首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary The hemolytic activity of the terminal complement proteins (C5b-9) towards erythrocytes containing high potassium concentration has been reported to be dramatically increased when extracellular Na+ is substituted isotonically by K+ (Dalmasso, A.P., et al., 1975,J. Immunol. 115:63–68). This phenomenon was now further investigated using resealed human erythrocyte ghosts (ghosts), which can be maintained at a nonlytic osmotic steady state subsequent to C5b-9 binding: (1) The functional state of C5b-9-treated ghosts was studied from their ability to retain trapped [14C]-sucrose or [3H]-inulin when suspended either in the presence of Na+ or K+. A dramatic increase in the permeability of the ghost membrane to both nonelectrolytes-in the absence of significant hemoglobin release-was observed for C5b-9 assembly in the presence of external K+. (2) The physical binding of the individual125I-labeled terminal complement proteins to ghost membranes was directly measured as a function of intra- and extracellular K+ and Na+. The uptake of125I-C7,125I-C8, and125I-C9 into membrane C5b-9 was unaltered by substitution of Na+ by K+. (3) The binding of the terminal complement proteins to ghosts subjected to a transient membrane potential generated by the K+-ionophore valinomycin (in the presence of K+ concentration gradients) was measured. No significant change in membrane binding of any of the C5b-9 proteins was detected under the influence of both depolarizing and hyperpolarizing membrane potentials. It can be concluded that the differential effect of Na+ versus K+ upon the erythrocyte membrane isnot due to an effect upon the binding of the complement proteins to the membraneper se, but upon the functional properties of the assembled C5b-9 pore site.  相似文献   

2.
The changes of volume distribution curves of erythrocytes during and after lysis by complement or nystatin or in hypotonic buffers were measured by flow cytometry. Biconcave and spheroidal ghosts were observed after complement lysis and spheroidal ghosts were seen only after nystatin and hypotonic lysis. The spheroidal ghosts derived from red cells lysed by complement or nystatin were permeable to sucrose; those from hypotonic lysis were sucrose-impermeable. Spheroidal ghosts after complement lysis remained permeable for sucrose whereas spheroidal ghosts after nystatin lysis resealed after removal of the drug by washing. Biconcave ghosts produced by complement lysis were almost impermeable to sucrose initially and therefore responded to osmotic changes, but they became sucrose-permeable upon prolonged incubation at 37 degrees C. The rate of sucrose equilibration increased as the stability of the biconcave shape diminished with increasing numbers of C5b-9 complexes. At 850 C5b-9 complexes/ghost, the biconcave shape and impermeability for sucrose were completely lost. The results support the hypothesis that complement C5b-9 complexes, in addition to the interaction with the lipid bilayer, may interact with the cytoskeleton of the erythrocyte membrane.  相似文献   

3.
A human E membrane protein that inhibits lysis by the purified human C5b-9 proteins was isolated and characterized. After final purification, the protein migrated as an 18- to 20-kDa band by SDS-PAGE. Elution from gel slices and functional assay after SDS-PAGE (nonreduced) confirmed that all C5b-9 inhibitory activity of the purified protein resided in the 18- to 20-kDa band. Phosphatidylinositol-specific phospholipase C digestion of the purified protein abolished 50% of its C5b-9 inhibitory activity, and removed approximately 15% of the protein from human E. Western blots of normal and paroxysmal nocturnal hemoglobinuria E revealed an absence of the 18- to 20-kDa protein in the paroxysmal nocturnal hemoglobinuria E cells. The identity of this E protein with leukocyte Ag CD59 (P18, HRF20) was confirmed immunochemically and by N-terminal amino acid sequence analysis. A blocking antibody raised against the purified protein reacted with a single 18- to 20-kDa band on Western blots of human erythrocyte membranes. Prior incubation of human E with the F(ab) of this antibody increased subsequent lysis by the purified human C5b-9 proteins. Potentiation of C5b-9-mediated lysis was observed when erythrocytes were preincubated with this blocking antibody before C5b-9 assembly was initiated, or, when this antibody was added after 30 min, 0 degrees C incubation of C5b-8-treated E with C9. Chicken E incubated with purified CD59 were used to further characterize the mechanism of its C-inhibitory activity. Preincorporation of CD59 into these cells inhibited lysis by C5b-9, regardless of whether CD59 was added before or after assembly of the C5b-8 complex. When incorporated into the membrane, CD59 inhibited binding of 125I-C9 to membrane C5b-8 and reduced the extent of formation of SDS-resistant C9 polymer. The inhibitory effect of CD59 on 125I-C9 incorporation was most pronounced at near-saturating input of C9 (to C5b-8). By contrast, CD59 did not inhibit either C5b67 deposition onto the cell surface, or, binding of 125I-C8 to preassembled membrane C5b67. Taken together, these data suggest that CD59 exerts its C-inhibitory activity by limiting incorporation of multiple C9 into the membrane C5b-9 complex.  相似文献   

