首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Basolateral plasma membrane vesicles of rat small intestinal epithelium accumulate calcium through an ATP-dependent pumping system. The activity of this system is highest in duodenum and decreases towards the ileum. This distribution along the intestinal tract is similar as the active calcium absorption capacity of intact intestinal epithelial segments. ATP-dependent calcium uptake in basolateral membrane vesicles from duodenum and ileum increased significantly after repletion of young vitamin D-3-deficient rats with 1α,25-dihydroxy-vitamin D-3. Ca2+-ATPase activity in duodenal basolateral membranes increased to the same extend as ATP-dependent calcium transport, but (Na+ + K+)-ATPase activity remained unaltered.  相似文献   

2.
Monitoring the fluorescence quenching of the pH-sensitive dye Acridine orange, proton accumulation in the presence of an inside-negative transmembrane potential was measured in eel (Anguilla anguilla) intestinal brush-border membrane vesicles. It was demonstrated that the proton accumulation was specifically increased by the presence of the dipeptide glycyl-glycine in the extravesicular space, showing saturation kinetics at increasing dipeptide concentrations and was specifically inhibited by diethylpyrocarbonate. Data reported suggest the presence of an electrical-potential-dependent H+/glycyl-glycine cotransport system in the eel intestinal brush-border membrane vesicles.  相似文献   

3.
Brush border membrane vesicles, BBMV, from eel intestinal cells or kidney proximal tubule cells were prepared in a low osmolarity cellobiose buffer. The osmotic water permeability coefficient P f for eel vesicles was not affected by pCMBS and was measured at 1.6 × 10−3 cm sec−1 at 23°C, a value lower than 3.6 × 10−3 cm sec−1 exhibited by the kidney vesicles and similar to published values for lipid bilayers. An activation energy E a of 14.7 Kcal mol−1 for water transport was obtained for eel intestine, contrasting with 4.8 Kcal mol−1 determined for rabbit kidney proximal tubule vesicles using the same method of analysis. The high value of E a , as well as the low P f for the eel intestine is compatible with the absence of water channels in these membrane vesicles and is consistent with the view that water permeates by dissolution and diffusion in the membrane. Further, the initial transient observed in the osmotic response of kidney vesicles, which is presumed to reflect the inhibition of water channels by membrane stress, could not be observed in the eel intestinal vesicles. The P f dependence on the tonicity of the osmotic shock, described for kidney vesicles and related to the dissipation of pressure and stress at low tonicity shocks, was not seen with eel vesicles. These results indicate that the membranes from two volume transporter epithelia have different mechanisms of water permeation. Presumably the functional water channels observed in kidney vesicles are not present in eel intestine vesicles. The elastic modulus of the membrane was estimated by analysis of swelling kinetics of eel vesicles following hypotonic shock. The value obtained, 0.79 × 10−3 N cm−1, compares favorably with the corresponding value, 0.87 × 10−3 N cm−1, estimated from measurements at osmotic equilibrium. Received: 28 January 1999/Revised: 15 June 1999  相似文献   

4.
Ethanol, at concentrations found in the intestinal lumen after moderate drinking, has been shown to inhibit carrier-mediated intestinal transport processes. This inhibition could occur by direct interaction with membrane transporters, dissipation of the energy producing Na+ electrochemical gradient and/or nonspecific alteration of membrane integrity. The latter alteration may be reflected by changes in membrane fluidity, chemical composition or vesicular size. These possibilities were examined with studies in purified brush border membrane vesicles of rat intestine. Ethanol inhibited concentrative Na+-dependent d-glucose uptake in a dose-dependent manner. In contrast, ethanol did not inhibit concentrative d-glucose uptake under conditions of d-glucose trans-stimulation in the absence of a Na+ electrochemical gradient. Ethanol also inhibited initial, concentrative Na+-dependent taurocholic acid uptake, as well as equilibrium uptake. That ethanol exerted a dual effect on transport by increasing membrane conductance for Na+ while decreasing intravesicular space was supported by direct studies of Na+ uptake. Morphometric analysis confirmed that ethanol-treated membranes had a decreased intravesicular size when compared to untreated membranes. Finally, membrane fluidity measured by EPR showed that ethanol had a significant fluidizing effect without producing qualitative changes in membrane proteins, as determined by SDS gel electrophoresis. These results suggest that ethanol inhibits carrier-mediated transport by dissipation of the Na+ electrochemical gradient and alteration of membrane integrity rather than by direct interaction with membrane transporters.  相似文献   

