首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungi in the genus Lecanicillium (formerly classified as the single species Verticillium lecanii) are important pathogens of insects and some have been developed as commercial biopesticides. Some isolates are also active against phytoparasitic nematodes or fungi. Lecanicillium spp. use both mechanical forces and hydrolytic enzymes to directly penetrate the insect integument and the cell wall of the fungal plant pathogen. In addition to mycoparasitism of the plant pathogen, the mode of action is linked to colonization of host plant tissues, triggering an induced systemic resistance. Recently it was demonstrated that development of Lecanicillium hybrids through protoplast fusion may result in strains that inherit parental attributes, thereby allowing development of hybrid strains with broader host range and other increased benefits, such as increased viability. Such hybrids have demonstrated increased virulence against aphids, whiteflies and the soybean cyst nematode. Three naturally occurring species of Lecanicillium, L. attenuatum, L. longisporum, and an isolate that could not be linked to any presently described species based on rDNA sequences have been shown to have potential to control aphids as well as suppress the growth and spore production of Sphaerotheca fuliginea, the causal agent of cucumber powdery mildew. These results suggest that strains of Lecanicillium spp. may have potential for development as a single microbial control agent effective against several plant diseases, pest insects and plant parasitic nematodes due to its antagonistic, parasitic and disease resistance inducing characteristics. However, to our knowledge, no Lecanicillium spp. have been developed for control of phytopathogens or phytoparasitic nematodes.  相似文献   

2.
A study was conducted to examine whether Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) can colonize grapevine leaf tissues and subsequently confer protection against downy mildew caused by Plasmopara viticola (Berk. and Curt.) Berl. and de Toni. Following the foliar inoculation of plants with conidial suspensions of selected B. bassiana strains, colonization of leaves by the fungus was determined using culture-based and PCR techniques at different time intervals. Seven days following B. bassiana inoculation, grapevine plants were challenged with P. viticola and symptoms were assessed by calculating the disease incidence and severity. Although all tested strains were able to colonize grapevine plants, percent colonization differed significantly among strains. Disease incidence and severity were, on the other hand, significantly reduced in B. bassiana-inoculated plants compared to control plants irrespective of strain. This study is one of very few studies investigating the promising role B. bassiana could play as a plant disease antagonist.  相似文献   

3.
Laboratory tests were conducted to examine preferences of Bradysia impatiens Johannsen (Diptera: Sciaridae) larvae and adults for various microbes associated with greenhouse crops. Fungus gnat larvae and adults exhibited a preference for cultures of Pythium spp. over the medium used to grow the pathogens. Larvae also exhibited a preference for geranium seedlings infected with pathogenic Pythium spp. [P. aphanidermatum (Edson) Fitz., P. ultimum Trow, and P. irregulare Buis. (Oomycota: Peronosporales)] over non‐inoculated plants. Adult fungus gnats exhibited a strong ovipositional preference for the aforementioned Pythium spp. as well as a variety of other microorganisms, including the pathogenic fungus Thielaviopsis basicola (Berk. & Br.) (Ascomycota: Microascales), the geranium‐infecting bacterium Xanthomonas campestris pv. pelargonii (Brown) Dye (Proteobacteria: Xanthomonadales), the non‐pathogenic species Pythium torulosum Coker & P. Patt. and Pythium graminicola Subramaniam, the pathogen‐suppressive fungus Trichoderma harzianum Rifai (Ascomycota: Hypocreales), and the insect pathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales). Our study is the first to demonstrate that fungus gnats are attracted to and/or stimulated to oviposit by a wide array of living microorganisms both in pure culture and in association with plant seedlings. These findings have important implications with respect to the potential role of fungus gnats in plant pathogen transmission.  相似文献   

4.
Species in the fungal genus Beauveria are pathogens of invertebrates and have been commonly used as the active agent in biopesticides. After many decades with few species described, recent molecular approaches to classification have led to over 25 species now delimited. Little attention has been given to the mitochondrial genomes of Beauveria but better understanding may led to insights into the nature of species and evolution in this important genus. In this study, we sequenced the mitochondrial genomes of four new strains belonging to Beauveria bassiana, Beauveria caledonica and Beauveria malawiensis, and compared them to existing mitochondrial sequences of related fungi. The mitochondrial genomes of Beauveria ranged widely from 28,806 to 44,135 base pairs, with intron insertions accounting for most size variation and up to 39% (B. malawiensis) of the mitochondrial length due to introns in genes. Gene order of the common mitochondrial genes did not vary among the Beauveria sequences, but variation was observed in the number of transfer ribonucleic acid genes. Although phylogenetic analysis using whole mitochondrial genomes showed, unsurprisingly, that B. bassiana isolates were the most closely related to each other, mitochondrial codon usage suggested that some B. bassiana isolates were more similar to B. malawiensis and B. caledonica than the other B. bassiana isolates analyzed.  相似文献   