4.
Monoclonal antibodies to the terminal component of the human complement pathway, C9 were used to inhibit the complement-induced release of entrapped [14C]sucrose from erythrocyte ghosts. Antibodies were present either outside, or entrapped within the ghosts. Different monoclonal antibodies were demonstrated to inhibit [14C]sucrose release depending on whether the antibody was outside or entrapped within the ghosts. These findings demonstrate that C9 within the membrane attack complex on erythrocyte membranes is an asymmetrical transmembrane protein penetrating into the cytoplasmic space.  相似文献   

5.
We have recently shown by dose-response analyses with resealed erythrocyte ghosts that the channel formed by complement is a monomer of C5b-9 of the composition C5b61C71C81C9n, in which n = 1 for channels permitting passage of sucrose (0.9 nm molecular diameter) and n = 2 for channels allowing transit of inulin (3 nm molecular diameter) (1). We have now continued these experiments and expanded them by including ribonuclease A (molecular diameter, 3.8 nm) as a marker to assess whether additional C9 molecules enlarge the functional C5b-9 channel. Our results show that formation of C5b-9 channels displays one-hit characteristics with respect to C5b6 when tested by transmembrane passage of inulin or ribonuclease A. By contrast, analysis of dose-response curves of C9 indicate that n = 2-3 for channels allowing transit of inulin and n = 4 for channels allowing transit of ribonuclease A. We have also performed sieving experiments with ghosts carrying C5b-7 and containing two small markers, inositol and sucrose. Dose-response curves for C8 were performed in the presence of excess C9 to ensure conversion of all C5b-8 to C5b-9 channels. The results indicate that small channels (approximately 0.8 nm effective diameter) are not formed at high C9 multiplicity, thus confirming the results obtained with the larger markers, i.e., increase of C9 input leads to formation of larger channels.  相似文献   

6.
Summary The present study was performed to evaluate the usefulness of 125I-labelled C3b bound to constituents of sheep erythrocyte membranes (125I-C3b-OR) for the demonstration of C3b receptor activity of resident peritoneal macrophages at the electron-microscopical level. The binding of 125I-C3b-OR to the cells was studied in biochemical and autoradiographical experiments. The amount of cell-associated radioactivity was dependent on the presence of unlabelled aggregated C3b (AC3b) in a dose-response manner, and diminished strongly after functional inactivation of the receptor by trypsin treatment. In addition, it was found that at 4° C most of the label was associated with the cell surface. However, when the incubation temperature was raised from 4° C to 37° C, internalization of the label was observed. These results indicate that 125I-C3b-OR is a suitable agent for further characterization of the C3b receptor-function of resident peritoneal macrophages at the electron-microscopical level.  相似文献   