5.
Salinity-induced alterations in tomato (Lypersicon esculentum Mill. cv Heinz 1350) root plasma membrane properties were studied and characterized using a membrane vesicle system. Equivalent rates of MgATP-dependent H+-transport activity were measured by quinacrine fluorescence (ΔpH) in plasma membrane vesicles isolated from control or salt-stressed (75 millimolar salt) tomato roots. However, when bis-[3-phenyl-5-oxoisoxazol-4-yl] pentamethine was used to measure MgATP-dependent membrane potential (ΔΨ) formation, salt-stressed vesicles displayed a 50% greater initial quench rate and a 30% greater steady state quench than control vesicles. This differential probe response suggested a difference in surface properties between control and salt-stressed membranes. Fluorescence titration of vesicles with the surface potential probe, 8-anilino-1-napthalenesulphonic acid (ANS) provided dissociation constants (Kd) of 120 and 76 micromolar for dye binding to control and salt-stressed vesicles, respectively. Membrane surface potentials (Ψo) of−26.0 and −13.7 millivolts were calculated for control and salt-stressed membrane vesicles from the measured Kd values and the calculated intrinsic affinity constant, Ki. The concentration of cations and anions at the surface of control and salt-stressed membranes was estimated using Ψo values and the Boltzmann equation. The observed difference in membrane surface electrostatic properties was consistent with the measured differences in K+-stimulated kinetics of ATPase activity between control and salt-stressed vesicles and by the differential ability of Cl ions to stimulate H+-transport activity. Salinity-induced changes in plasma membrane electrostatic properties may influence ion transport across the plasma membrane.  相似文献   

6.
We suggest a novel approach for direct optical microscopy observation of DNA interaction with the bilayers of giant cationic liposomes. Giant unilamellar vesicles, about 100 μm in diameter, made of phosphatidylcholines and up to 33 mol% of the natural bioactive cationic amphiphile sphingosine, were obtained by electroformation. “Short” DNAs (oligonucleotide 21b and calf thymus 250 bp) were locally injected by micropipette to a part of the giant unilamellar vesicle (GUV) membrane. DNAs were injected native, as well as marked with a fluorescent dye. The resulting membrane topology transformations were monitored in phase contrast, while DNA distribution was followed in fluorescence. We observed DNA-induced endocytosis due to the DNA/lipid membrane local interactions and complex formation. A characteristic minimum concentration (C endo) of d-erythro-sphingosine (Sph+) in the GUV membrane was necessary for the endocytic phenomenon to occur. Below C endo, only lateral adhesions between neighboring vesicles were observed upon DNA local addition. C endo depends on the type of zwitterionic (phosphocholine) lipid used, being about 10 mol% for DPhPC/Sph+ GUVs and about 20 mol% for SOPC/Sph+ or eggPC/Sph+ GUVs. The characteristic sizes and shapes of the resulting endosomes depend on the kind of DNA, and initial GUV membrane tension. When the fluorescent DNA marker dye was injected after the DNA/lipid local interaction and complex formation, no fluorescence was detected. This observation could be explained if one assumes that the DNA is protected by lipids in the DNA/lipid complex, thereby inaccessible for the dye molecules. We suggest a possible mechanism for DNA/lipid membrane interaction involving DNA encapsulation within an inverted micelle included in the lipid membrane. Our model observations could help in understanding events associated with the interaction of DNA with biological membranes, as well as cationic liposomes/DNA complex formation in gene transfer processes. Received: 18 April 1998 / Revised version: 6 August 1998 / Accepted: 7 August 1998  相似文献   

