首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Abstract: Our laboratory has recently cloned and expressed a brain- and neuron-specific Na+-dependent inorganic phosphate (Pi) cotransporter that is constitutively expressed in neurons of the rat cerebral cortex, hippocampus, and cerebellum. We have now characterized Na+-dependent 32Pi cotransport in cultured fetal rat cortical neurons, where >90% of saturable Pi uptake is Na+-dependent. Saturable, Na+-dependent 32Pi uptake was first observed in primary cultures of cortical neurons at 7 days in vitro (DIV) and was maximal at 12 DIV. Na+-dependent Pi transport was optimal at physiological temperature (37°C) and pH (7.0–7.5), with apparent Km values for Pi and Na+ of 54 ± 12.7 µM and 35 ± 4.2 mM, respectively. A reduction in extracellular Ca2+ markedly reduced (>60%) Na+-dependent Pi uptake, with a threshold for maximal Pi import of 1–2.5 mM CaCl2. Primary cultures of fetal cortical neurons incubated in medium where equimolar concentrations of choline were substituted for Na+ had lower levels of ATP and ADP and higher levels of AMP than did those incubated in the presence of Na+. Furthermore, a substantial fraction of the 32Pi cotransported with Na+ was concentrated in the adenine nucleotides. Inhibitors of oxidative metabolism, such as rotenone, oligomycin, or dinitrophenol, dramatically decreased Na+-dependent Pi import rates. These data establish the presence of a Na+-dependent Pi cotransport system in neurons of the CNS, demonstrate the Ca2+-dependent nature of 32Pi uptake, and suggest that the neuronal Na+-dependent Pi cotransporter may import Pi required for the production of high-energy compounds vital to neuronal metabolism.  相似文献   

2.
Inhibition of the (Na+ + K+)-dependent ATPase by inorganic phosphate, Pi, was examined in terms of product inhibition of the various activities catalyzed by an enzyme preparation from rat brain, and considered in terms of the specific transport processes of the membrane Na+,K+-pump that these activities reflect. The K+-dependent phosphatase activity of the enzyme was most sensitive to Pi, and inhibition was competitive toward the substrate, nitrophenyl phosphate, as would be expected if Pi were released from the same enzyme form that bound substrate. However, this enzymatic activity does not seem to represent a transport process, and thus a cyclical discharge of K+ may not be involved. The Na+-dependent exchange activity was unaffected by Pi, in accord with the absence of Pi release in the reaction sequence. For the corresponding Na+/Na+ exchange function of the pump, which reportedly does not involve ATP hydrolysis either, prior release of Pi obviously cannot be required for Na+ discharge. With the Na+-dependent ATPase activity, measured using micromolar concentrations of ATP, Pi inhibited, but far less than with the phosphatase activity, and inhibition was not competitive toward ATP. Moreover, inhibition decreased as the Na+ concentration was raised from 10 to 100 mM. This elevated concentration of Na+ also led to substrate inhibition. For this ATPase activity, and the corresponding transport process, uncoupled Na+ efflux, the findings suggest that Na+ discharge follows Pi release, in contrast to Na+/Na+ exchange. The (Na+ + K+)-dependent ATPase activity, measured with millimolar concentrations of ATP and reflecting the coupled Na+,K+-transport function, was similarly sensitive to Pi, and again inhibition was not competitive toward ATP. However, in this case inhibition did not increase as the Na+ concentration was lowered. For this activity, and the associated transport process, the site of Na+ discharge in the overall reaction sequence remains unresolved.  相似文献   

3.
The Na+/l-glutamate (l-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl?. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl? could specifically activate the Na+-dependent l-glutamate (l-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl? was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. l-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl? did not show any translocation of net charge.  相似文献   