7.
Summary The fluorescent potentiometric indicator diS–C3-(5) has been used to investigate changes in membrane potential due to assembly of the C5b-9 membrane attack complex of the complement system. EAC1-7 human red blood cells and resealed erythrocyte ghosts—bearing membrane-assembled C5b67 complexes—were generated by immune activation in C8-deficient human serum. Studies performed with these cellular intermediates revealed that the membrane potential of EAC1-7 red cells and ghosts is unchanged from control red cells (–7 mV) and ghosts (0 mV), respectively. Addition of complement proteins C8 and C9 to EAC1-7 red cells results in a dose-dependent depolarization of membrane potential which precedes hemolysis. This prelytic depolarization of membrane potential—and the consequent onset of hemolysis—is accelerated by raising external [K+], suggesting that the diffusional equilibration of transmembrane cation gradients is rate limiting to the cytolytic event. In the case of EAC1-7 resealed ghosts suspended at either high external [K+] or [Na+], no change in membrane potential (from 0 mV) could be detected after C8/C9 additions. When the membrane potential of the EAC1-7 ghost was displaced from 0 mV by selectively increasing the K+ conductance with valinomycin, a dose-dependent depolarization of the membrane was observed upon addition of C8 and C9. In these experiments, lytic breakdown of the ghost membranes was <5%. Conclusions derived from this study include: (i) measured prelytic depolarization of the red cell Donnan potential directly confirms the colloid-osmotic theory of immune cytolysis. (ii) The diffusional transmenbrane equilibration of Na+ and K+ through the C5b-9 pore results in a dose-dependent depolarization of the membrane potential (E m ) which appears to be rate-limiting to cytolytic rupture of the target erythrocyte. (iii) Enhanced immune hemolysis observed in high K+ media cannot be attributed to cation-selective conductance across the C5b-9 pore, and is probably related to the nearequilibrium condition of potassium-containing red cells when suspended at high external K+. These experiments demonstrate that carbocyanine dye fluorescent indicators can be used to monitor electrochemical changes arising from immune damage to the plasma membrane under both cytolytic and noncytolytic conditions. Potential application of this method to the detection of sublytic pathophysiological changes in the plasma membrane of complement-damaged cells are discussed.  相似文献   

8.
Isolated C7 (m.w. 120,000) in 1% deoxycholate (DOC) forms dimers with an apparent m.w. of 230,000 and a DOC-binding capacity of 82 mol per mol of dimer. Dimerization of C7 also occurs in the presence of DOC-phospholipid mixed micelles and eventuates in the insertion of C7 dimers into the lipid bilayer upon the removal of the detergent. C5b-7 complex formation in the fluid phase or on lipid vesicles likewise involves polymerization. C5b-7 sedimented with 17-40S, which suggests a dimeric to hexameric composition. In avidin-biotin binding experiments in which two differentially labeled forms of C5b,6 (biotinyl 125I-C5b,6, and 131I-C5b,6) were used in equimolar amounts to assemble C5b-7, more than 50% of the biotinyl 125I-C5b,6-containing complexes also contained 131I label; again suggesting that C5b-7 consisted of oligomers rather than monomers. The conformation of C7 in C5b-7 and in dimeric C7 appeared similar by the following criteria. On formation of C5b-7 from C5b,6 and C7, a 20% increase in beta-pleated sheet structure was observed by circular dichroism spectroscopy, and a similar change occurred on dimerization of isolated C7. Tryptic and thermolytic digests of C5b-7 and C7 dimers containing 125I-C7 were analyzed by autoradiography after SDS-polyacrylamide gel electrophoresis and were found to contain similar peptides that were distinct from those in the digests of monomeric C7. Direct evidence showing that the metastable membrane binding site of the C5b-7 complex resides in the C7 subunit was obtained by using the conjugates of C5b,6 and colloidal gold. Viewed in the electron microscope, these conjugates were aggregated upon the addition of isolated C7. In contrast, when conjugates of C7 and colloidal gold were treated with soluble C5b,6, no such aggregates occurred, but instead, individual C5b-7 complexes were observed arranged around single gold particles, resulting in star-like structures. The results strongly suggest that structures of C7 are responsible for the expression of the membrane binding site of metastable C5b-7.  相似文献   