7.
A previous study of energy-independent in vitro Ca2+ uptake by rat intestinal epithelial membrane vesicles demonstrated that uptake by Golgi membrane vesicles was greater than that by microvillus or lateral-basal membrane vesicles, was markedly decreased in vitamin D-deficient rats, and responded specifically to 1,25-(OH)2D3 repletion (R. A. Freedman, M. M. Weiser, and K. J. Isselbacher, 1977, Proc. Nat. Acad. Sci. USA74, 3612–3616; J. A. MacLaughlin, M. M. Weiser, and R. A. Freedman, 1980, Gastroenterology78, 325–332). In the present study, properties of Ca2+ uptake and release by intestinal Golgi membrane vesicles have been investigated. The initial rate of uptake was found to be saturable, suggesting carrier-mediated uptake. Uptake was markedly inhibited by Mg2+ and Sr2+, but not by Na+ or K+. Lowering the external [H+] or raising the internal [H+] resulted in enhancement of the initial rate of uptake; the intial rate was found to correlate with the internal-to-external [H+] gradient. The initial rate of uptake could be enhanced by preloading the vesicles with MgCl2 or SrCl2 but not CaCl2, NaCl, or KCl. Vesicles preloaded with K2SO4 failed to show enhanced uptake in the presence of valinomycin, suggesting that enhancement in uptake by vesicles preloaded with MgCl2 was not due to transmembrane potentials. The internal volume of the Golgi membrane vesicles was determined and found to be 9 μl/mg protein; this volume could accomodate less than 1% of the Ca2+ uptake maintained at equilibrium. Therefore, the remainder of the Ca2+ taken up was presumably bound to the Golgi membranes. A dissociation constant of 3.8 × 10?6m was found for this binding. The bound Ca2+ could be rapidly released by external Mg2+ or Sr2+, but not Ca2+, Na+, or K+. Release of bound Ca2+ could also be induced by raising the [H+] of the external medium. Failure of external Ca2+ to release bound Ca2+ suggested that the release induced by external Mg2+, Sr2+, or H+ was not due to competitive displacement of Ca2+ from its binding sites. These results indicated that Ca2+ uptake by intestinal Golgi membrane vesicles consists of carrier-mediated transport followed by binding of Ca2+ to the vesicle. The effects of H+, Mg2+, and Sr2+ on Ca2+ uptake and release suggest the existence of cation countertransport in the Golgi membrane vesicles.  相似文献   

8.
Effects of entomocidal Cry-type proteins, δ-endotoxins Cry3A and Cry11A produced by Bacillus thuringiensis, on ion permeability of the apical membranes of intestinal epithelium from Tenebrio molitor larvae midgut were studied. Using potential-sensitive dyes safranine O and oxonol VI and δpH indicator acridine orange, it was shown that placing brush border membrane vesicles (BBMV) (loaded with Mg2+ during their preparation) into a salt-free buffer medium resulted in spontaneous generation of transmembrane electric potential on the vesicular membrane (negative inside the vesicles) accompanied by acidification of the aqueous phase inside the vesicles. The generation of transmembrane ion gradients on the vesicular membrane was a result of an electrogenic efflux of Mg2+ from the vesicles as shown by abolishing of the membrane potential by such agents as MgSO4 or CaCl2 in centimolar concentrations, a highly lipophilic cation tetraphenylphosphonium, and some blockers of cell membrane Ca2+-channels in submillimolar concentrations. A passive generation of membrane potential on the vesicular membrane (but positive inside the vesicles) was also observed upon addition of centimolar concentrations of K2SO4. Addition of δ-endotoxins Cry3A and Cry11A to the vesicle suspension in a salt-free buffer medium or in the same medium supplemented with centimolar concentrations of K2SO4 exerted a pronounced hyperpolarization of the vesicular membrane. This hyperpolarization was sensitive to the same agents, which abolished the membrane potential generation in the absence of δ-endotoxin. It is concluded that Cry proteins induced in BBMV from T. molitor opening pores or ion channels, which were considerably more permeable for alkaline- and alkaline-earth metal cations than for the accompanying anions.  相似文献   