4.
Abstract: The inhibitory effects of Na+/Ca2+ exchange inhibitory peptide (XIP), which corresponds to residues 219–238 of the Na+/Ca2+ exchange protein from canine heart, were studied in both rat and human brain plasma membrane vesicles. XIP had very high potency with respect to the inhibition of the initial velocity of intravesicular Na+-dependent Ca2+ uptake in both rat brain [IC50 = 3.05 ± 0.69 µM (mean ± SE)] and human brain (IC50 = 3.58 ± 0.58 µM). The maximal inhibition seen in rat brain vesicles was ~80%, whereas human brain vesicles were inhibited 100%. XIP also inhibited extravesicular Na+-dependent Ca2+ release, and the inhibitory effect was enhanced by increasing the extravesicular Na+ concentration. In contrast, the inhibitory effect of bepridil was competitive with respect to extravesicular Na+. When XIP was added at steady state (5 min after the initiation of intravesicular Na+-dependent Ca2+ uptake), it was found that the intravesicular Ca2+ content declined with time. Analysis of unidirectional fluxes for Ca2+ at steady state showed that 50 µM XIP inhibited Ca2+ influx and efflux ~85 and 70%, respectively. This result suggested that XIP inhibited both Na+/Ca2+ exchange and Ca2+/Ca2+ exchange but had no effect on the passive release pathway for Ca2+. The results suggest structural homology among cardiac, rat, and human brain exchangers in the XIP binding domain and that the binding of Na+ or other monovalent cations, e.g., K+, is required for XIP to have its inhibitory effect on Ca2+ transport.  相似文献   

5.
Amiloride and harmaline were tested as inhibitors of proton movements in brush-border membrane vesicles from rat kidney cortex. Transmembrane pH differences were visualized using acridine orange. Fluorescence quenching due to Na+ gradient-driven intravesicular acidification was inhibited by amiloride and harmaline. However, a similar inhibition was observed for the Na+ gradient-driven electrogenic proton movements in the presence of gramicidin. Moreover, amiloride and harmaline decreased the fluorescence signal of electrogenic proton movements driven by a K+ gradient in the presence of valinomycin. The degree of inhibition of intravesicular acidification by both drugs was concentration dependent. Half-maximal inhibition (I50) of Na+/H+ exchange and K+ gradient-driven proton movements occurred at 0.21 and 0.6 amiloride, respectively. The I50 for harmaline was 0.21 mM in both cases. Amiloride also decreased the initial quenching of acridine orange fluorescence due to a preset pH gradient without affecting the rate of dissipation of the pH gradient. This effect was independent of the buffer capacity. In contrast, harmaline seemed to dissipate pH gradient in the same way as a permeant buffer. Amiloride and harmaline led to a concentration-dependent fluorescence decrease even in aqueous solution. The results suggest an interaction of amiloride and harmaline with acridine orange which overlaps a possible specific inhibition of Na+/H+ exchange by these drugs.  相似文献   

6.
The uptake of glycine in rabbit renal brush border membrane vesicles was shown to consist of glycine transport into an intravesicular space. An Na+ electrochemical gradient (extravesicular>intravesicular) stimulated the initial rate of glycine uptake and effected a transient accumulation of intravesicular glycine above the steady-state value. This stimulation could not be induced by the imposition of a K+, Li+ or choline+ gradient and was enhanced as extravesicular Na+ was increased from 10 mM to 100 mM. Dissipation of the Na+ gradient by the ionophore gramicidin D resulted in diminished Na+-stimulated glycine uptake. Na+-stimulated uptake of glycine was electrogenic. Substrate-velocity analysis of Na+-dependent glycine uptake over the range of amino acid concentrations from 25 μM to 10 mM demonstrated a single saturable transport system with apparent Km = 996 μM and Vmax = 348 pmol glycine/mg protein per min. Inhibition observed when the Na+-dependent uptake of 25 μM glycine was inhibited by 5 mM extravesicular test amino acid segregated dibasic amino acids, which did not inhibit glycine uptake, from all other amino acid groups. The amino acids d-alanine, d-glutamic acid, and d-proline inhibited similarly to their l counterparts. Accelerative exchange of extravesicular [3H]glycine was demonstrated when brush border vesicles were preloaded with glycine, but not when they were preloaded with l-alanine, l-glutamic acid, or with l-proline. It is concluded that a single transport system exists at the level of the rabbit renal brush border membrane that functions to reabsorb glycine independently from other groups of amino acids.  相似文献   