9.
Our previous experiments showed that immune IgG and F(ab')2, but not Fab', mediated serum killing of Escherichia coli 0111B4, strain 12015 (12015), without significantly increasing the extent of terminal complement (C) component attachment to the bacterial surface. We concluded that bactericidal antibody must change either the site or the nature of C5b-9 bacterial attachment. To pursue this possibility, conditions necessary for elution of C5b-9 from the bacterial surface were examined. Forty-two to 44% of 125I-C9 was released from the serum-resistant nonpresensitized 12015 by 1 M NaCl or 0.1% trypsin, compared with the 21 to 24% release from the serum-sensitive presensitized isolate under the same condition. When strain 12015 bearing 125I-C9 was lysed in a French pressure cell, 73.1% of 125I-C9 was released with the capsular fraction if the organisms had not been presensitized. In contrast, on presensitized 12015, 70.2% of 125I-C9 remained associated with the outer membrane after such lysis. These results suggested that C5b-9 was trapped within or underneath the capsule of 12015 in the absence of bactericidal antibody, but that addition of antibody led to C5b-9 insertion into the outer membrane with bacterial killing. The requirement of C components preceding C5 for bacterial killing was next examined. Minimal killing of presensitized 12015 occurred when a terminal C complex was formed by acid activation from purified C5, C6, C7, C8, and C9 in the absence of C3 or earlier components. In contrast, between 1.2 and 3 log killing of nonpresensitized rough Salmonella minnesota and rough E. coli was observed in the same system. Killing of 12015 was examined with bacteria incubated in C5-deficient serum (C5D), followed by washing and the addition of purified C5, C6, C7, C8, and C9 to permit C5b-9 formation. Antibody was added before or after incubation in C5D serum, or after the addition of purified C5-C9. Under conditions of equivalent C3 and C9 binding, significant killing occurred only when antibody was added before incubation in C5D serum. These results show that antibody must be present at or before the time of C5 convertase formation to mediate killing of 12015 by C5b-9. Therefore, antibody is unlikely to be functioning primarily to alter the bacterial surface to expose sites for C5b-9 insertion, nor is the effect of antibody simply to increase C3 and terminal component binding. We postulate that antibody mediates killing of 12015 by localizing C5b-9 around antibody-clustered sites of C3 and C5 convertase formation.  相似文献   

10.
The preceding paper (Hammer, C.H., A. Nicholson, and M. M. Mayer, 1975, Proc. Natl. Acad. Sci., 72:5076) presented evidence on insertion of polypeptide chains from the C5b and C7 subunits of C5b, 6, 7 complex into the phospholipid bilayer of erythrocyte membranes. In the present study, EAC1-8 and EAC1-9 (sheep erythrocytes carrying rabbit antibody and complement proteins C1 through C8 or C9, respectively), prepared with either 125I-C8 or 125I-C9, were incubated with trypsin or chymotrypsin and the release of 125I was measured. Only 9 to 19% of the specifically bound radioactivity was released. In addition, elution experiments were performed with 0.02 M EDTA-1.0 M NaCl. This solution did not elute C9 from EAC1-9. By contrast cellbound C9 was recovered from erythrocyte membranes with sodium dodecyl sulfate (SDS). Thus, enzymatic stripping and elution experiments indicate that cellbound C9 behaves like an integral membrane protein, presumably due to insertion into the lipid bilayer. EAC1-9 membranes that had been subjected to extended digestion with trypsin or chymotrypsin were extracted with SDS to recover the enzyme-resistant part of the C9 molecule from the membrane. Even though this domain of C9 carried 90% of the radioiodine associated with native C9, its m.w. was found to be only 18,000 daltons by analysis on SDS-PAGE. This represents one-quarter of the native C9 molecule.  相似文献   