9.
The fusion of synaptic vesicles with the plasma membrane (exocytosis) is a required step in neurotransmitter release and neuronal communication. The vesicles are then retrieved from the plasma membrane (endocytosis) and grouped together with the general pool of vesicles within the nerve terminal, until they undergo a new exo- and endocytosis cycle (vesicle recycling). These processes have been studied using a variety of techniques such as electron microscopy, electrophysiology recordings, amperometry and capacitance measurements. Importantly, during the last two decades a number of fluorescently labeled markers emerged, allowing optical techniques to track vesicles in their recycling dynamics. One of the most commonly used markers is the styryl or FM dye 1; structurally, all FM dyes contain a hydrophilic head and a lipophilic tail connected through an aromatic ring and one or more double bonds (Fig. 1B). A classical FM dye experiment to label a pool of vesicles consists in bathing the preparation (Fig. 1Ai) with the dye during the stimulation of the nerve (electrically or with high K+). This induces vesicle recycling and the subsequent loading of the dye into recently endocytosed vesicles (Fig. 1Ai-iii). After loading the vesicles with dye, a second round of stimulation in a dye-free bath would trigger the FM release through exocytosis (Fig. 1Aiv-v), process that can be followed by monitoring the fluorescence intensity decrease (destaining). Although FM dyes have contributed greatly to the field of vesicle recycling, it is not possible to determine the exact localization or morphology of individual vesicles by using conventional fluorescence microscopy. For that reason, we explain here how FM dyes can also be used as endocytic markers using electron microscopy, through photoconversion. The photoconversion technique exploits the property of fluorescent dyes to generate reactive oxygen species under intense illumination. Fluorescently labeled preparations are submerged in a solution containing diaminobenzidine (DAB) and illuminated. Reactive species generated by the dye molecules oxidize the DAB, which forms a stable, insoluble precipitate that has a dark appearance and can be easily distinguished in electron microscopy 2,3. As DAB is only oxidized in the immediate vicinity of fluorescent molecules (as the reactive oxygen species are short-lived), the technique ensures that only fluorescently labeled structures are going to contain the electron-dense precipitate. The technique thus allows the study of the exact location and morphology of actively recycling organelles.Open in a separate windowClick here to view.(49M, flv)  相似文献   

10.
Kubitscheck U  Homann U  Thiel G 《Planta》2000,210(3):423-431
The dye FM1-43 was used alone or in combination with measurements of the membrane capacitance (Cm) to monitor membrane changes in protoplasts from Viciafaba L. guard cells. Confocal images of protoplasts incubated with FM1-43 (10 μM) at constant ambient osmotic pressure (πo) revealed in confocal images a slow internalisation of FM1-43-labelled membrane into the cytoplasm. As a result of this process the relative fluorescence intensity of the cell interior (fFM,i) increased with reference to the total fluorescence (fFM,t) by 7.4 × 10−4 min−1. This steady internalisation of dye suggests the occurrence of constitutive endocytosis under constant osmotic pressure. Steady internalisation of FM1-43 labelled membrane caused a prominent staining of a ring-like structure located beneath the plasma membrane. Abrupt elevation of πo by 200 mosmol kg−1 caused, over the first minutes of incubation, a rapid internalisation of FM1-43 fluorescence into the cytoplasm concomitant with a decrease in cell perimeter. Within the first 5 min the cell perimeter decreased by 7.9%. Over the same time fFM,i/fFM,t increased by 0.13, reflecting internalisation of fluorescent label into the cytoplasm. Combined measurements of Cm and total fluorescence of a protoplast (fFM,p) showed that an increase in πo evoked a decrease in Cm but no change in fFM,p. This means that surface contraction of the protoplast is due to retrieval of excess membrane from the plasma membrane and internalisation into the cytoplasm. Further inspection of confocal images revealed that protoplast shrinking was only occasionally associated with internalisation of giant vesicles (median diameter 2.7 μm) with FM1-43-labelled membrane. But, in all cases, osmotic contraction was correlated with a diffuse distribution of FM1-43 label throughout the cytoplasm. From this, we conclude that endocytosis of small vesicles into the cytoplasm is the obligatory process by which cells accommodate an osmotically driven decrease in membrane surface area. Received: 4 May 1999 / Accepted: 19 August 1999  相似文献   