7.
Intracellular Ca++ is known to influence Na+ flux in luminal membranes. Abnormally elevated Ca++ levels in some cells is believed to be the primary pathophysiologic defect in cystic fibrosis (CF). This in turn is thought to alter Na+ transport which accounts for certain clinical manifestations of this disease. Two Na+-dependent intestinal transport mechanisms have been reported to be suppressed or missing in CF. To examine whether alterations in cell Ca++ may account for these findings, studies were performed to examine the influence of Ca++ on Na+-solute co-transport across intestinal luminal membranes. Purified brush border membrane vesicles prepared from rat small bowel were preincubated in either Ca++-free buffer or buffer containing 2.5 mM CaCl2. Ca++ loaded vesicles showed marked inhibition of Na+ co-transport of taurocholic acid, taurochenodeoxycholic acid, glucose and valine when compared to controls. The uptake of Na+ was also significantly reduced by intravesicular Ca++. These data demonstrate that intravesicular Ca++ inhibits Na+-coupled solute transport as well as Na+ influx across intestinal brush border membranes. These data suggest that intracellular Ca++ may suppress Na+-dependent solute absorption in the intestine. Results presented here further support the theory that elevated intracellular Ca++ may account for intestinal malabsorption and other altered transport phenomena reported in CF.  相似文献   

8.
The uptake of l-glutamic acid into brush-border membrane vesicles isolated from rat renal proximal tubules is Na+-dependent. In contrast to Na+-dependent uptake of d-glucose, pre-equilibration of the vesicles with K+ stimulates l-glutamic acid uptake. Imposition of a K+ gradient ([Ki+] > [Ko+]) further enhances Na+-dependent l-glutamic acid uptake, but leaves K+-dependent glucose transport unchanged. If K+ is present only at the outside of the vesicles, transport is inhibited. Intravesicular Rb+ and, to a lesser extent, Cs+ can replace intravesicular K+ to stimulate l-glutamic acid uptake. Changes in membrane potential incurred by the imposition of an H+-diffusion potential or anion replacement markedly affect Na+-dependent glutamic acid uptake only in the presence of K+. Experiments with a potential-sensitive cyanine dye also indicate that, in the presence of intravesicular K+ a charge movement is involved in Na+-dependent transport of l-glutamic acid.The data indicate that Na+-dependent l-glutamic acid transport can be additionally energized by a K+ gradient. Furthermore, intravesicular K+ renders Na+-dependent l-glutamic acid transport sensitive to changes in the transmembrane electrical potential difference.  相似文献   

9.
Na+-independent l-arginine uptake was studied in rabbit renal brush border membrane vesicles. The finding that steady-state uptake of l-arginine decreased with increasing extravesicular osmolality and the demonstration of accelerative exchange diffusion after preincubation of vesicles with l-arginine, but not d-arginine, indicated that the uptake of l-arginine in brush border vesicles was reflective of carrier-mediated transport into an intravesicular space. Accelerative exchange diffusion of l-arginine was demonstrated in vesicles preincubated with l-lysine and l-ornithine, but not l-alanine or l-proline, suggesting the presence of a dibasic amino acid transporter in the renal brush border membrane. Partial saturation of initial rates of l-arginine transport was found with extravesicular [arginine] varied from 0.005 to 1.0 mM. l-Arginine uptake was inhibited by extravesicular dibasic amino acids unlike the Na+-independent uptake of l-alanine, l-glutamate, glycine or l-proline in the presence of extravesicular amino acids of similar structure. l-Arginine uptake was increased by the imposition of an H+ gradient (intravesicular pH<extravesicular pH) and H+ gradient stimulated uptake was further increased by FCCP. These findings demonstrate membrane-potential-sensitive, Na+-independent transport of l-arginine in brush border membrane vesicles which differs from Na+-independent uptake of neutral and acidic amino acids. Na+-independent dibasic amino acid transport in membrane vesicles is likely reflective of Na+-independent transport of dibasic amino acids across the renal brush border membrane.  相似文献   