11.
The association of the eighth (C8) and ninth (C9) components of human complement within membrane-bound C5b-9 was investigated using the photosensitive cross-linking reagent N-succinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate. Reaction of this reagent with either the purified alpha-gamma or beta subunit of C8 resulted in the introduction of 6-8 mol/mol of photosensitive 6-(4'-azido-2'-nitrophenylamino)hexanoate (ANH) as an intrinsic ligand on each protein. The resulting ANH-(alpha-gamma) or ANH-(beta) was capable of recombining with equimolar amounts of beta or alpha-gamma, respectively, to yield ANH-C8. Parallel modifications of purified C9 resulted in incorporation of 3-4 mol/mol of ANH-ligand. Both ANH-C8 and ANH-C9 retained their ability to incorporate into C5b-9. Two approaches were used to determine the proximity of C8 subunits to C9 within C5b-9. In one, the complex was assembled on erythrocytes by incubating EAC1-7 cells separately with each form of ANH-C8 and subsequently saturating with 125I-C9. After lysis, membranes were irradiated, solubilized, and analyzed by gel electrophoresis. Cross-linking was assessed by a shift in electrophoretic mobility of 125I-C9 to a higher molecular weight. Results using either form of ANH-C8 in C5b-9 showed that, although at least 30% was involved in cross-linking, none was cross-linked to C9. Similar results were obtained using a second approach in which cross-linker and radiolabel were transposed between C8 and C9. Here, EAC1-7 cells were incubated first with 125I-C8 containing either 125I-(alpha-gamma) or 125I-(beta) and subsequently with ANH-C9. Although at least 48% of ANH-C9 in C5b-9 was involved in cross-linking in these experiments, no cross-linking to either subunit of C8 was detected. These results suggest that C8 is not in close physical association with C9 within membrane-bound C5b-9.  相似文献   

12.
We have studied the differences between erythrocytes and erythrocyte ghosts as target membranes for the study of Sendai virus fusion activity. Fusion was monitored continuously by fluorescence dequenching of R18-labeled virus. Experiments were carried out either with or without virus/target membrane prebinding. When Sendai virus was added directly to a erythrocyte/erythrocyte ghost suspension, fusion was always lower than that obtained when experiments were carried out with virus already bound to the erythrocyte/erythrocyte ghost in the cold, since with virus prebinding fusion can be triggered more rapidly. Although virus binding to both erythrocytes and erythrocyte ghosts was similar, fusion activity was much more pronounced when erythrocyte ghosts were used as target membranes. These observations indicate that intact erythrocytes and erythrocyte ghosts are not equivalent as target membranes for the study of Sendai virus fusion activity. Fusion of Sendai virus with both target membranes was inhibited when erythrocytes or erythrocyte ghosts were pretreated with proteinase K, suggesting a role of target membrane proteins in this process. Treatment of both target membranes with neuraminidase, which removes sialic acid residues (the biological receptors for Sendai virus) greatly reduced viral binding. Interestingly, this treatment had no significant effect on the fusion reaction itself.  相似文献   

13.
The present study investigated preparation of bovine and porcine erythrocyte membranes from slaughterhouse blood as bio‐derived materials for delivery of dexamethasone‐sodium phosphate (DexP). The obtained biomembranes, i.e., ghosts were characterized in vitro in terms of morphological properties, loading parameters, and release behavior. For the last two, an UHPLC/–HESI–MS/MS based analytical procedure for absolute drug identification and quantification was developed. The results revealed that loading of DexP into both type of ghosts was directly proportional to the increase of drug concentration in the incubation medium, while incubation at 37°C had statistically significant effect on loaded amount of DexP (P < 0.05). The encapsulation efficiency was about fivefold higher in porcine compared to bovine ghosts. Insight into ghosts’ surface morphology by field emission‐scanning electron microscopy and atomic force microscopy confirmed that besides inevitable effects of osmosis, DexP inclusion itself had no observable additional effect on the morphology of the ghosts carriers. DexP release profiles were dependent on erythrocyte ghost type and amount of residual hemoglobin. However, sustained DexP release was achieved and shown over 3 days from porcine ghosts and 5 days from bovine erythrocyte ghosts. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1046–1055, 2016  相似文献   