11.
Membrane vesicles rich in nicotinic acetylcholine receptor prepared from Torpedo californica electric tissue have been irreversibly modified with quinacrine mustard, an alkylating derivative of the local anaesthetic quinacrine. The reaction blocked the ion channel regulated by the acetylcholine receptor. Acetylcholine still bound to the modified membrane vesicles with KD approx. 10?8. The number of binding sites was reduced by up to 50%. Stopped-flow experiments showed that in contrast to what had been found with reversibly binding quinacrine no fluorescence changes caused by energy transfer from the irradiated protein to the fluorescent local anaesthetic occurred after addition of agonist. This indicates that the conformational changes associated with the activation of the ion channel are blocked by the covalent reaction with quinacrine mustard. Analysis of the membrane vesicles by SDS-polyacrylamide gel electrophoresis showed that all polypeptide chains assumed to be part of the receptor complex had reacted with the mustard. Even small components, probably lipids, migrating with the dye front, showed fluorescence.  相似文献   

12.
Rabbit kidney brush-border membrane vesicles were exposed to bacterial protease which cleaves off a large number of externally oriented proteins. Na+-dependent d-glucose transport is left intact in the protease-treated vesicles. The protease-treated membrane was solubilized with deoxycholate and the deoxycholate-extracted proteins were further resolved by passage through Con A-Sepharose columns. Sodium-dependent d-glucose activity was found to reside in a fraction containing a single protein band of Mr ? 165000 which is apparently a dimer of Mr ? 85 000. When reconstituted and tested for transport, this protein showed Na+-dependent, stereo-specific and phlorizin-inhibitable glucose transport. Transport activity is completely recovered and is 20-fold increased in specific activity. A similar isolate was obtained from rabbit small intestinal brush-border membranes and kidneys from several other species of animals.  相似文献   

13.
The inside-out fraction of plasma membrane-rich vesicles prepared from leaves of Commelina communis L. by aqueous twophase partitioning was loaded with 45Ca2+ through the action of the plasma membrane Ca2+-ATPase. While the Ca2+-loaded vesicles were tightly sealed, trifluoperazine (TFP) (effective concentration giving 50% of maximum effect [EC50] = 70 micromolar) and W-7 (EC50 = 100 micromolar), but to a much lesser extent, W-5 (EC50 = 500 micromolar) led to a rapid efflux of 45Ca2+ from the vesicles. This efflux could be blocked efficiently with low (<1 millimolar) concentrations of La3+, but it remained unaffected by the addition of calmodulin (CM). Further experiments with vesicles incubated in 45Ca2+ in the absence of ATP, as well as experiments performed with control liposomes and nonloaded as well as Ca2+-loaded plasma membrane vesicles using the indicator dye arsenazo III showed, that TFP and W-7 and, again to a lesser extent, W-5 mobilized a pool of membrane-bound Ca2+ from the vesicles. No indications for a detergent effect of TFP and W-7 were obtained. The EC50-values of these compounds for mobilizing membrane-associated Ca2+ (TFP = 100 micromolar, W-7 = 100 micromolar, W-5 = 500 micromolar) or for the triggering of Ca2+ release from Ca2+-loaded vesicles (see above) were very similar, suggesting a common basis of antagonist action on both processes. Our results suggest the presence of a Ca2+ channel in the plasma membrane of C. communis. The channel is obtained in a Ca2+-inactivated state after preparation and Ca2+-loading of the vesicles. The inactivation is removed by TFP or W-7, presumably due to the Ca2+-mobilizing effect of these compounds. The activated Ca2+ channel is La3+ sensitive and, in the cell, would allow for passage of Ca2+ into the cell. The possibility that TFP or W-7 act independent of CM, or through CM tightly associated with the plasma membrane, is discussed. The system described allows a cell free analysis of Ca2+ influx, displaying channel properties, in a higher plant.  相似文献   