10.
This study concerns the uptake of inorganic phosphate into brush-border membrane vesicles prepared from jejunal tissues of either control or Ca-and/or P-depleted goats. The brush-border membrane vesicles showed a time-dependent accumulation of inorganic phosphate with a typical overshoot phenomenon in the presence of an inwardly directed Na+ gradient. The Na+-dependent inorganic phosphate uptake was completely inhibited by application of 5 mmol·l-1 sodium arsenate. Half-maximal stimulation of inorganic phosphate uptake into brush-border membrane vesicles was found with Na+ concentrations in the order of 5 mmol·l-1. Inorganic phosphate accumulation was not affected by a K+ diffusion potential (inside negative), suggesting an electroneutral transport process. Stoichiometry suggested an interaction of two or more Na ions with one inorganic phosphate ion at pH 7.4. Na+-dependent inorganic phosphate uptake into jejunal brush-border membrane vesicles from normal goats as a function of inorganic phosphate concentration showed typical Michaelis-Menten kinetic with V max=0.42±0.08 nmol·mg-1 protein per 15 s-1 and K m=0.03±0.01 mmol·l-1 (n=4, x ±SEM). Long-term P depletion had no effect on these kinetic parameters. Increased plasma calcitriol concentrations in Ca-depleted goats, however, were associated with significant increases of V max by 35–80%, irrespective of the level of P intake. In the presence of an inwardly directed Na+ gradient inorganic phosphate uptake was significantly stimulated by almost 60% when the external pH was decreased to 5.4 (pHout/pHin=5.4/7.4). The proton gradient had no effect on inorganic phosphate uptake in absence of Na+. In summary, in goats Na+ and calcitriol-dependent mechanisms are involved in inorganic phosphate transport into jejunal brush-border membrane vesicles which can be stimulated by protons.Abbreviations AP activity of alkaline phosphatase - BBMV brush-border membrane vesicles - EGTA ethyleneglycol-triacetic acid - n app apparent Hill coefficient - P i inorganic phosphate - PTH parathyroid hormone  相似文献   

11.
The presence of an Na+/Ca2+ exchange system in basolateral plasma membranes from rat small intestinal epithelium has been demonstrated by studying Na+ gradient-dependent Ca2+ uptake and the inhibition of ATP-dependent Ca2+ accumulation by Na+. The presence of 75 mM Na+ in the uptake solution reduces ATP-dependent Ca2+ transport by 45%, despite the fact that Na+ does not affect Ca2+-ATPase activity. Preincubation of the membrane vesicles with ouabain or monensin reduces the Na+ inhibition of ATP-dependent Ca2+ uptake to 20%, apparently by preventing accumulation of Na+ in the vesicles realized by the Na+-pump. It was concluded that high intravesicular Na+ competes with Ca2+ for intravesicular Ca2+ binding sites. In the presence of ouabain, the inhibition of ATP-dependent Ca2+ transport shows a sigmoidal dependence on the Na+ concentration, suggesting cooperative interaction between counter transport of at least two sodium ions for one calcium ion. The apparent affinity for Na+ is between 15 and 20 mM. Uptake of Ca2+ in the absence of ATP can be enhanced by an Na+ gradient (Na+ inside > Na+ outside). This Na+ gradient-dependent Ca2+ uptake is further stimulated by an inside positive membrane potential but abolished by monensin. The apparent affinity for Ca2+ of this system is below 1 μM. In contrast to the ATP-dependent Ca2+ transport, there is no significant difference in Na+ gradient-dependent Ca2+ uptake between basolateral vesicles from duodenum, midjejunum and terminal ileum. In duodenum the activity of ATP-driven Ca2+ uptake is 5-times greater than the Na+/Ca2+ exchange capacity but in the ileum both systems are of equal potency. Furthermore, the Na+/Ca2+ exchange mechanism is not subject to regulation by 1α,25-dihydroxy vitamin D-3, since repletion of vitamin D-deficient rats with this seco-steroid hormone does not influence the Na+/Ca2+ exchange system while it doubles the ATP-driven Ca2+ pump activity.  相似文献   