5.
Detached leaf disc bioassays were conducted against cucumber powdery mildew and three species of aphid with three entomopathogenic species of Lecanicillium; Lecanicillium longisporum (Vertalec®), Lecanicillium attenuatum (CS625), and an unidentified isolate (DAOM198499). The three Lecanicillium species had high virulence against the aphids Myzus persicae, Macrosiphum euphorbiae and Aulacorthum solani with the exception of DAOM 198499, which demonstrated reduced virulence to A. solani with an LT50 of 6.4 days. Otherwise, LT50 ranged between two and four days. Suspensions of conidia and blastospores of the Lecanicillium species were also applied onto 15 mm leaf discs dissected from cucumber plants previously inoculated with Sphaerotheca fuliginea. Powdery mildew did not develop when the Lecanicillium applications were made one and eight days after S. fuliginea inoculations. When Lecanicillium was applied to highly infected leaf discs 11 and 15 days after S. fuliginea inoculation, the application suppressed subsequent production of S. fuliginea spores as compared to the controls. These results suggest the potential of a dual role for Lecanicillium spp. as microbial control agents against aphids and powdery mildew.  相似文献   

6.
Understanding the mechanisms responsible for divergence and specialization of pathogens on different hosts is of fundamental importance, especially in the context of the emergence of new diseases via host shifts. Temporal isolation has been reported in a few plants and parasites, but is probably one of the least studied speciation processes. We studied whether temporal isolation could be responsible for the maintenance of genetic differentiation among sympatric populations of Ampelomyces, widespread intracellular mycoparasites of powdery mildew fungi, themselves plant pathogens. The timing of transmission of Ampelomyces depends on the life cycles of the powdery mildew species they parasitize. Internal transcribed spacer sequences and microsatellite markers showed that Ampelomyces populations found in apple powdery mildew (Podosphaera leucotricha) were genetically highly differentiated from other Ampelomyces populations sampled from several other powdery mildew species across Europe, infecting plant hosts other than apple. While P. leucotricha starts its life cycle early in spring, and the main apple powdery mildew epidemics occur before summer, the fungal hosts of the other Ampelomyces cause epidemics mainly in summer and autumn. When two powdery mildew species were experimentally exposed to Ampelomyces strains naturally occurring in P. leucotricha in spring, and to strains naturally present in other mycohost species in autumn, cross‐infections always occurred. Thus, the host‐related genetic differentiation in Ampelomyces cannot be explained by narrow physiological specialization, because Ampelomyces were able to infect powdery mildew species they were unlikely to have encountered in nature, but instead appears to result from temporal isolation.  相似文献   

7.
Laboratory bioassays were conducted to determine host plant effect on pathogenicity of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuill. (Ascomycota: Hypocreales) to the sweetpotato whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Fourth instar B. tabaci reared on cucumber, tomato, melon, green pepper, potato, eggplant, marrow, cabbage, bean or cotton, were treated with 1 × 107 conidia/ml B. bassiana EABb 93/14-Tp isolate. Mortality caused by B. bassiana significantly increased with time and it was significantly affected by the host plant on which the nymphs were reared. Mean mortality of nymphs 8 days after inoculation ranged between 52.3±7.3 for nymphs reared on cotton and 91.8±5.8 for nymphs reared on cucumber. Average survival times of nymphs treated with the fungal suspensions were also significantly influenced by the host plant, with a mean of 4.7±0.1 days for nymphs reared on cucumber, 6.6±0.2 days for cotton and 6.9±0.1 days for green pepper. The production of newly formed conidia was also affected by host plant and varied from 111000±8600 conidia/cadaver for nymphs reared on cotton to 597000±28000 conidia/cadaver for those reared on melon.  相似文献   

8.
The powdery mildew Erysiphe magnifica (Erysiphales, Ascomycota) has been recorded for the first time on lotus (Nelumbo nucifera) based on a collection from the Botanical Garden in Frankfurt am Main, Germany. This powdery mildew previously known only from Magnolia species was identified by a combination of light and scanning electron microscopic investigation of ascomata and the Oidium stage, and comparison of ITS DNA sequences. This finding is discussed with respect to the narrow host specificity concept used in Erysiphales taxonomy, the effect of lotus leaf surface on fungal infection, and the extending geographical distribution of powdery mildews.  相似文献   

