首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rivers produce an abundance of aquatic insects that traverse land, where they can have bottom-up effects on predators, who, in turn, can have top-down effects on terrestrial herbivores. This effect can cascade down to plants. These trophic relationships were demonstrated in a field of stinging nettles, Urtica dioica , along a river in Germany. At the shore compared to similar microhabitats 30–60 m away the abundance and biomass of: midges were highest, spiders were also highest, while herbivorous leafhoppers were lowest. At the shore, nettle plants were less damaged by herbivores and thus had less regrowth. Spiders regularly captured both aquatic midges as well as terrestrial leafhoppers and they captured more individuals of both groups at the shore than further away. Midges supported high densities of shore spiders. This was inferred from correlation of distribution and diet in the absence of other environmental gradients. Removal of spiders from experimental plots caused leafhoppers to increase at the shore, causing more plant damage. These effects were not evident at spider-removal sites away from the shore. This demonstrated that spiders depressed leafhoppers and decreased herbivory on plants only at the shore. It is concluded that aquatic insects had a bottom-up effect on spiders and that this subsidy facilitated a top-down effect that cascaded from spiders to leafhoppers to plants. Similar effects would explain the distribution of arthropods along many rivers. Allochthony connects river food webs with shore food webs, making both components essential for each other.  相似文献   

3.
Community structure and dynamics can be influenced by resource transfers between ecosystems, yet little is known about how boundary structure determines both the magnitude of exchanges and their effects on recipient and donor communities. Aquatic and terrestrial ecosystems are often linked by resource fluxes and riparian vegetation is commonly affected by anthropogenic alterations to land use or river hydrological regime. I investigated whether shrubs at the freshwater–terrestrial interface alter the supply, distribution and importance of aquatic prey resources to terrestrial consumers. Shrubs were predicted to alter the larval community composition of aquatic insects and the emergence of winged adults, thus affecting aquatic prey subsidies to terrestrial consumers. In addition, shrubs were hypothesized to alter the microclimatic suitability of the riparian zone for adult aquatic insects, act as a physical barrier to their dispersal and affect terrestrial community composition, particularly the abundance and type of predators that could benefit from the aquatic prey resource. Stable isotope dietary analyses and a survey of shrub‐dominated and open grassland riparian habitats revealed that larval densities of aquatic insects (EPTM: Ephemeroptera, Plecoptera, Trichoptera and Megaloptera) were higher in shrub than grassland habitats; however, reduced emergence and lateral dispersal in shrub areas led to lower densities of adults. The temperature and relative humidity of the riparian zone did not differ between the habitats. Ground‐active terrestrial invertebrate communities had a higher proportion of cursorial spiders in grassland, coinciding with greater abundances of aquatic prey. Aquatic prey contribution to cursorial spider diet matched adult aquatic insect abundances. Overall, riparian shrubs reduced the magnitude, or at least altered the timing, of cross‐ecosystem subsidy supply, distribution and use by consumers through mechanisms operating in both the aquatic and terrestrial ecosystems. Thus, the structure of ecosystem boundaries has complex effects on the strength of biological interactions between adjacent systems.  相似文献   

4.
We examined the relationship between body size of the riparian spider Nephila clavata and the contribution of allochthonous (aquatic insects) and autochthonous (terrestrial insects) sources to its diet using stable isotope analysis. During the study period from July to September, the body size of the females increased remarkably (about 60-fold) but that of males remained small. The biomass of both aquatic and terrestrial insects trapped on the spider webs increased with spider size, with the biomass of the former ranging between 30 and 70% of that of the terrestrial insects. The average relative contribution of aquatic insects to the diet of the spiders, calculated from δ13C values, was 40–50% in spiders in the early juvenile and juvenile stages, 35% in adult males and 4% in adult females. There was a significant negative relationship between the relative contribution of aquatic insects and body size of the female spiders. We conclude that aquatic insects might be an important seasonal dietary subsidy for small spiders and that these allochthonous subsidies may facilitate the growth of riparian spiders, which may in turn enable the spiders to feed on larger prey.  相似文献   