12.
The kinetic characteristics of Na+ -Ca2+ exchange in isolated sarcolemma vesicles from new-borne chick heart, which contain about 70% of right-side-out vesicles, were compared with those of cultured embryonic chick heart cells. Na+ -Ca2+ exchange was monitored as Nai-dependent Ca2+ uptake. Increase in the internal concentration of Na+ ([Na+]i) in these two preparations caused increase in both the initial rate and the saturation-level of Ca2+ uptake. Plots of the rate of Ca2+ uptake against [Na+]i showed similar saturation-kinetics in these two preparations. The apparent Michaelis constant (Km) (0.35 mM) for Ca2+ uptake by the intact cells was much higher than that (0.031 mM) for Ca2+ uptake by the vesicles. The degree of inhibition by Mg2+ was also higher in the cells than in the vesicles. Some possible reasons (age of the chicks used, membrane potential, etc.), for these differences were examined and are discussed.  相似文献   

13.
14.
Right-side-out plasma membrane vesicles were isolated from wheat roots using an aqueous polymer two-phase system. The purity and orientation of the vesicles were confirmed by marker enzyme analysis. Membrane potential (Ψ)-dependent 22Na+ influx and sodium/proton (Na+/ H+) antiport-mediated efflux across the plasma membrane were studied using these vesicles. Membrane potentials were imposed on the vesicles using either K+ gradients in the presence of valinomycin or H+ gradients. The ΔΨ was quantified by the uptake of the lipophilic cation tetraphenylphosphonium. Uptake of Na+ into the vesicles was stimulated by a negative ΔΨ and had a Km for extrav-esicular Na+ of 34.8 ± 5.9 mol m3. The ΔΨ-dependent uptake of Na+ was similar in vesicles from roots of hexaploid (cv. Troy) and tetraploid (cv. Langdon) wheat differing in a K+/Na+ discrimination trait, and was also unaffected by growth in 50 mol m?3 NaCl. Inhibition of ΔΨ-dependent Na+ uptake by Ca2+ was greater in the hexaploid than in the tetraploid. Sodium/proton antiport was measured as Na+-dependent, amiloride-inhibited pH gradient formation in the vesicles. Acidification of the vesicle interior was measured by the uptake of 14C-methylamine. The Na+/H+ antiport had a Km, for intravesicular Na+ of between 13 and 19 mol m?3. In the hexaploid, Na+/H+ antiport activity was greater when roots were grown in the presence of 50 mol m?3NaCl, and was also greater than the activity in salt-grown tetraploid wheat roots. Antiport activity was not increased in a Langdon 4D chromosome substitution line which carries a trait for K+/Na+ discrimination. It is concluded that neither of the transport processes measured is responsible for the Na+/K+ discrimination trait located on the 4D chromosome of wheat.  相似文献   

15.
Summary Exposure of porcine renal brush-border membrane vesicles to 1.2% cholate and subsequent detergent removal by dialysis reorients almost all N-ethylmaleimide (NEM)-sensitive ATPases from the vesicle inside to the outside. ATP addition to cholate-pretreated, but not to intact, vesicles causes H+ uptake as visualized by the pH indicator, acridine organge. The reoriented H+-pump is electrogenic because permeant extravesicular anions or intravesicular K+ plus valinomycin enhance H+ transport. ATP stimulates H+ uptake with an apparentK m of 93 m. Support of H+ uptake andP i liberation by ATP>GTPITP> UTP indicates a preference for ATP and utilization of other nucleotides at lower efficiency. ADP is a potent, competitive inhibitor of ATP-driven H+ uptake,(K i , 24 m). Mg2+ and Mn2– support ATP-driven H+ uptake, but Ca2+, Ba2+ and Zn2+ do not. Imm Zn2+ inhibits MgATP-driven H+ transport completely. NEM-sensitiveP i liberation is stimulated by Mg2+ and Mg2– and, unlike H+ uptake, also by Ca2+ suggesting Ca2+-dependent ATP hydrolysis unrelated to H+ transport. The inside-out oriented H+-pump is relatively insensitive toward oligomycin, azide, N,N-dicyclohexylcarbodiimide (DCCD) and vanadate, but efficiently inhibited by NEM (apparentK i , 0.77 m), and 4-chloro-7-nitro-benzoxa-1,3-diazole (NBD-Cl; apparentK i , 0.39 m). Taken together, the H+-ATPase of proximal tubular brush-border membranes exhibits characteristics very similar to those of vacuolar type (V-type) H+-ATPases. Hence,V-type H+-ATPases occur not only in intracellular organelles but also in specialized plasma membrane areas.  相似文献   