9.
The recent introduction and rapid spread of the tomato leaf miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) throughout Europe, Africa and the Middle East poses a severe threat to future cultivation of tomato and other Solanaceae. Among the best practicable means for effective and sustainable control of this invasive insect pest are entomopathogenic fungi, which can either prevent a further spread of this insect to new areas or keep population densities below an economic threshold level. Here, we report on the efficacy of a commercially available mycoinsecticide based on the entomopathogen Beauveria bassiana (Bals.) Vuill. (Ascomycota: Hypocreales) against all four larval stages of T. absoluta. In bioassays, high mortality rates and significantly reduced longevity of larvae were obvious when larvae had fed for a period of around 15 days on leaves with B. bassiana propagules present on the surface as an epiphyte with mortality values corrected for variance in control mortality of 90–100%. In addition, a second mode of action of B. bassiana against T. absoluta larvae was evident in bioassays in the form of an endophytic establishment of this fungus in treated tomato plants. Longevity of T. absoluta L4 larvae was significantly lower in individuals which had fed on surface‐sterilized tomato leaves obtained from plants treated 18 days before the bioassay with a B. bassiana suspension compared to larvae feeding on control plants treated with water. Corrected mortality reached values between 30% and 50% for all larval instars. Growth of tomato plants was not inhibited due to colonization by endophytic B. bassiana and a weak systemic translocation of fungal propagules in non‐treated leaves was evident in the assays. Accordingly, entomopathogenic fungi like B. bassiana express different modes of action again target insect pests, which is of particular relevance for the design of efficient management strategies for invasive pests like T. absoluta.  相似文献   

10.
Ampelomyces spp. are common intracellular mycoparasites of powdery mildews worldwide and a strain has been commercialized as a biocontrol agent against these plant pathogens. In light of recent genetic analyses revealing high internal transcribed spacer sequence variability among Ampelomyces strains on different host plant mildews, yet no sequence variability within the Malus strain, polymorphic microsatellites were required to permit biocontrol and ecological studies of the complex apple/apple mildew/Ampellomyces tritrophic interaction. For this purpose, described here are the primers to amplify six polymorphic microsatellite loci from Ampelomyces quisqualis isolated from mycelia of the apple powdery mildew fungus, Podosphaera leucotricha.  相似文献   

11.
Histopathogenesis of living insects of Myzus persicae Sulzer (Hemiptera: Aphididae) and Phenacoccus manihoti Matile‐Ferrero (Hemiptera: Pseudococcidae) by Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) was monitored from penetration through insect death. Important events in aphids included fungal penetration of the integument of the less-resistant leg intersegmental membrane and invasion of natural openings, formation of hyphal bodies in live aphids by three days post-inoculation (PI), and extensive hyphal colonization of the two leg segments closest to the insect body at death of the aphids. Confocal microscopy of green fluorescent protein-labeled B. bassiana in live mealybugs indicated the fungus penetrated the host through the legs and mouthparts. The fungus was scarce in live mealybugs at 1–5 days PI, formed hyphal bodies by six days PI, and growth was limited to parts of dead hosts at 6–7 days PI. In dead mealybugs, hyphal bodies were near solid tissue. Blastospores were in the hemolymph.  相似文献   

12.
The phylogenetic lineage, taxonomic affiliation and interrelationships of important asexual entomopathogenic fungal genera were studied using the sequences of partial regions of β-tubulin and rRNA genes. The species structures of Beauveria bassiana and Nomuraea rileyi were also investigated. A total of 147 fungal entries covering 94 species were analysed. Phylogenetic analysis placed all the asexual entomopathogenic fungal species analysed, in the family Clavicipitaceae of the order Hypocreales of Ascomycota. Deep phylogenetic lineages were observed in B. bassiana iterating the complex nature of this species. Some of the isolates assigned to this species separated out more distinctly than morphologically distinguishable genera. Cryptic speciation was also evident in N. rileyi. It is concluded that the asexual fungi with entomopathogenic habit arose from a single lineage in sexual Clavicipitaceae.  相似文献   

13.

