首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large-conductance Ca2+-activated K+ (BK) channels are composed of pore-forming α-subunits and accessory β1-subunits that modulate Ca2+ sensitivity. BK channels regulate arterial myogenic tone and renal Na+ clearance/K+ reabsorption. Previous studies using indirect or short-term blood pressure measurements found that BK channel β1-subunit knockout (BK β1-KO) mice were hypertensive. We evaluated 24-h mean arterial pressure (MAP) and heart rate in BK β1-KO mice using radiotelemetry. BK β1-KO mice did not have a higher 24-h average MAP when compared with wild-type (WT) mice, although MAP was ~10 mmHg higher at night. The dose-dependent peak declines in MAP by nifedipine were only slightly larger in BK β1-KO mice. In BK β1-KO mice, giving 1% NaCl to mice to drink for 7 days caused a transient (5 days) elevation of MAP (~5 mmHg); MAP returned to pre-saline levels by day 6. BK β1-KO mesenteric arteries in vitro demonstrated diminished contractile responses to paxilline, increased reactivity to Bay K 8644 and norepinephrine (NE), and maintained relaxation to isoproterenol. Paxilline and Bay K 8644 did not constrict WT or BK β1-KO mesenteric veins (MV). BK β1-subunits are not expressed in MV. The results indicate that BK β1-KO mice are not hypertensive on normal or high-salt intake. BK channel deficiency increases arterial reactivity to NE and L-type Ca2+ channel function in vitro, but the L-type Ca2+ channel modulation of MAP is not altered in BK β1-KO mice. BK and L-type Ca(2+) channels do not modulate murine venous tone. It appears that selective loss of BK channel function in arteries only is not sufficient to cause sustained hypertension.  相似文献   

2.
Recent studies from our laboratory demonstrated the importance of mechanosensitive epithelial Na(+) channel (ENaC) proteins in pressure-induced constriction in renal and cerebral arteries. ENaC proteins are closely related to acid-sensing ion channel 2 (ASIC2), a protein known to be required for normal mechanotransduction in certain sensory neurons. However, the role of the ASIC2 protein in pressure-induced constriction has never been addressed. The goal of the current study was to investigate the role of ASIC2 proteins in pressure-induced, or myogenic, constriction in the mouse middle cerebral arteries (MCAs) from ASIC2 wild-type (+/+), heterozygous (+/-), and null (-/-) mice. Constrictor responses to KCl (20-80 mM) and phenylephrine (10(-7)-10(-4) M) were not different among groups. However, vasoconstrictor responses to increases in intraluminal pressure (15-90 mmHg) were impaired in MCAs from ASIC2(-/-) and (+/-) mice. At 60 and 90 mmHg, MCAs from ASIC2(+/+) mice generated 13.7 +/- 2.1% and 15.8 +/- 2.0% tone and ASIC2(-/-) mice generated 7.4 +/- 2.8% and 12.5 +/- 2.4% tone, respectively. Surprisingly, MCAs from ASIC2(+/-) mice generated 1.2 +/- 2.2% and 3.9 +/- 1.8% tone at 60 and 90 mmHg. The reason underlying the total loss of myogenic tone in the ASIC2(+/-) is not clear, although the loss of mechanosensitive beta- and gamma-ENaC proteins may be a contributing factor. These results demonstrate that normal ASIC2 expression is required for normal pressure-induced constriction in the MCA. Furthermore, ASIC2 may be involved in establishing the basal level of myogenic tone.  相似文献   

