temperatures. We investigated in laboratory settings whether embryonic temperatures (constant 18 °C, 21 °C and 22 °C) influence selected body temperatures (Tsel) of juvenile tuatara (Sphenodon punctatus), providing a possible mechanism for differences in growth rates. We found that incubation temperature does not influence Tsel. Although the average daily mean Tsel was 21.6 ± 0.3 °C, we recorded individual Tsel values up to 33.5 °C in juvenile tuatara, which is higher than expected and above the panting threshold of 31–33 °C reported for adults. We found diel patterns of Tsel of juvenile tuatara, observing a general pattern of two apparent peaks and troughs per day, with Tsel being significantly lower around dawn and at 1500 h than any other time. When comparing our results with other studies on tuatara there is a remarkable consistency in mean Tsel of ~ 21 °C across tuatara of different ages, sizes and acclimatization histories. The ability of juvenile tuatara to withstand a wide range of temperatures supports their former widespread distribution throughout New Zealand and warrants further investigation into their plasticity to withstand climate warming, particularly where they have choices of habitat and the ability to thermoregulate.  相似文献   

18.
A series of five factorial experiments examined the effects of sodium hydroxide (NaOH) and calcium oxide (CaO) alone or together with hydrogen peroxide (H2O2, 27.5% w/w) at pH of about 11.5 (AHP) on in vitro (IVDMD) and in sacco (ISDMD) dry matter digestibility of wheat straw. The effects of different temperatures (20°C, 40°C and 60°C), various times (2, 3, 4, 6 and 27 h), pre-soaking, filtration and washing on the efficacy of the above levels of chemicals in improving IVDMD and ISDMD were tested in separate experiments. AHP improved IVDMD (P<0.001) of straws when pH was regulated to around 11.5 using NaOH. In contrast, AHP was ineffective or depressive (P<0.001) when CaO was used to regulate pH to around 11.5. However, CaO alone increased IVDMD to a similar extent as did NaOH. Washing, filtration and temperature were ineffective in improving the IVDMD of CaO-treated straw. AHP was most effective when 130 g H2O2 was applied to each kg DM of straw after soaking it with 3 l solution containing 80 g NaOH for a period of 27 h. The nutritional value of low quality forages can be enhanced for ruminants by using alkalis provided conditions as described above are maintained during alkali treatments.  相似文献   

19.
Organisms employ a wide array of physiological and behavioral responses in an effort to endure stressful environmental conditions. For many marine invertebrates, physiological and/or behavioral performance is dependent on physical conditions in the fluid environment. Although factors such as water temperature and velocity can elicit changes in respiration and feeding, the manner in which these processes integrate to shape growth remains unclear. In a growth experiment, juvenile barnacles (Balanus glandula) were raised in dockside, once-through flow chambers at water velocities of 2 versus 19 cm s−1 and temperatures of 11.5 versus 14 °C. Over 37 days, growth rates (i.e., shell basal area) increased with faster water velocities and higher temperatures. Barnacles at high flows had shorter feeding appendages (i.e., cirri), suggesting that growth patterns are unlikely related to plastic responses in cirral length. A separate experiment in the field confirmed patterns of temperature- and flow-dependent growth over 41 days. Outplanted juvenile barnacles exposed to the faster water velocities (32±1 and 34±1 cm s−1; mean±SE) and warm temperatures (16.81±0.05 °C) experienced higher growth compared to individuals at low velocities (1±1 cm s−1) and temperatures (13.67±0.02 °C). Growth data were consistent with estimates from a simple energy budget model based on previously measured feeding and respiration response curves that predicted peak growth at moderate temperatures (15 °C) and velocities (20–30 cm s−1). Low growth is expected at both low and high velocities due to lower encounter rates with suspended food particles and lower capture efficiencies respectively. At high temperatures, growth is likely limited by high metabolic costs, whereas slow growth at low temperatures may be a consequence of low oxygen availability and/or slow cirral beating and low feeding rates. Moreover, these results advocate for approaches that consider the combined effects of multiple stressors and suggest that both increases and decreases in temperature or flow impact barnacle growth, but through different physiological and behavioral mechanisms.  相似文献   

20.
《Biological Control》2010,52(3):355-361
A new strain of the parasitoid Trichogramma pretiosum, was collected in Rio Verde County, State of Goiás, Central Brazil, and designated as T. pretiosum RV. This strain was then found to be the most effective one among several different strains of T. pretiosum tested in a parasitoid selection assay. Therefore, its biological characteristics and thermal requirements were studied, aiming at allowing its multiplication under controlled environmental conditions in the laboratory. The parasitoid was reared on eggs of Pseudoplusia includens and Anticarsia gemmatalis at different constant temperatures within an 18–32 °C temperature range. The number of annual generations of the parasitoid was also estimated at those temperatures. Results have shown that T. pretiosum RV developmental time, from egg to adult, was influenced by all temperatures tested within the range, varying from 6.8 to 20.3 days and 6.0 to 17.0 days on eggs of P. includens and A. gemmatalis, respectively. The emergence of T. pretiosum RV from eggs of A. gemmatalis was higher than 94% at all temperatures tested. When this variable was evaluated on eggs of P. includens, however, the figures were higher than that within the 18–30 °C range (more than 98%), and were also statistically higher than the emergence observed at 32 °C (90.2%). The sex ratio of the parasitoids emerged from eggs of A. gemmatalis decreased from 0.55 to 0.29 at 18–32 °C, respectively. However, for those emerged from eggs of P. includens, the sex ratio was similar (0.73, 0.72 and 0.71) at 20, 28 and 32 °C, respectively. The lower temperature threshold (Tb) and thermal constant (K) were 10.65 °C and 151.25 degree-days when the parasitoid was reared on eggs of P. includens; and 11.64 °C and 127.60 degree-days when reared on eggs of A. gemmatalis. The number of generations per month increased from 1.45 to 4.23 and from 1.49 to 4.79 when the parasitoid was reared on eggs of P. includens and A. gemmatalis, respectively, following the increases in the temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号