Background  

The entomopathogenic fungi of the genus Beauveria are cosmopolitan with a variety of different insect hosts. The two most important species, B. bassiana and B. brongniartii, have already been used as biological control agents of pests in agriculture and as models for the study of insect host - pathogen interactions. Mitochondrial (mt) genomes, due to their properties to evolve faster than the nuclear DNA, to contain introns and mobile elements and to exhibit extended polymorphisms, are ideal tools to examine genetic diversity within fungal populations and genetically identify a species or a particular isolate. Moreover, mt intergenic region can provide valuable phylogenetic information to study the biogeography of the fungus.  相似文献   

14.
Paleoophiocordyceps coccophagus, a fungal parasite of a scale insect from the Early Cretaceous (Upper Albian), is reported and described here. This fossil not only provides the oldest fossil evidence of animal parasitism by fungi but also contains morphological features similar to asexual states of Hirsutella and Hymenostilbe of the extant genus Ophiocordyceps (Ophiocordycipitaceae, Hypocreales, Sordariomycetes, Pezizomycotina, Ascomycota). Because species of Hypocreales collectively exhibit a broad range of nutritional modes and symbioses involving plants, animals and other fungi, we conducted ancestral host reconstruction coupled with phylogenetic dating analyses calibrated with P.coccophagus. These results support a plant-based ancestral nutritional mode for Hypocreales, which then diversified ecologically through a dynamic process of intra- and interkingdom host shifts involving fungal, higher plant and animal hosts. This is especially evident in the families Cordycipitaceae, Clavicipitaceae and Ophiocordycipitaceae, which are characterized by a high occurrence of insect pathogens. The ancestral ecologies of Clavicipitaceae and Ophiocordycipitaceae are inferred to be animal pathogens, a trait inherited from a common ancestor, whereas the ancestral host affiliation of Cordycipitaceae was not resolved. Phylogenetic dating supports both a Jurassic origin of fungal-animal symbioses within Hypocreales and parallel diversification of all three insect pathogenic families during the Cretaceous, concurrent with the diversification of insects and angiosperms.  相似文献   

15.
Powdery mildew (Golovinomyces cichoracearum), one of the most prolific obligate biotrophic fungal pathogens worldwide, infects its host by penetrating the plant cell wall without activating the plant's innate immune system. The Arabidopsis mutant powdery mildew resistant 5 (pmr5) carries a mutation in a putative pectin acetyltransferase gene that confers enhanced resistance to powdery mildew. Here, we show that heterologously expressed PMR5 protein transfers acetyl groups from [14C]‐acetyl‐CoA to oligogalacturonides. Through site‐directed mutagenesis, we show that three amino acids within a highly conserved esterase domain in putative PMR5 orthologs are necessary for PMR5 function. A suppressor screen of mutagenized pmr5 seed selecting for increased powdery mildew susceptibility identified two previously characterized genes affecting the acetylation of plant cell wall polysaccharides, RWA2 and TBR. The rwa2 and tbr mutants also suppress powdery mildew disease resistance in pmr6, a mutant defective in a putative pectate lyase gene. Cell wall analysis of pmr5 and pmr6, and their rwa2 and tbr suppressor mutants, demonstrates minor shifts in cellulose and pectin composition. In direct contrast to their increased powdery mildew resistance, both pmr5 and pmr6 plants are highly susceptibile to multiple strains of the generalist necrotroph Botrytis cinerea, and have decreased camalexin production upon infection with B. cinerea. These results illustrate that cell wall composition is intimately connected to fungal disease resistance and outline a potential route for engineering powdery mildew resistance into susceptible crop species.  相似文献   

16.
Until recently, the majority of research on the biological control of aerial plant diseases was focused on control of bacterial pathogens. Such research led to the commercialization of the biocontrol agent Pseudomonas fluorescens A506, as BlightBan A506™, for control of fire blight of pear. In contrast, chemical fungicides typically have provided adequate control of most foliar fungal pathogens. However, fungicide resistance problems, concerns regarding pesticide residues and revocation of registration of certain widely used fungicides have led to increased activity in the development of biocontrol agents of foliar fungal pathogens. Much of this activity has centered around the use of Trichoderma spp and Gliocladium spp to control Botrytis cinerea on grape and strawberry. The biocontrol agent Trichoderma harzianum T39 is commercially available in Israel, as Trichodex ™, for control of grey mold in grapes and may soon be registered for use in the US. Also targeted primarily against a foliar disease of grapes, in this case powdery mildew caused by Uncinula necator, is the biocontrol agent Ampelomyces quisqualis AQ10, marketed as AQ10  TM biofungicide. Another promising development in the area of foliar disease control, though one which is not yet commercialized, is the use of rhizobacteria as seed treatments to induce systemic resistance in the host plant, a strategy which can protect the plant against a range of bacterial and fungal pathogens. Received 06 February 1997/ Accepted in revised form 05 June 1997  相似文献   