3.
This study examines the Cav1 isoforms expressed in mouse chromaffin cells and compares their biophysical properties and roles played in cell excitability and exocytosis. Using immunocytochemical and electrophysiological techniques in mice lacking the Cav1.3α1 subunit (Cav1.3(-/-) ) or the high sensitivity of Cav1.2α1 subunits to dihydropyridines, Cav1.2 and Cav1.3 channels were identified as the only Cav1 channel subtypes expressed in mouse chromaffin cells. Cav1.3 channels were activated at more negative membrane potentials and inactivated more slowly than Cav1.2 channels. Cav1 channels, mainly Cav1.2, control cell excitability by functional coupling to BK channels, revealed by nifedipine blockade of BK channels in wild type (WT) and Cav1.3(-/-) cells (53% and 35%, respectively), and by the identical change in the shape of the spontaneous action potentials elicited by the dihydropyridine in both strains of mice. Cav1.2 channels also play a major role in spontaneous action potential firing, supported by the following evidence: (i) a similar percentage of WT and Cav1.3(-/-) cells fired spontaneous action potentials; (ii) firing frequency did not vary between WT and Cav1.3(-/-) cells; (iii) mostly Cav1.2 channels contributed to the inward current preceding the action potential threshold; and (iv) in the presence of tetrodotoxin, WT or Cav1.3(-/-) cells exhibited spontaneous oscillatory activity, which was fully abolished by nifedipine perfusion. Finally, Cav1.2 and Cav1.3 channels were essential for controlling the exocytotic process at potentials above and below -10 mV, respectively. Our data reveal the key yet differential roles of Cav1.2 and Cav1.3 channels in mediating action potential firing and exocytotic events in the neuroendocrine chromaffin cell.  相似文献   

4.
The cAMP-dependent protein kinase (PKA) regulates a wide array of cellular functions. In brain and heart PKA increases the activity of the L-type Ca2+ channel Cav1.2 in response to beta-adrenergic stimulation. Cav1.2 forms a complex with the beta2-adrenergic receptor, the trimeric GS protein, adenylyl cyclase, and PKA wherein highly localized signaling occurs [Davare, M. A., Avdonin, V., Hall, D. D., Peden, E. M., Burette, A., Weinberg, R. J., Horne, M. C., Hoshi, T., and Hell, J. W. (2001) Science 293, 98-101]. PKA primarily phosphorylates Cav1.2 on serine 1928 of the central, pore-forming alpha11.2 subunit. Here we demonstrate that the A-kinase anchor protein 150 (AKAP150) is critical for PKA-mediated regulation of Cav1.2 in the brain. AKAP150 and MAP2B specifically co-immunoprecipitate with Cav1.2 from rat brain. Recombinant AKAP75, the bovine homologue to rat AKAP150, binds directly to three different sites of alpha11.2. MAP2B from rat brain also interacts with these same sites in pull-down assays. Gene disruption of AKAP150 in mice dramatically reduces co-immunoprecipitation of PKA with Cav1.2 and prevents phosphorylation of serine 1928 upon beta-adrenergic stimulation in vivo. These results demonstrate the physiological relevance of PKA anchoring by AKAPs in general and AKAP150 specifically in the regulation of Cav1.2 in vivo.  相似文献   

5.
6.
7.
L-type, voltage-gated Ca2+ channels (CaL) play critical roles in brain and muscle cell excitability. Here we show that currents through heterologously expressed neuronal and smooth muscle CaL channel isoforms are acutely potentiated following alpha5beta1 integrin activation. Only the alpha1C pore-forming channel subunit is critical for this process. Truncation and site-directed mutagenesis strategies reveal that regulation of Cav1.2 by alpha5beta1 integrin requires phosphorylation of alpha1C C-terminal residues Ser1901 and Tyr2122. These sites are known to be phosphorylated by protein kinase A (PKA) and c-Src, respectively, and are conserved between rat neuronal (Cav1.2c) and smooth muscle (Cav1.2b) isoforms. Kinase assays are consistent with phosphorylation of these two residues by PKA and c-Src. Following alpha5beta1 integrin activation, native CaL channels in rat arteriolar smooth muscle exhibit potentiation that is completely blocked by combined PKA and Src inhibition. Our results demonstrate that integrin-ECM interactions are a common mechanism for the acute regulation of CaL channels in brain and muscle. These findings are consistent with the growing recognition of the importance of integrin-channel interactions in cellular responses to injury and the acute control of synaptic and blood vessel function.  相似文献   