14.
The effects of ethanol and acetaldehyde on rat intestinal microvillus membrane integrity and glucose transport function were examined in vitro with purified membrane vesicles. Ethanol could influence glucose transport function by alterations in the conformation of the carrier, the lipid environment surrounding the carrier, or in the transport driving force (Na+ electrochemical gradient). Due to the rapid nature of glucose uptake, transport was assayed with the use of an apparatus that permitted uptake measurements as early as 1 s. Ethanol (340 mm) partially and acetaldehyde (44 mm) completely inhibited concentrative glucose uptake throughout the 1-min time course. Their inhibitory effects were reversible and irreversible, respectively. Kinetic measurements made during the initial rate of uptake (at 2 s) with various concentrations of glucose (0.05–8 mm) showed that ethanol and acetaldehyde both caused a decrease in V. Although ethanol did not substantially alter the transport Km, acetaldehyde increased the Km almost 50%. To determine whether ethanol or acetaldehyde directly interfered with glucose carrier function, uptake was measured in the presence of equilibrated Na+. Only acetaldehyde had a significant inhibitory effect under these conditions. Membrane permeability, as determined by efflux of preloaded 6-carboxyfluorescein dye, increased upon exposure of the vesicles to ethanol or acetaldehyde. Membrane fluidity measurements by fluorescence polarization showed that only acetaldehyde had a significant fluidizing effect. These results indicate that ethanol and acetaldehyde acted to perturb membrane integrity and inhibited glucose uptake indirectly by allowing the Na+ gradient to dissipate. Acetaldehyde, which had a stronger inhibitory effect than ethanol, appeared also to directly inhibit carrier function.  相似文献   

15.
Earlier studies by our laboratory have suggested a relationship between an amiloride-sensitive Na+−H+ exchange process and the physical state of the lipids of rat colonic brush-border membrane vesicles. To further assess this possible relationship, a series of experiments were performed to examine the effect of dexamethasone administration (100 μg/100 g body wt. per day) subcutaneously for 4 days on Na+−H+ exchange, lipid composition and lipid fluidity of rat distal colonic brush-border membrane vesicles. The results of these studies demonstrate that dexamethasone treatment significantly: (1) increased the Vmax of the Na+−H+ exchange without altering the Km for sodium of this exchange process, utilizing the fluorescent pH-sensitive dye, acridine orange. 22Na flux experiments also demonstrated an increase in amiloride-sensitive proton-stimulated sodium influx across dexamethasone-treated brush-border membrane vesicles; (2) increased the lipid fluidity of treated-membrane vesicles compared to their control counterparts, as assessed by steady-state fluorescence polarization techniques using three different lipid-soluble fluorophores; and (3) increased the phospholipid content of treated-membrane vesicles thereby, decreasing the cholesterol/phospholipid molar ratio of treated compared to control preparations. This data, therefore, demonstrates that dexamethasone administration can modulate amiloride-sensitive Na+−H+ exchange in rat colonic distal brush-border membrane vesicles. Moreover, it adds support to the contention that a direct relationship exists between Na+−H+ exchange activity and the physical state of the lipids of rat colonic apical plasma membranes.  相似文献   