5.
Carbon and nitrogen transfer from a desert stream to riparian predators   总被引:4,自引:0,他引:4  
Adult aquatic insects emerging from streams may be a significant source of energy for terrestrial predators inhabiting riparian zones. In this study, we use natural abundance delta(13)C and delta(15)N values and an isotopic (15)N tracer addition to quantify the flow of carbon and nitrogen from aquatic to terrestrial food webs via emerging aquatic insects. We continuously dripped labeled (15)N-NH(4) for 6 weeks into Sycamore Creek, a Sonoran desert stream in the Tonto National Forest (central Arizona) and traced the flow of tracer (15)N from the stream into spiders living in the riparian zone. After correcting for natural abundance delta(15)N, we used isotopic mixing models to calculate the proportion of (15)N from emerging aquatic insects incorporated into spider biomass. Natural abundance delta(13)C values indicate that orb-web weaving spiders inhabiting riparian vegetation along the stream channel obtain almost 100% of their carbon from instream sources, whereas ground-dwelling hunting spiders obtain on average 68% of their carbon from instream sources. During the 6-week period of the (15)N tracer addition, orb-web weaving spiders obtained on average 39% of their nitrogen from emerging aquatic insects, whereas spider species hunting on the ground obtained on average 25% of their nitrogen from emerging aquatic insects. To determine if stream subsidies might be influencing the spatial distribution of terrestrial predators, we measured the biomass, abundance and diversity of spiders along a gradient from the active stream channel to a distance of 50 m into the upland using pitfall traps and timed sweep net samples. Spider abundance, biomass and richness were highest within the active stream channel but decreased more than three-fold 25 m from the wetted stream margin. Changes in structural complexity of vegetation, ground cover or terrestrial prey abundance could not account for patterns in spider distributions, however nutrient and energy subsidies from the stream could explain elevated spider numbers and richness within the active stream channel and riparian zone of Sycamore Creek.  相似文献   

6.
The role of resource subsidies across ecosystem boundaries has emerged as an important concept in contemporary ecology. For lake ecosystems, this has led to interest in quantifying the contribution of terrestrial allochthonous carbon to aquatic secondary production. An inverse relationship between habitat area and the role of allochthonous subsidies has been documented on marine islands and assumed for lakes, yet there have been no tests of this pattern among benthic (lake bottom) consumers. Here, we used carbon stable isotopes to trace terrestrial allochthonous and benthic autochthonous carbon use by the crayfish Pacifastacus leniusculus over a gradient of lake area, productivity and urbanization. Consistent with findings from terrestrial islands, habitat size dictated the importance of allochthonous subsidies, as P. leniusculus transitioned from using predominantly terrestrial carbon in small lakes to an increased reliance on autochthonous production in larger lakes. However, shoreline urbanization interacted with this pattern, particularly for small lakes where greater urbanization resulted in reduced use of allochthonous resources. As such, we provide, to our knowledge, the first confirmation of the predicted relationship between habitat size and importance of allochthonous subsidies to lake benthic consumers, but found that urbanization can interfere with this pattern.  相似文献   

7.
Despite growing recognition of the energetic connections between aquatic and riparian habitats of streams and lakes, there have been few efforts to quantify the importance of terrestrial insect subsidies to fish in lakes. Further, it is unclear whether lakeshore urbanization alters the magnitude of these fluxes. Because lakeshore development has been found to be negatively correlated with riparian vegetation that serves as habitat for terrestrial invertebrates, we expected that shoreline urbanization would reduce the prevalence of terrestrial invertebrates in fish diets. We quantified the effects of lakeshore urbanization on terrestrial insect subsidies to fish at three scales: a focused comparison of annual patterns in four lakes in the Pacific Northwest, a one‐time field survey of 28 Pacific Northwest lakes, and a literature survey of 24 North American lakes. At all geographical scales, terrestrial invertebrate subsidies to fish were negatively correlated with shoreline development. Terrestrial insects comprised up to 100% of fish diet mass in undeveloped lakes, versus an average of 2% of fish diet mass in developed lakes. Trout, Oncorhynchus spp., in undeveloped lakes had an average of 50% greater daily energy intake, up to 50% of which was represented by terrestrial prey. Temporal variability of the terrestrial subsidy suggests that these inputs are distinctly pulsed, and this subsidy is absent or temporally rare in undeveloped lakes.  相似文献   