8.
Previous studies demonstrate a role for β epithelial Na(+) channel (βENaC) protein as a mediator of myogenic constriction in renal interlobar arteries. However, the importance of βENaC as a mediator of myogenic constriction in renal afferent arterioles, the primary site of development of renal vascular resistance, has not been determined. We colocalized βENaC with smooth muscle α-actin in vascular smooth muscle cells in renal arterioles using immunofluorescence. To determine the importance of βENaC in myogenic constriction in renal afferent arterioles, we used a mouse model of reduced βENaC (βENaC m/m) and examined pressure-induced constrictor responses in the isolated afferent arteriole-attached glomerulus preparation. We found that, in response to a step increase in perfusion pressure from 60 to 120 mmHg, the myogenic tone increased from 4.5 ± 3.7 to 27.3 ± 5.2% in +/+ mice. In contrast, myogenic tone failed to increase with the pressure step in m/m mice (3.9 ± 0.8 to 6.9 ± 1.4%). To determine the importance of βENaC in myogenic renal blood flow (RBF) regulation, we examined the rate of change in renal vascular resistance following a step increase in perfusion pressure in volume-expanded animals. We found that, following a step increase in pressure, the rate of myogenic correction of RBF is inhibited by 75% in βENaC m/m mice. These findings demonstrate that myogenic constriction in afferent arterioles is dependent on normal expression of βENaC.  相似文献   

9.
Ca2+ has been proposed to regulate Na+ channels through the action of calmodulin (CaM) bound to an IQ motif or through direct binding to a paired EF hand motif in the Nav1 C terminus. Mutations within these sites cause cardiac arrhythmias or autism, but details about how Ca2+ confers sensitivity are poorly understood. Studies on the homologous Cav1.2 channel revealed non-canonical CaM interactions, providing a framework for exploring Na+ channels. In contrast to previous reports, we found that Ca2+ does not bind directly to Na+ channel C termini. Rather, Ca2+ sensitivity appears to be mediated by CaM bound to the C termini in a manner that differs significantly from CaM regulation of Cav1.2. In Nav1.2 or Nav1.5, CaM bound to a localized region containing the IQ motif and did not support the large Ca(2+)-dependent conformational change seen in the Cav1.2.CaM complex. Furthermore, CaM binding to Nav1 C termini lowered Ca2+ binding affinity and cooperativity among the CaM-binding sites compared with CaM alone. Nonetheless, we found suggestive evidence for Ca2+/CaM-dependent effects upon Nav1 channels. The R1902C autism mutation conferred a Ca(2+)-dependent conformational change in Nav1.2 C terminus.CaM complex that was absent in the wild-type complex. In Nav1.5, CaM modulates the Cterminal interaction with the III-IV linker, which has been suggested as necessary to stabilize the inactivation gate, to minimize sustained channel activity during depolarization, and to prevent cardiac arrhythmias that lead to sudden death. Together, these data offer new biochemical evidence for Ca2+/CaM modulation of Na+ channel function.  相似文献   

10.
OBJECTIVES: To define the link between the deletion of gene encoding for metalloproteinase 9 and resistance artery reactivity, we studied in vitro smooth muscle and endothelial cell function in response to pressure, shear stress, and pharmacological agents. BACKGROUND: Matrix metalloproteinases play a crucial role in the regulation of extracellular matrix turnover and structural artery wall remodeling. METHODS: Resistance arteries were isolated from mice lacking gene encoding for MMP-9 (KO) and their control (WT). Hemodynamic, pharmacology approaches, and Western blot analysis were used in this study. RESULTS: The measurement of blood pressure in vivo was similar in KO and WT mice. Pressure-induced myogenic tone, contractions to angiotensin-II and phenylephrine were similar in both groups. The inhibition of MMP2/9 ((2R)-2-[(4-biphenylylsulfonyl) amino]-3-phenylpropionic acid) significantly decreased myogenic tone in WT and had no effect in KO mice. Relaxation endothelium-dependent (flow-induced- dilation 41.3+/-0.6 vs. 21+/-1.6 at 10 microl/min in KO and WT mice, respectively, P<0.05) and eNOS expression were increased in KO compared to WT mice. The inhibition of eNOS with L-NAME significantly decreased endothelium response to shear stress, which was more pronounced in KO mice resistance arteries (-26.83+/-2.5 vs. -15.84+/-2.3 at 10 microl/min in KO and WT, respectively, P<0.05). However, the relaxation to exogenous nitric oxide-donor was similar in both groups. CONCLUSION: Our study provides evidence of a selective effect of MMP-9 on endothelium function. Thus, MMP-9 gene deletion specifically increased resistance artery dilation endothelium-dependent and eNOS expression. Based on our results, MMP-9 could be a potential therapeutic target in cardiovascular disease associated with resistance arteries dysfunction.  相似文献   