14.
59Fe- and 125I-labelled transferrin-labelled rabbit reticulocyte ghosts were incubated at 37°C for 60 min with unlabelled reticulocyte and erythrocyte stroma-free haemolysates, and the ability of these haemolysates to release 59Fe- and 125I-labelled transferrin was investigated. Reticulocyte and erythrocyte haemolysates were equally effective in releasing 59Fe from the ghosts, but only the reticulocyte haemolysate was able to release 125I-labelled transferrin. The elution profiles of the post-incubation haemolysates upon AcA 44 gel filtration were similar. The 59Fe appeared as five separate peaks and the 125I-labelled transferrin appeared as a single, unbound peak. In the post-incubation reticulocyte haemolysate, 25% of the 59Fe was bound to ferritin and transferrin, and 69% was associated with the haemoglobin fraction; 52.8% of the 59Fe was present as haem-59Fe intimately associated with haemoglobin. Another 12.5% of the 59Fe was loosely bound to proteins in the haemoglobin fraction. The haem-59Fe released to the haemoglobin fraction was derived from preformed haem in the reticulocyte ghost. 59Fe release was not impaired in experiments in which haem and protein synthesis were inhibited with isonicotinic acid hydrazide and cycloheximide. When tested alone, the haemoglobin fraction was able to release 59Fe from the ghosts to an even greater degree than reticulocyte haemolysate. It is concluded that protein in the haemoglobin fraction function as heme carriers.Less than 6% of the 59Fe released by reticulocyte haemolysate was associated with a low molecular size protein fraction. Removal of this fraction from the unlabelled haemolysate by ultrafiltration did not impair the 59Fe-releasing capacity of the haemolysate. However, both this fraction and the ferritin fraction were able to bind some 59Fe from the ghosts. Ferrous and ferric chelators, as well as defatted bovine serum albumin, were also able to bind 59Fe from the ghosts, but not to the same degree as the haemolysates.The release of 125I-labelled transferrin from the ghosts by the reticulocyte haemolysate was affected by stimulatory and inhibitory factors. The stimulatory factor(s) was present in the non-haemoglobin components of the haemoglobin fraction. The inhibitory effect was dependent on the low molecular weight fraction.  相似文献   

15.
In the presence of 1.0 mM ATP and MgCl2, the specific viscosity of suspensions of human erythrocyte ghosts decreases 35% in 20 minutes at 22°C. The changes in viscosity are a sensitive index of Mg-ATP dependent shape changes in these membranes. Low concentrations of Ca2+ (1 to 5 μM) inhibit Mg-ATP dependent viscosity changes. If ghosts were preincubated with 1 mM Mg-ATP and 20 μM A23187 to produce a maximal decrease in viscosity, addition of 10 μM Ca2+ to the preincubated ghosts increased the viscosity to levels observed in ghosts preincubated without ATP. Ca2+ (1 to 5 μM) also inhibited Mg2+ dependent phosphorylation 30% and stimulated dephosphorylation 25% in ghost membranes. These effects of Ca2+ on viscosity and phosphorylation may be due to a membrane bound Ca2+ phosphatase activity which dephosphorylates membranes phosphorylated by a Mg2+ dependent kinase activity.  相似文献   

16.
This study evaluated the tumor targeting and therapeutic efficacy of a novel theranostic agent 131I-labeled immuno-gold-nanoparticle (131I-C225-AuNPs-PEG) for high epidermal growth factor receptor (EGFR)-expressed A549 human lung cancer. Confocal microscopy demonstrated the specific uptake of C225-AuNPs-PEG in A549 cells. 131I-C225-AuNPs-PEG induced a significant reduction in cell viability, which was not observed when incubated with AuNPs-PEG and C225-AuNPs-PEG. MicroSPECT/CT imaging of tumor-bearing mice after intravenous injection of 123I-C225-AuNPs-PEG revealed significant radioactivity retention in tumor suggested that 131I-labeled C225-conjugated radioimmuno-gold-nanoparticles may provide a new approach of targeted imaging and therapy towards high EGFR-expressed cancers.  相似文献   

17.
Summary 3H-labelled phloretin was shown to be bound reversibly by human erythrocyte and ghost membranes but not to penetrate across them in either direction. Kinetic parameters ofd-xylose andd-galactose transport in intact cells and in ghosts, as well as the inhibition by phloretin of these transports were found to be in fair agreement. By enclosing phloretin in ghosts, its inhibition of monosaccharide transport was found to be symmetrical and thus an equivalence of the outer and the inner membrane sides of the human erythrocyte was demonstrated.  相似文献   