16.
In order to investigate the role of the plasma membrane in determining the kinetics of removal of cholesterol from cells, the efflux of [3H]cholesterol from intact cells and plasma membrane vesicles has been compared. The release of cholesterol from cultures of Fu5AH rat hepatoma and WIRL-3C rat liver cells to complexes of egg phosphatidylcholine (1 mg / ml) and human high-density apolipoprotein is first order with respect to concentration of cholesterol in the cells, with half-times (t12) for at least one-third of the cell cholesterol of 3.2 ± 0.6 and 14.3 ± 1.5 h, respectively. Plasma membrane vesicles (0.5–5.0 μm diameter) were produced from both cell lines by incubating the cells with 50 mM formaldehyde and 2 mM dithiothreitol for 90 min. The efflux of cholesterol from the isolated vesicles follows the same kinetics as the intact, parent cells: the t12 values for plasma membrane vesicles of Fu5AH and WIRL cells are 3.9 ± 0.5 and 11.2 ± 0.7 h, respectively. These t12 values reflect the rate-limiting step in the cholesterol efflux process, which is the desorption of cholesterol molecules from the plasma membrane into the extracellular aqueous phase. The fact that intact cells and isolated plasma membranes release cholesterol at the same rate indicates that variations in the plasma membrane structure account for differences in the kinetics of cholesterol release from different cell types. In order to investigate the role of plasma membrane lipids, the kinetics of cholesterol desorption from small unilamellar vesicles prepared from the total lipid isolated from plasma membrane vesicles of Fu5AH and WIRL cells were measured. Half-times of cholesterol release from plasma membrane lipid vesicles of Fu5AH and WIRL cells were the same, with values of 3.1 ± 0.1 and 2.9 ± 0.2 h, respectively. Since bilayers formed from isolated plasma membrane lipids do not reproduce the kinetics of cholesterol efflux observed with the intact plasma membranes, it is likely that the local domain structure, as influenced by membrane proteins, is responsible for the differences in t12 values for cholesterol efflux from these cell lines.  相似文献   

17.
D J Rouse  L Lack 《Life sciences》1979,25(1):45-52
The ion requirements for intestinal taurocholate transport were studied using vesicles prepared from the brush borders of guinea pig small intestines. For each experimental electrolyte, parallel uptake experiments were performed with vesicles from jejunal and ileal brush border membranes to differentiate between uptake by passive fluxes and non-specific binding and uptake by the ileal bile salt active transport system. Uptake of taurocholate prior to the addition of electrolyte was the same for vesicles prepared from jejunal and ileal tissue. During the presence of a sodium gradient (extravesicular concentration greater than intravesicular), only ileal vesicles displayed the enhanced uptake which is characteristic of the overshoot phenomenon. When NaCl was replaced by KCl or LiCl, the overshoot was not observed. Replacement of NaCl with NaCNS, Na2SO4, or NaSO3C2H4OH, however, resulted in no significant difference in the initial uptake values observed in either the jejunal or ileal vesicles. This pattern of taurocholate transport independence of relative anion permeability differs from the pattern observed by others for the Na+ dependent transport of D-glucose by intestinal brush border membrane vesicles. This difference may be attributed in part to the fact that, unlike the situation with glucose, the binding of a taurocholate anion and a sodium cation by the hypothetical carrier would result in an electroneutral addition.  相似文献   