11.
The Cav3.2 isoform of the T-type calcium channel is expressed in primary sensory neurons of the dorsal root ganglion (DRG), and these channels contribute to nociceptive and neuropathic pain in rats. However, there are conflicting reports on the roles of these channels in pain processing in rats and mice. In addition, the function of T-type channels in persistent inflammatory hyperalgesia is poorly understood. We performed behavioral and comprehensive histochemical analyses to characterize Cav3.2-expressing DRG neurons and examined the regulation of T-type channels in DRGs from C57BL/6 mice with carrageenan-induced inflammatory hyperalgesia. We show that approximately 20% of mouse DRG neurons express Cav3.2 mRNA and protein. The size of the majority of Cav3.2-positive DRG neurons (69 ± 8%) ranged from 300 to 700 μm2 in cross-sectional area and 20 to 30 μm in estimated diameter. These channels co-localized with either neurofilament-H (NF-H) or peripherin. The peripherin-positive cells also overlapped with neurons that were positive for isolectin B4 (IB4) and calcitonin gene-related peptide (CGRP) but were distinct from transient receptor potential vanilloid 1 (TRPV1)-positive neurons during normal mouse states. In mice with carrageenan-induced inflammatory hyperalgesia, Cav3.2 channels, but not Cav3.1 or Cav3.3 channels, were upregulated in ipsilateral DRG neurons during the sub-acute phase. The increased Cav3.2 expression partially resulted from an increased number of Cav3.2-immunoreactive neurons; this increase in number was particularly significant for TRPV1-positive neurons. Finally, preceding and periodic intraplantar treatment with the T-type calcium channel blockers mibefradil and NNC 55-0396 markedly reduced and reversed mechanical hyperalgesia during the acute and sub-acute phases, respectively, in mice. These data suggest that Cav3.2 T-type channels participate in the development of inflammatory hyperalgesia, and this channel might play an even greater role in the sub-acute phase of inflammatory pain due to increased co-localization with TRPV1 receptors compared with that in the normal state.  相似文献   

12.
Hypertrophic cardiac myopathy (HCM) is the leading cause of mortality in young athletes. Abnormalities in small intramural coronary arteries have been observed at autopsy in such subjects. The walls of these intramural vessels, especially in the ventricular septum, are thickened, and the lumen frequently appears narrowed. Whether these morphological characteristics have functional correlates is unknown. We studied coronary myogenic tone in a transgenic mouse model of HCM that has mutations in the cardiac alpha-myosin heavy chain gene. This transgenic mouse has a cardiac phenotype that resembles that occurring in humans. We examined the possible vascular contributions to the pathology of HCM. Septal arteries from 3- and 11-mo-old wild-type (WT) and transgenic (TG) mice were studied on a pressure myograph. The myogenic response to increased intravascular pressure in older animals was significantly reduced [maximal constriction: 32 +/- 4% (TG) and 46 +/- 4% (WT), P < 0.05]. After inhibition of endothelin receptors with bosentan, both WT and TG mice had similar increases in myogenic constriction. The sensitivity to exogenous endothelin was significantly reduced in TG mice, suggesting that the reduced myogenic constriction in HCM was due to reduced receptor sensitivity. In conclusion, we show for the first time that 1) myogenic tone in the coronary septal artery of the mouse is regulated by a basal release of endothelin, and 2) pressure-induced myogenic activation is attenuated in HCM, possibly consequent to a reduction in endothelin responsiveness. The associated reduction in coronary vasodilatory reserve may increase susceptibility to ischemia and arrhythmias.  相似文献   