18.
P J Sims  T Wiedmer 《Biochemistry》1984,23(14):3260-3267
The fluorescence self-quenching by energy transfer of FITC-C9, a fluoresceinated derivative of human complement protein C9 [Sims, P.J. (1984) Biochemistry (preceding paper in this issue)], has been used to monitor the kinetics of C9 polymerization induced by the membrane-associated complex of complement proteins C5b-8. Time-based measurements of the fluorescence change observed during incubation of FITC-C9 with C5b-8-treated sheep red blood cell ghost membranes at various temperatures revealed that C9 polymerization induced by the C5b-8 proteins exhibits a temperature dependence similar to that previously reported for the complement-mediated hemolysis of these cells, with an Arrhenius activation energy for FITC-C9 polymerization of 13.3 +/- 3.2 kcal mol-1 (mean +/- 2 SD). Similar measurements obtained with C5b-8-treated unilamellar vesicles composed of either egg yolk phosphatidylcholine (egg PC), dipalmitoylphosphatidylcholine (DPPC), or dimyristoylphosphatidylcholine (DMPC) revealed activation energies of between 20 and 25 kcal mol-1 for FITC-C9 polymerization by C5b-8 bound to these membranes. Temperature-dependent rates of C9 polymerization were observed to be largely unaffected by the phase state of membrane lipid in the target C5b-8 vesicles. The significance of these observations of the mechanism of C9 activation of membrane insertion is considered.  相似文献   

19.
The role of a transmembrane Ca2+ gradient in anion transport by Band 3 of human resealed erythrocyte ghosts has been studied. The results show that a transmembrane Ca2+ gradient is essential for the conformation of erythrocyte Band 3 with higher anion transport activity. The dissipation of the transmembrane Ca2+ gradient by the ionophore A23187 inhibits the anion transport activity. The extent of this inhibition approaches 90% as the Ca2+ concentration on both sides of the ghost membrane is increased to 1.0 mM and half-maximum inhibition is observed at 0.25 mM Ca2+. Addition of ATP (0.4 mM) to the resealing medium can partly reestablish the transmembrane Ca2+ gradient by activation of Ca2+-ATPase and alleviate the inhibition to some extent. N-ethylmaleimide, an inhibitor of erythrocyte Ca2+-ATPase, prevents such restoration. Electron micrographs reveal that numerous larger intramembranous particles can be observed on the P-faces of freeze-fractured resealed ghosts in the absence of a transmembrane Ca2+ gradient.Abbreviations DPA dipicolinic acid - EITC eosin 5-isothiocyanate - DIDS 4,4-diisothiocyanostilbene-2,2-disulfonate - TES N-Tris-(hydroxymethyl)methyl-2-aminoethane sulfonic acid - PMSF phenylmethyl-sulfonylfluoride - NEM N-ethylamaleimide - BSA bovine serum albumin - EGTA ethyleneglycol-bis (aminoethylether)-tetra-acetic acid - EITC-Band 3 Band 3 labeled with EITC - Cai Ca2+ inside resealed ghosts - Cao Ca2+ outside resealed ghosts  相似文献   

20.
The kinetics of the fusion process between erythrocyte ghosts, as induced by Sendal virus, were readily revealed by a simple fluorescence procedure previously employed to characterize the fusion of viruses with biological membranes. The method relies on the relief of fluorescence selfquenching of the membrane-inserted probe octadecyl Rhodamine B chloride (R18) as occurs when labeled membranes fuse with unlabeled counterparts. The kinetics of R18 insertion into ghost membranes, the non-exchangeable properties of the fluorophore and the kinetics, and some characteristics of Sendai virus-induced fusion of ghosts, are described. We propose that the experimental approach may be particularly advantageous to obtain insight into the efficiency and mechanism of a wide range of fusogens, capable of inducing fusion of erythrocyte membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号