8.
Many ecosystems are linked to their adjacent ecosystems by movements of organisms. For instance, aquatic and terrestrial ecosystems are linked via emerging aquatic insects that serve as prey for terrestrial consumers. However, the role of these organisms in returning recycled carbon to the ecosystem from which it originated is not well known. This is due to the fact that values of carbon isotope signatures from terrestrial leaves and aquatic resources are usually similar and hence results of isotope mixing models need to be considered with caution. We overcame this problem by adding isotopically distinct terrestrial particulate organic carbon (tPOC) as a tracer to the experimental sides of two lakes that were divided in two equal halves with plastic curtains. We focused on aquatic insect larvae (Chironomidae) that fed on maize Zea mays leaves experimentally added to the lakes, and subsequently became prey for terrestrial predators (spiders) after emergence. The carbon isotope values of Chironomidae and spiders were significantly elevated in the lake treatment sides as compared to reference sides, whereas the values of all autochthonous resources were not affected by maize additions. Estimates from stable isotope mixing models indicated a low but demonstrable contribution of maize leaves to the diet of Chironomidae. Overlap between the isotope values of alder leaves, the major natural tPOC source, and autochthonous resources prevented a reliable quantification of allochthony of Chironomidae. However, we qualitatively demonstrated the flow of terrestrial particulate organic carbon to lakes, as leaf fall, and back to terrestrial surroundings via emerging insects. This ‘boomerang’ carbon flux between land and lakes blurs the distinction between autochthonous and allochthonous carbon sources.  相似文献   

9.
Removal of riparian vegetation and straightening of stream channels (channelization) are the most prevalent forms of habitat degradation in streams and their riparian zones. Both have direct effects on organisms in the habitats where they occur, but also have potential to cause indirect effects by interrupting the flux of invertebrate prey between the two adjacent ecosystems. We measured abundance of web-building riparian spiders along four types of streams in Hokkaido, Japan: relatively undisturbed streams, streams where riparian vegetation had been removed, previously channelized streams where the banks had revegetated, and streams that had been both channelized and had the vegetation removed. Spider abundance was reduced by 70% or more by either habitat disturbance alone, or both combined, and the number of spider families was also reduced. Spiders of the family Tetragnathidae, which specialize in capturing adult insects emerging from streams, were strongly reduced by either form of habitat degradation alone, or in combination. In contrast, abundance of spiders in other families that capture prey from both terrestrial and aquatic sources was reduced more strongly by vegetation loss than channelization. These results indicate that riparian vegetation loss has strong direct effects on spiders by reducing habitat for web sites. They also suggest that channelization can have strong indirect effects on riparian-specialist tetragnathid spiders, probably by reducing the flux of adult aquatic insects from the stream to the riparian zone.  相似文献   

10.
Rivers can provide important sources of energy for riparian biota. Stable isotope analysis (δ13C, δ15N) together with linear mixing models, were used to quantify the importance of aquatic insects as a food source for a riparian arthropod assemblage inhabiting the shore of the braided Tagliamento River (NE Italy). Proportional aquatic prey contributions to riparian arthropod diets differed considerable among taxa. Carabid beetles of the genus Bembidion and Nebria picicornis fed entirely on aquatic insects. Aquatic insects made up 80% of the diet of the dominant staphylinid beetle Paederidus rubrothoracicus. The diets of the dominant lycosid spiders Arctosa cinerea and Pardosa wagleri consisted of 56 and 48% aquatic insects, respectively. In contrast, the ant Manica rubida fed mainly on terrestrial sources. The proportion of aquatic insects in the diet of lycosid spiders changed seasonally, being related to the seasonal abundance of lycosid spiders along the stream edge. The degree of spatial and seasonal aggregation of riparian arthropods at the river edge coincided with their proportional use of aquatic subsidies. The results suggest that predation by riparian arthropods is a quantitatively important process in the transfer of aquatic secondary production to the riparian food web.  相似文献   