16.
Nicotinamide adenine dinucleotide (NAD+) has been covalently attached to alginic acid using carbodiimide coupling, thereby producing a macromolecular adduct of NAD, which can be rendered either soluble or insoluble by adjustment of pH. It was found that this NAD+ · alginic acid complex was enzymatically active, and also that the oxidized form could be electrochemically reduced without loss in enzymatic activity. This NAD+ adduct has now also been polarographically characterized as to its two-step reduction waves, which are slightly shifted toward more cathodic potential as compared to free NAD+. When controlled electrolysis was conducted to reduce the bound NAD+ at the cathode, the NADH so formed by electrochemical action was found to be again oxidizable either enzymatically or electrochemically without loss in co-enzymic function. The NADH adduct produced by electrochemical reduction of the NAD+ adduct has also been characterized by voltammetry.  相似文献   

17.
Abstract: We studied the effect of α-latrotoxin (αLTX) on [14C]acetylcholine ([14C]ACh) release, intracellular Ca2+ concentration ([Ca2+]i), plasma membrane potential, and high-affinity choline uptake of synaptosomes isolated from guinea pig cortex. αLTX (10?10-10?8M) caused an elevation of the [Ca2+]i as detected by Fura 2 fluorescence and evoked [14C]ACh efflux. Two components in the action of the toxin were distinguished: one that required the presence of Na+ in the external medium and another that did not. Displacement of Na+ by sucrose or N-methylglucamine in the medium considerably decreased the elevation of [Ca2+]i and [14C]ACh release by αLTX. The Na+-dependent component of the αLTX action was obvious in the inhibition of the high-affinity choline uptake of synaptosomes. Some of the toxin action on both [Ca2+]i and [14C]ACh release remained in the absence of Na+. Both the Na+-dependent and the Na+-independent components of the αLTX-evoked [14C]ACh release partly required the presence of either Mg2+ or Ca2+. The nonneurotransmitter [14C]choline was released along with [14C]ACh, but this release did not depend on the presence of either Na+ or Ca2+, indicating nonspecific leakage through the plasma membrane. We conclude that there are two factors in the release of ACh from synaptosomes caused by the toxin: (1) cation-dependent ACh release, which is related to (a) Na+-dependent divalent cation entry and (b) Na+-independent divalent cation entry, and (2) nonspecific Na+- and divalent cation-independent leakage.  相似文献   

18.

Background

Orthophosphate (Pi) is a central compound in the metabolism of all organisms, including parasites. There are no reports regarding the mechanisms of Pi acquisition by Trypanosoma cruzi.

Methods

32Pi influx was measured in T. cruzi epimastigotes. The expression of Pi transporter genes and the coupling of the uptake to Na+, H+ and K+ fluxes were also investigated. The transport capacities of different evolutive forms were compared.

Results

Epimastigotes grew significantly more slowly in 2 mM than in 50 mM Pi. Influx of Pi into parasites grown under low Pi conditions took place in the absence and presence of Na+. We found that the parasites express TcPho84, a H+:Pi-symporter, and TcPho89, a Na+:Pi-symporter. Both Pi influx mechanisms showed Michaelis–Menten kinetics, with a one-order of magnitude higher affinity for the Na+-dependent system. Collapsing the membrane potential with carbonylcyanide-p-trifluoromethoxyphenylhydrazone strongly impaired the influx of Pi. Valinomycin (K+ ionophore) or SCH28028 (inhibitor of (H+ + K+)ATPase) significantly inhibited Pi uptake, indicating that an inwardly-directed H+ gradient energizes uphill Pi entry and that K+ recycling plays a key role in Pi influx. Furosemide, an inhibitor of the ouabain-insensitive Na+-ATPase, decreased only the Na+-dependent Pi uptake, indicating that this Na+ pump generates the Na+ gradient utilized by the symporter. Trypomastigote forms take up Pi inefficiently.