18.
The effect of exogenous hypercortisolism and 1,25-dihydroxyvitamin D-3 on small-intestinal calcium and glucose transport in the rat was studied at the level of brush-border membrane vesicles generated from isolated villous cells by a freeze-thaw procedure. At 5 · 10?5 M extravesicular calcium, initial uptake rates in vesicles prepared from triamcinolone-treated adult rats were decreased by 30% after 5 days. Since calcium ionophore A23187 virtually abolished the difference in calcium uptake, triamcinolone appeared to affect calcium channel density or activity rather than intravesicular binding capacity. Kinetic analysis showed that a decrease in Vmax of a saturable calcium transport system could entirely account for the diminished rate of vesicular calcium uptake. Calcium transport rates could be partially restored by in vivo administration of 1,25-dihydroxyvitamin D-3 at a dosage which did not affect vesicular calcium uptake in control animals. Conversely, sodium-driven glucose accumulation in brush-border vesicles from triamcinolone-treated rats was stimulated by 50–70% after 36 h and appeared insensitive to vitamin D. A specific triamcinolone action on the glucose carrier itself rather than on the driving force of the sodium gradient was indicated by (i) a similar stimulation of glucose transport under equilibrium exchange conditions and (ii) an opposite effect of triamcinolone on sodium-driven alanine transport. The triamcinolone-induced changes in calcium and glucose uptake were not accompanied by a gross alteration of membrane integrity in vitro or by major alterations in vesicular protein composition, intravesicular glucose space and sucrase or alkaline phosphatase activity. The modification of vesicular transport properties is discussed in relation to the vitamin D-antagonized inhibition of intestinal calcium uptake and the stimulation of glucose absorption in response to supraphysiologic amounts of glucocorticoids observed in intact epithelium.  相似文献   

19.
We have examined the early events in Ca2+-induced fusion of large (0.2 μm diameter) unilamellar cardiolipin/phosphatidylcholine and phosphatidylserine/phosphatidylethanolamine vesicles by quick-freezing freeze-fracture electron microscopy, eliminating the necessity of using glycerol as a cryoprotectant. Freeze-fracture replicas of vesicle suspensions frozen after 1–2 s of stimulation revealed that the majority of vesicles had already undergone membrane fusion, as evidenced by dumbbell-shaped structures and large vesicles. In the absence of glycerol, lipidic particles or the hexagonal HII phase, which have been proposed to be intermediate structures in membrane fusion, were not observed at the sites of fusion. Lipidic particles were evident in less than 5% of the cardiolipin/phosphatidylcholine vesicles after long-term incubation with Ca2+, and the addition of glycerol produced more vesicles displaying the particles. We have also shown that rapid fusion occurred within seconds of Ca2+ addition by the time-course of fluorescence emission produced by the intermixing of aqueous contents of two separate vesicle populations. These studies therefore have produced no evidence that lipidic particles are necessary intermediates for membrane fusion. On the contrary, they indicate that lipidic particles are structures obtained at equilibrium long after fusion has occurred and they become particularly prevalent in the presence of glycerol.  相似文献   

20.
Summary Phloridzin-insensitive, Na+-independentd-glucose uptake into isolated small intestinal epithelial cells was shown to be only partially inhibited by trypsin treatment (maximum 20%). In contrast, chymotrypsin almost completely abolished hexose transport. Basolateral membrane vesicles prepared from rat small intestine by a Percoll® gradient procedure showed almost identical susceptibility to treatment by these proteolytic enzymes, indicating that the vesicles are predominantly oriented outside-out. These vesicles with a known orientation were employed to investigate the kinetics of transport in both directions across the membrane. Uptake data (i.e. movement into the cell) showed aK t of 48mm and aV max of 1.14 nmol glucose/mg membrane protein/sec. Efflux data (exit from the cell) showed a lowerK t of 23mm and aV max of 0.20 nmol glucose/mg protein/sec.d-glucose uptake into these vesicles was found to be sodium independent and could be inhibited by cytochalasin B. TheK t for cytochalasin B as an inhibitor of glucose transport was 0.11 m and theK D for binding to the carrier was 0.08 m.d-glucose-sensitive binding of cytochalasin B to the membrane preparation was maximized withl- andd-glucose concentrations of 1.25m. Scatchard plots of the binding data indicated that these membranes have a binding site density of 8.3 pmol/mg membrane protein. These results indicate that the Na+-independent glucose transporter in the intestinal basolateral membrane is functionally and chemically asymmetric. There is an outward-facing chymotrypsin-sensitive site, and theK t for efflux from the cell is smaller than that for entry. These characteristics would tend to favor movement of glucose from the cell towards the bloodstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号