11.
Paetzold A  Lee M  Post DM 《Oecologia》2008,157(4):653-659
Marine-terrestrial resource flows can subsidies recipient consumers at various trophic levels. Theory suggests that the importance of such spatial subsidies depends on the productivity gradient between adjacent systems; however, the empirical data required to test this assumption are scarce. Most studies of marine-terrestrial subsidies have been performed in arid coastal habitats of low productivity surrounded by productive ocean waters. We examined the importance of marine resource inputs for terrestrial consumers on a temperate, productive forest island surrounded by a marine system of similar productivity. The importance of marine resources for the dominant arthropod consumers was estimated using stable isotopes and linear mixing models. We compared isotopic signatures of spiders and ants captured along a gradient from shore to inland to estimate how far marine-derived energy penetrates the island. We evaluated the distribution of ground-dwelling arthropods using pitfall-trap transects extending from the supratidal-forest boundary to the middle of the island. The contribution of marine-derived energy assimilated by arthropod consumers differed both among taxa and location. Marine-derived resources contributed >80% to the assimilated C of intertidal spiders and 5-10% for spiders at the forest edge and further inland. Ants assimilated 20% of their C from marine-derived resources and this proportion was not affected by distance from shore. Spiders, ants, and all arthropods combined exhibited no spatial aggregation towards the shore. Our results indicate that on temperate islands marine-terrestrial subsidies might be predominantly an edge effect, confined to intertidal consumers. Mobile consumers that opportunistically forage in intertidal habitats play an important role in transferring marine-derived energy further inland. This suggests that the importance of the productivity gradient for spatial subsidies can be modified by the mobility traits of the recipient consumers and their degree of specialization on the interface habitat.  相似文献   

12.
13.
Cross-ecosystem movement of nutrients and biomass can have important effects on recipient systems. Emerging aquatic insects are subsidies to terrestrial ecosystems and can influence foodweb interactions in riparian systems. In a 2-year field experiment, we simulated aquatic insect deposition by adding adult midge carcasses (150?g dry mass m?2 year?1) to 1-m2 heathland plots at a site with low natural midge deposition. We established four levels of midge-addition treatments and measured stable isotopes (??13C and ??15N) in plants and arthropods within each treatment. We used a multiple-source isotope Bayesian mixing model to estimate the terrestrial versus aquatic contribution to the diets of arthropods. Aquatic resources were incorporated into plant, detritivore, and predator biomass. Detritivorous Collembola showed the greatest difference in isotope values (+3??? ??15N and +4??? ??13C) between midge-addition and reference treatments. Isotope values of small spiders followed the same trend of enrichment as Collembola while other arthropods (mites and large spiders) were only enriched after 2?years of midge addition. Although predator diets did not change, they became isotopically enriched via their likely prey (Collembola). Plants also had elevated ??15N (+1???) in midge-addition treatments. The time required and amount of midge-derived C and N detected varied and depended on trophic position. Midge-derived nutrients were no longer present in arthropod biomass in the year following midge addition. Aquatic insect carcasses can be rapidly incorporated into terrestrial food webs in nearshore habitats, and repeated inputs can be detected at multiple trophic levels, thus highlighting the importance of the detrital pathway for aquatic to terrestrial cross-ecosystem subsidies.  相似文献   

14.
This study investigated the effects of cormorant colonies on plant–arthropod island food webs, the consequences of nutrient-rich runoff on marine communities, and feedback loops from marine to terrestrial ecosystems. Terrestrial plant responses were as expected, with the highest plant biomass on islands with low nest density and the highest nitrogen (N) content on islands with high nest density. In contrast to our hypothesis, we found no uniform density response across guilds. Among herbivores, the variable responses may depend on the relative importance of plant quality or quantity. As expected, nutrient-rich runoff entered water bodies surrounding cormorant nesting islands, but only at high nest density, and increased the density of emerging insects. This created a potential feed-back loop to spiders (major terrestrial predators), where stable isotope analyses suggested great use of chironomids. Contrary to our expectation, this potential feed-back did not result in the highest spider density on islands with a high cormorant nest density. Web spiders showed no changes in density on active cormorant islands, and lycosids were actually less abundant on active cormorant islands compared to reference islands. The variable response of spiders despite increased dipteran densities, and also in other consumer groups, may be due to direct negative effects of cormorants on soil chemistry, vegetation cover, and other density regulating forces (for example, top–down forces) not studied here. This study highlights the importance of including processes in the surrounding marine ecosystem to understand the impacts of seabirds on the food web structures of their nesting islands.  相似文献   