Conclusions

Pi starvation stimulates membrane potential-sensitive Pi uptake through different pathways coupled to Na+ or H+/K+ fluxes.

General significance

This study unravels the mechanisms of Pi acquisition by T. cruzi, a key process in epimastigote development and differentiation to trypomastigote forms.  相似文献   

19.
The effect of anhydro-4-epitetracycline on sodium gradient-dependent d-glucose transport of rabbit renal brush-border membrane vesicles was studied. The purity of isolated brush-border membrane vesicles as judged by enzyme activities was not different between normal control and anhydro-4-epitetracycline-administered rabbits. There was no difference in estimate of intravesicular volume, either. When NaCl was used for sodium gradient, the overshoot of d-glucose uptake into brush-border membrane vesicles isolated from anhydro-4-epitetracycline-treated rabbits was significantly smaller than that of normal control rabbits. In the cases of NaSCN or Na2SO4, the former was also smaller than the latter, but not significantly so. To avoid the possible effect of membrane potential on d-glucose uptake, the voltage-clamp method was applied. Even in the voltage-clamped condition, the overshoot of d-glucose uptake into vesicles from anhydro-4-epitetracycline-treated rabbits was decreased compared to that of normal rabbits. In vitro incubation of brush-border membrane vesicles with 20 mM anhydro-4-epitetracycline caused no alteration in sodium gradient-dependent d-glucose uptake. Our results demonstrate that there exists a disorder in sodium gradient-dependent d-glucose uptake of renal brush-border membrane in anhydro-4-epitetracycline-treated rabbits, and suggest that this disorder is one of the underlying mechanisms of experimental Fanconi syndrome.  相似文献   

20.
S. Saphon  J.B. Jackson  H.T. Witt 《BBA》1975,408(1):67-82
1. The basal decay of the carotenoid shift of chromatophores from photosynthetic bacteria following short flash excitation is approximately biphasic. The decay indicates the dissipation of the transmembrane electrical potential.2. The H+ efflux following rapid H+ binding after a flash, measured from the colour change of added cresol red, shows very similar kinetics to the carotenoid shift decay suggesting that the dissipation of the electric potential decay is a consequence of the H+ efflux.3. The electric potential decay is stimulated when the chromatophore suspension is supplemented with ADP and Pi (in either the presence or absence of antimycin A).4. The stimulated electric potential decay by ADP and Pi has a similar pH dependence to that of phosphorylation in continuous light.5. The stimulation of the electric potential decay by ADP and Pi is reversed, by aurovertin, an antibiotic which inhibits phosphorylation.6. The stimulation of the electric potential decay by ADP+Pi is also reversed by the inhibitors oligomycin and venturicidin. These inhibitors, but not aurovertin, also inhibit the fast phase of the decay under non-phosphorylating conditions.7. Valinomycin accelerates the overall rate of decay of the electric potential, inhibits the ADP and Pi stimulated electric potential decay, and inhibits the flash-induced phosphorylation. The decay rate of the H+ efflux however, is slower in the presence of this ionophore.8. Nigericin-type ionophores accelerate the overall decay rate of the H+ efflux and inhibit the ADP and Pi stimulated electric potential decay. The basal rate of the electric potential decay is unaffected by treatment with these ionophores.9. When a coupling factor associated with the chromatophore ATPase is removed from the membrane, both the stimulation of the electric potential decay by ADP and Pi and ADP phosphorylation are inhibited. Both reactions are completely restored after reconstitution with the crude coupling factor extract. The basal electric potential decay rate is not affected by the removal of coupling factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号