13.
The present studies examined relationships between intraluminal pressure, membrane potential (E(m)), and myogenic tone in skeletal muscle arterioles. Using pharmacological interventions targeting Ca(2+) entry/release mechanisms, these studies also determined the role of Ca(2+) pathways and E(m) in determining steady-state myogenic constriction. Studies were conducted in isolated and cannulated arterioles under zero flow. Increasing intraluminal pressure (0-150 mmHg) resulted in progressive membrane depolarization (-55.3 +/- 4.1 to -29.4 +/- 0.7 mV) that exhibited a sigmoidal relationship between extent of myogenic constriction and E(m). Thus, despite further depolarization, at pressures >70 mmHg, little additional vasoconstriction occurred. This was not due to an inability of voltage-operated Ca(2+) channels to be activated as KCl (75 mM) evoked depolarization and vasoconstriction at 120 mmHg. Nifedipine (1 microM) and cyclopiazonic acid (30 microM) significantly attenuated established myogenic tone, whereas inhibition of inositol 1,4,5-trisphosphate-mediated Ca(2+) release/entry by 2-aminoethoxydiphenylborate (50 microM) had little effect. Combinations of the Ca(2+) entry blockers with the sarcoplasmic reticulum (SR) inhibitor caused a total loss of tone, suggesting that while depolarization-mediated Ca(2+) entry makes a significant contribution to myogenic tone, an interaction between Ca(2+) entry and SR Ca(2+) release is necessary for maintenance of myogenic constriction. In contrast, none of the agents, in combination or alone, altered E(m), demonstrating the downstream role of Ca(2+) mobilization relative to changes in E(m). Large-conductance Ca(2+)-activated K(+) channels modulated E(m) to exert a small effect on myogenic tone, and consistent with this, skeletal muscle arterioles appeared to show an inherently steep relationship between E(m) and extent of myogenic tone. Collectively, skeletal muscle arterioles exhibit complex relationships between E(m), Ca(2+) availability, and myogenic constriction that impact on the tissue's physiological function.  相似文献   

14.
Ahnak1 has been implicated in protein kinase A (PKA)-mediated control of cardiac L-type Ca(2+) channels (Cav1.2) through its interaction with the Cavβ(2) regulatory channel subunit. Here we corroborate this functional linkage by immunocytochemistry on isolated cardiomyocytes showing co-localization of ahnak1 and Cavβ(2) in the T-tubule system. In previous studies Cavβ(2) attachment sites which impacted the channel's PKA regulation have been located to ahnak1's proximal C-terminus (ahnak1(4889-5535), ahnak1(5462-5535)). In this study, we mapped the ahnak1-interacting regions in Cavβ(2) and investigated whether Cavβ(2) phosphorylation affects its binding behavior. In vitro binding assays with Cavβ(2) truncation mutants and ahnak1(4889-5535) revealed that the core region of Cavβ(2) consisting of Src-homology 3 (SH3), HOOK, and guanylate kinase (GK) domains was important for ahnak1 interaction while the C- and N-terminal regions were dispensable. Furthermore, Ser-296 in the GK domain of Cavβ(2) was identified as novel PKA phosphorylation site by mass spectrometry. Surface plasmon resonance (SPR) binding analysis showed that Ser-296 phosphorylation did not affect the high affinity interaction (K(D)≈35 nM) between Cavβ(2) and the α(1C) I-II linker, but affected ahnak1 interaction in a complex manner. SPR experiments with ahnak1(5462-5535) revealed that PKA phosphorylation of Cavβ(2) significantly increased the binding affinity and, in parallel, it reduced the binding capacity. Intriguingly, the phosphorylation mimic substitution Glu-296 fully reproduced both effects, increased the affinity by ≈2.4-fold and reduced the capacity by ≈60%. Our results are indicative for the release of a population of low affinity interaction sites following Cavβ(2) phosphorylation on Ser-296. We propose that this phosphorylation event is one mechanism underlying ahnak1's modulator function on Cav1.2 channel activity.  相似文献   