15.
In headwater streams, many aquatic insects rely on terrestrial detritus, while their emergence from streams often subsidizes riparian generalist predators. However, spatial variations in such reciprocal trophic linkages remain poorly understood. The present study, conducted in a northern Japanese stream and the surrounding forest, showed that pool–riffle structure brought about heterogeneous distributions of detritus deposits and benthic aquatic insects. The resulting variations in aquatic insect emergence influenced the distributions of riparian web-building spiders. Pools with slow current stored greater amounts of detritus than riffles, allowing more benthic aquatic insects to develop in pools. The greater larval biomass in pools and greater tendency for riffle insects to drift into pools at metamorphosis resulted in an emergence rate of aquatic insects from pools that was some four to five times greater than from riffles. In the riparian forest, web-building spiders (Tetragnathidae and Linyphiidae) were distributed in accordance with the emergence rates of aquatic insects, upon which both spider groups heavily depended. Consequently, the riparian strips bordering pools had a density of tetragnathid spiders that was twice as high as that of the riparian strips adjacent to riffles. Moreover, although limitations of vegetation structure prevented the aggregation of linyphiid spiders around pools, linyphiid density normalized by shrub density was higher in habitats adjacent to pools than those adjacent to riffles. The results indicated that stream geomorphology, which affects the storage of terrestrial organic material and the export of such material to riparian forests via aquatic insect emergence, plays a role in determining the strength of terrestrial–aquatic linkages in headwater ecosystems.  相似文献   

16.
Alterations to river flow conditions have wide impacts on riparian organisms in terms of behavior and biomass. However, little is known about natural flood impacts on prey use and individual growth of riparian predators. Using stable carbon isotope analysis, we investigated flood impacts on aquatic-prey use and the size structure of an orb-web spider, Nephila clavata, during 3 years under different flood conditions in a black locust forest in the middle reaches of the Chikuma River. Large floods depressed aquatic-prey abundance, but did not affect terrestrial-prey abundance in the riparian forest. Consequently, spider growth was stunted after large floods. Spider body size was positively correlated with the body sizes of both aquatic and terrestrial insects in spider webs, where terrestrial insects were significantly larger than aquatic insects. The δ13C of aquatic insects was about 8‰ higher than that of terrestrial insects, and the δ13C of both insect groups did not vary significantly between months or among years. A negative relationship was found between body size and δ13C in spiders under different subsidies levels. Our results showed that flow regime altered spider growth through changes in aquatic subsidies level, but not aquatic-prey use by the spiders due to relative body sizes of predators and prey. Changes in relative body sizes of predator and prey may be an important factor in understanding nutrients, materials, and energy flows in aquatic and terrestrial linkages in the context of flow regime.  相似文献   

17.
1. Aquatic resource fluxes from streams can provide significant subsidies for riparian consumers. Because aquatic resource fluxes can be highly variable in space and time, the subsidy efficiency (i.e. transfer to the recipient food web) is controlled by the short‐term aggregative response of riparian consumers. 2. Field manipulations of stream‐derived invertebrate prey subsidies were used to examine specific aggregative responses of ground‐dwelling arthropods to riverine subsidy pulses in a braided‐river (Tagliamento River, NE Italy). Subsidy manipulation comprised short‐term reductions of natural stream‐derived subsidies and increased subsidies of stream‐derived invertebrate prey during four seasons. 3. We hypothesised that specific aggregative responses of riparian arthropods depend on their specialisation on aquatic insects which was inferred from stable isotope analysis. Natural riverine subsidy sources including aquatic insect emergence and surface‐drifting organisms were quantified. 4. Arthropods responded significantly with a reduction in abundance by 51%, at reduced subsidies and an increase by 110% at increased subsidies, when averaged over all seasons. Different arthropod taxa responded differently to subsidy manipulations in relation to their specialisation on aquatic subsidies: ground beetles with a diet consisting predominantly of aquatic insects responded only to subsidy reductions, indicating that their local abundance was not limited by natural stream‐derived subsidies; lycosid spiders with a partly aquatic diet showed no significant response; and ants, although relying on a terrestrial diet, responded positively to added stream‐derived invertebrate prey, indicating that stranding of surface‐drifting terrestrial invertebrates represented an important subsidy pathway. 5. Ground beetles and lycosid spiders were seasonally separated in their use of aquatic subsidies. Results indicate that the life‐history characteristics of riparian consumers can control the subsidy efficiency for the recipient community. By the effective uptake of pulsed riverine‐derived subsidies, riparian arthropods can enhance the transfer of riverine food sources to the riparian food web.  相似文献   