17.
Beauveria bassiana strain EABb 04/01-Tip isolated from stem-borer larvae of Timaspis papaveris (Hymenoptera: Cynipidae), a serious pest of opium poppy in Spain, was shown to be able to become established endophytically in this pharmaceutical crop. Microbiological, molecular and light and electron microscopic methods were used to study fungal colonisation and to describe its mode of penetration. After inoculation with a foliar spray of conidia, microbiological methods showed 100% of plants examined 24, 48, 72 and 144 h after treatment to be colonised endophytically by the fungus, although the percentage of previously surface sterilised leaf pieces showing fungal growth was 100% at 24 and 48 h, and 80 and 75% at 72 and 144 h after treatment, respectively. The fungus was also observed in leaf pieces obtained from newly formed leaves, indicating that it could spread from treated leaves to leaves formed after fungal application. For molecular studies, a polymerase chain reaction (PCR) protocol was used to amplify the ITS1-5.8S-ITS2 regions of the rDNA of the plant and the fungus. This procedure allowed the detection of the fungus on the surface of the leaves and also endophytically, but only at 72 h after treatment. A nucleotide BLAST search revealed that the ITS1-5.8S-ITS2 sequence of strain EABb 04/01-Tip showed 100% homology with a similar sequence from Cordyceps bassiana. SEM images revealed that although numerous conidia were observed on the leaf surface, few germinated and penetrated. Intracellular colonisation by B. bassiana was not observed, but hyphae were detected growing into the xylem vessels. The fungus was found to colonise 40.5 ± 4.3% of seedlings (with two cotyledons and the two first real leaves) from seeds dressed with a fungal spore suspension. These results may have implications in the biological control of T. papaveris, including the possible systemic protection of the plant against this cynipid.  相似文献   

18.
High-performance liquid chromatographic (HPLC) analysis of chloroform fraction (CF) of cow urine showed rich pool of phenolic acids. Antifungal and antibacterial bioassays of CF have shown its tremendous efficacy against some fungal plant pathogens as well as human pathogenic bacteria at very low concentrations. The CF also inhibited powdery mildew (Erysiphe cichoracearum) of balsam (Impatiens balsamania) under field conditions during pre- and post-inoculation treatments. HPLC analysis of pre- and post-inoculation-treated plant leaves indicated that CF induced phenolic acid synthesis as compared to control. The results revealed that CF of cow urine has the potential for controlling some important human diseases. The result on balsam powdery mildew is a good signal that CF may also be effective against other plant diseases in the field.  相似文献   

19.
The virulence of 20 isolates of Beauveria bassiana (Balsamo) Vuillemin to larvae of the leafminer, Aproaerema modicella, was tested in the laboratory. Leafminer larvae were sprayed with a standard concentration of 1×108 condia/mL of each B. bassiana isolate. All the B. bassiana isolates tested were pathogenic to A. modicella and the mortality varied between 16.7 and 68.9%. Beauveria bassiana isolate B2 was found to be the most virulent followed by isolate B4 which resulted in 59% mortality. Beauveria isolate B2 was selected for dose–response mortality studies with four different doses (1×102, 1×104, 1×106 and 1×108 conidia/mL). Among the various doses tested, 1×108 conidia/mL produced the highest mortality (70.7%). In addition, morphogenesis of the insect pest in all stages, larval, pupal and adult was greatly affected due to fungal infection. Further, B. bassiana isolate B2 and two Pseudomonas fluorescens strains, TDK1 and Pf1 were tested alone and in combination for suppression of groundnut leafminer and collar rot disease and promotion of plant growth and yield both under glasshouse and field conditions. The mixture of B. bassiana and P. fluorescens strains significantly reduced the leafminer and collar rot disease incidences when applied as talc-based formulation through seed, soil and foliar application under glasshouse and field conditions.  相似文献   

20.
An experiment was conducted to introduce the entomopathogen Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) as an endophyte in jute (Corchorus olitorius), a bast fibre crop through seed treatment. Colonization of root, leaf, stem, capsule, and seed were assessed through plating on selective medium and PCR based detection using B. bassiana specific SCAR markers. Endophytic colonization was detected in all the plants grown from treated seeds, but all the plant parts were not colonized. Colonization was detected in leaves, stems, and green capsules but not in roots and seeds. The endophytic colonization was influenced by both plant part and sampling period. Colonization was greater in leaves (55.87%) compared to stems (12.53%) and capsules (42.44%). The percent colonization was higher in case of 60?days old plants (43.34%) than in 30?days (23.89%) and 120?days (35.39%) old plants. As B. bassiana has already been reported to be pathogenic on jute pests, namely semilooper (Anomis sabulifera) and bihar hairy caterpillar (Spilosoma obliqua), its season long endophytic colonization within jute plant suggests a novel approach of biological control of these pests through seed treatment with the entomopathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号