15.
16.
Hindlimb unweighting (HLU) has been shown to alter myogenic tone distinctly in arterioles isolated from skeletal muscles composed predominantly of fast-twitch (white gastrocnemius) compared with slow-twitch (soleus) fibers. Based on these findings, we hypothesized that HLU would alter myogenic tone differently in arterioles isolated from distinct fiber-type regions within a single skeletal muscle. We further hypothesized that alterations in myogenic tone would be associated with alterations in voltage-gated Ca(2+) channel current (VGCC) density of arteriolar smooth muscle. After 14 days of HLU or weight bearing (control), first-order arterioles were isolated from both fast-twitch and mixed fiber-type regions of the gastrocnemius muscle, cannulated, and pressurized at 90 cmH(2)O. Mixed gastrocnemius arterioles of HLU rats demonstrated increased spontaneous tone [43 +/- 5% (HLU) vs. 27 +/- 4% (control) of possible constriction] and an approximately twofold enhanced myogenic response when exposed to step changes in intraluminal pressure (10-130 cmH(2)O) compared with control rats. In contrast, fast-twitch gastrocnemius arterioles of HLU rats demonstrated similar levels of spontaneous tone [6 +/- 2% (HLU) vs. 6 +/- 2% (control)] and myogenic reactivity to control rats. Neither KCl-induced contractile responses (10-50 mM KCl) nor VGCC density was significantly different between mixed gastrocnemius arterioles of HLU and control rats. These results suggest that HLU produces diverse adaptations in myogenic reactivity of arterioles isolated from different fiber-type regions of a single skeletal muscle. Furthermore, alterations in myogenic responses were not attributable to altered VGCC density.  相似文献   

17.
N-type voltage-dependent calcium channels (VDCCs) play determining roles in calcium entry at sympathetic nerve terminals and trigger the release of the neurotransmitter norepinephrine. The accessory beta3 subunit of these channels preferentially forms N-type channels with a pore-forming CaV2.2 subunit. To examine its role in sympathetic nerve regulation, we established a beta3-overexpressing transgenic (beta3-Tg) mouse line. In these mice, we analyzed cardiovascular functions such as electrocardiography, blood pressure, echocardiography, and isovolumic contraction of the left ventricle with a Langendorff apparatus. Furthermore, we compared the cardiac function with that of beta3-null and CaV2.2 (alpha1B)-null mice. The beta3-Tg mice showed increased expression of the beta3 subunit, resulting in increased amounts of CaV2.2 in supracervical ganglion (SCG) neurons. The beta3-Tg mice had increased heart rate and enhanced sensitivity to N-type channel-specific blockers in electrocardiography, blood pressure, and echocardiography. In contrast, cardiac atria of the beta3-Tg mice revealed normal contractility to isoproterenol. Furthermore, their cardiac myocytes showed normal calcium channel currents, indicating unchanged calcium influx through VDCCs. Langendorff heart perfusion analysis revealed enhanced sensitivity to electric field stimulation in the beta3-Tg mice, whereas beta3-null and Cav2.2-null showed decreased responsiveness. The plasma epinephrine and norepinephrine levels in the beta3-Tg mice were significantly increased in the basal state, indicating enhanced sympathetic tone. Electrophysiological analysis in SCG neurons of beta3-Tg mice revealed increased calcium channel currents, especially N- and L-type currents. These results identify a determining role for the beta3 subunit in the N-type channel population in SCG and a major role in sympathetic nerve regulation.  相似文献   

18.
Biochemical and genetic studies implicate synaptotagmin (Syt 1) as a Ca2+ sensor for neuronal and neuroendocrine neurosecretion. Calcium binding to Syt 1 occurs through two cytoplasmic repeats termed the C2A and C2B domains. In addition, the C2A domain of Syt 1 has calcium-independent properties required for neurotransmitter release. For example, mutation of a polylysine motif (residues 189-192) reverses the inhibitory effect of injected recombinant Syt 1 C2A fragment on neurotransmitter release from PC12 cells. Here we examined the requirement of the C2A polylysine motif for Syt 1 interaction with the cardiac Cav1.2 (L-type) and the neuronal Cav2.3 (R-type) voltage-gated Ca2+ channels, two channels required for neurotransmission. We find that the C2A polylysine motif presents a critical interaction surface with Cav1.2 and Cav2.3 since truncated Syt 1 containing a mutated motif (Syt 1*1-264) was ineffective at modifying the channel kinetics. Mutating the polylysine motif also abolished C2A binding to Lc753-893, the cytosolic interacting domain of Syt 1 at Cav1.2 1 subunit. Syt 1 and Syt 1* harboring the mutation at the KKKK motif modified channel activation, while Syt 1* only partially reversed the syntaxin 1A effects on channel activity. This mutation would interfere with the assembly of Syt 1/channel/syntaxin into an exocytotic unit. The functional interaction of the C2A polylysine domain with Cav1.2 and Cav2.3 is consistent with tethering of the secretory vesicle to the Ca2+ channel. It indicates that calcium-independent properties of Syt 1 regulate voltage-gated Ca2+ channels and contribute to the molecular events underlying transmitter release.  相似文献   