18.
Jeff Scott Wesner 《Oikos》2010,119(1):170-178
Research over the past decade has established spatial resource subsidies as important determinants of food web dynamics. However, most empirical studies have considered the role of subsidies only in terms of magnitude, ignoring an important property of subsidies that may affect their impact in recipient food webs: the trophic structure of the subsidy relative to in situ resources. This may be especially important when subsidies are composed of organisms, as opposed to nutrient subsidies, because the trophic position of subsidy organisms may differ from in situ prey. I explored the relative magnitude and trophic structure of a cross-habitat prey subsidy, adult aquatic insects, in terrestrial habitats along three streams in the south–central United States. Overall, adult aquatic insects contributed more than one-third of potential insect prey abundance and biomass to the terrestrial habitat. This contribution peaked along a permanent spring stream, reaching as high as 94% of abundance and 86% of biomass in winter. Trophic structure of adult aquatic and terrestrial insects differed. Nearly all adult aquatic insects were non-consumers as adults, whereas all but one taxon of terrestrial insects were consumers. Such a difference created a strong relationship between the relative contribution of the prey subsidy and the trophic structure of the prey assemblage: as the proportion of adult aquatic insects increased, the proportion of consumers in the prey assemblage declined. Specific effects varied seasonally and with distance from the stream as the taxonomic composition of the subsidy changed, but general patterns were consistent. These findings show that adult aquatic insect subsidies to riparian food webs not only elevate prey availability, but also alter the trophic structure of the entire winged insect prey assemblage.  相似文献   

19.
Studies on resource sharing and partitioning generally consider species that occur in the same habitat. However, subsidies between linked habitats, such as streams and riparian zones, create potential for competition between populations which never directly interact. Evidence suggests that the abundance of riparian consumers declines after fish invasion and a subsequent increase in resource sharing of emerging insects. However, diet overlap has not been investigated. Here, we examine the trophic niche of native fish, invasive fish, and native spiders in South Africa using stable isotope analysis. We compared spider abundance and diet at upstream fishless and downstream fish sites and quantified niche overlap with invasive and native fish. Spider abundance was consistently higher at upstream fishless sites compared with paired downstream fish sites, suggesting that the fish reduced aquatic resource availability to riparian consumers. Spiders incorporated more aquatic than terrestrial insects in their diet, with aquatic insects accounting for 45–90% of spider mass. In three of four invaded trout rivers, we found that the average proportion of aquatic resources in web‐building spider diet was higher at fishless sites compared to fish sites. The probability of web‐building and ground spiders overlapping into the trophic niche of invasive brown and rainbow trout was as high as 26 and 51%, respectively. In contrast, the probability of spiders overlapping into the trophic niche of native fish was always less than 5%. Our results suggest that spiders share resources with invasive fish. In contrast, spiders had a low probability of trophic overlap with native fish indicating that the traits of invaders may be important in determining their influence on ecosystem subsidies. We have added to the growing body of evidence that invaders can have cross‐ecosystem impacts and demonstrated that this can be due to niche overlap.  相似文献   

20.
1. Empirical and theoretical research over the past decade has demonstrated the widespread importance of aquatic subsidies to terrestrial food webs. In particular, adult aquatic insects that emerge from streams and lakes are prey for terrestrial predators. While variation in the magnitude of this subsidy is clearly important, the potential top‐down effects of the predatory adults of some aquatic insects in terrestrial food webs are largely unknown. 2. I used published data on benthic insect density (as a proxy for emergence) in North and South America to explore how the proportion of benthic insects that are predatory as adults varies across a gradient of mean annual stream temperature. 3. The proportion of benthic insects that are predatory as adults varied widely across sites (0–12% by abundance; 0–86% by biomass). There was a positive relationship between mean annual stream temperature and the proportion of predatory adults across all sites, driven largely by the greater abundance/biomass of predatory taxa (e.g. odonates), relative to non‐predators (e.g. midges, mayflies, caddisflies), in tropical than in temperate streams. 4. The ‘trophic structure’ (i.e. the proportion of predators) of emerging adult aquatic insects is an understudied source of variation in aquatic–terrestrial interactions. Incorporation of trophic structure in future studies is needed to understand how future modification of fresh waters may affect adjacent terrestrial food webs through both bottom‐up and top‐down effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号