19.
Caveolin-1 (Cav-1) is essential for the morphology of membrane caveolae and exerts a negative influence on a number of signaling systems, including nitric oxide (NO) production and activity of the MAP kinase cascade. In the vascular system, ablation of caveolin-1 may thus be expected to cause arterial dilatation and increased vessel wall mass (remodeling). This was tested in Cav-1 knockout (KO) mice by a detailed morphometric and functional analysis of mesenteric resistance arteries, shown to lack caveolae. Quantitative morphometry revealed increased media thickness and media-to-lumen ratio in KO. Pressure-induced myogenic tone and flow-induced dilatation were decreased in KO arteries, but both were increased toward wild-type (WT) levels following NO synthase (NOS) inhibition. Isometric force recordings following NOS inhibition showed rightward shifts of passive and active length-force relationships in KO, and the force response to alpha(1)-adrenergic stimulation was increased. In contrast, media thickness and force response of the aorta were unaltered in KO vs. WT, whereas lumen diameter was increased. Mean arterial blood pressure during isoflurane anesthesia was not different in KO vs. WT, but greater fluctuation in blood pressure over time was noted. Following NOS inhibition, fluctuations disappeared and pressure increased twice as much in KO (38 +/- 6%) compared with WT (17 +/- 3%). Tracer-dilution experiments showed increased plasma volume in KO. We conclude that NO affects blood pressure more in Cav-1 KO than in WT mice and that restructuring of resistance vessels and an increased responsiveness to adrenergic stimulation compensate for a decreased tone in Cav-1 KO mice.  相似文献   

20.
Vascular alpha(2B)-adrenoceptors (alpha(2B)-AR) may mediate vasoconstriction and contribute to the development of hypertension. Therefore, we hypothesized that blood pressure would not increase as much in mice with mutated alpha(2B)-AR as in wild-type (WT) mice following nitric oxide (NO) synthase (NOS) inhibition with N(omega)-nitro-l-arginine (l-NNA, 250 mg/l in drinking water). Mean arterial pressure (MAP) was recorded in heterozygous (HET) alpha(2B)-AR knockout mice and WT littermates using telemetry devices for 7 control and 14 l-NNA treatment days. MAP in HET mice was increased significantly on treatment days 1 and 4 to 14, whereas MAP did not change in WT mice (days 0 and 14 = 113 +/- 3 and 114 +/- 4 mmHg in WT, 108 +/- 0.3 and 135 +/- 13 mmHg in HET, P < 0.05). MAP was significantly higher in HET than in WT mice days 10 through 14 (P < 0.05). Thus blood pressure increased more rather than less in mice with decreased alpha(2B)-AR expression. We therefore examined constrictor responses to phenylephrine (PE, 10(-9) to 10(-4) M) with and without NOS inhibition to determine basal NO contributions to arterial tone. In small pressurized mesenteric arteries (inner diameter = 177 +/- 5 microm), PE constriction was decreased in untreated HET arteries compared with WT (P < 0.05). l-NNA (100 microM) augmented PE constriction more in HET arteries than in WT arteries, and responses were not different between groups in the presence of l-NNA. Acetylcholine dilated preconstricted arteries from HET mice more than arteries from WT mice. Endothelial NOS expression was increased in HET compared with WT mesenteric arteries by Western analysis. Griess assay showed increased NO(x) concentrations in HET plasma compared with those in WT plasma. These data demonstrate that diminished alpha(2B)-AR expression increases the dependence of arterial pressure and vascular tone on NO production and that vascular alpha(2B)-AR either directly or indirectly regulates vascular endothelial NOS function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号