首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Nitrogen assimilation by a Citrus tree   总被引:1,自引:0,他引:1  
Primary assimilation of 15N-ammonium or 15N-nitrate by excised leaves of satsuma mandarin (Citrus unshiu Markovitch) was examined under light and dark conditions. Under both conditions both types of nitrogen were most markedly incorporated into glutamine-amide nitrogen in the primary step of the assimilation, and into proline in the later steps. Incorporation of ammonium or nitrate into amino acids was more active in the light than in the dark, although the stimulating effect of light on the incorporation was relatively small in both cases.  相似文献   

2.
To demonstrate the contribution of atmospheric ammonium to soil acidification in acid forest soils, a field study with13N-ammonium as tracer was performed in an oak-birch forest soil. Monitoring and analysis of soil solutions from various depths on the13N-ammonium and15N-nitrate contents, showed that about 54% of the applied15N-ammonium was oxidized to nitrate in the forest floor. Over a period of one year about 20% of the15N remained as organic nitrogen in this layer. The percentage15N enrichment in ammonium and nitrate were in the same range in all the forest floor percolates, indicating that even in extremely acid forest soils (pH < 4) nitrate formation from ammonium can occur. Clearly, atmospheric ammonium can contribute to soil acidification even at low soil pH.  相似文献   

3.
Short term (2-hour) incorporation of nitrogen from nitrate, glutamine, or asparagine was studied by supplying them as unlabeled (14N) tracers to growing pea (Pisum sativum L.) leaves, which were previously labeled with 15N, and then following the elimination of 15N from various amino components of the tissue. Most components had active and inactive pools. Ammonia produced from nitrate was assimilated through the amide group of glutamine. When glutamine was supplied, its nitrogen was rapidly transferred to glutamic acid, asparagine, and other products, and there was some transfer to ammonia. Nitrogen from asparagine was widely distributed into ammonia and amino compounds. There was a rapid direct transfer to glutamine, which did not appear to involve free ammonia. Alanine nitrogen could be derived directly from asparagine, probably by transamination. Homoserine was synthesized in substantial amounts from all three nitrogen sources. Homoserine appears to derive nitrogen more readily from asparagine than from free aspartic acid. A large proportion of the pool of γ-aminobutyric acid turned over, and was replenished with nitrogen from all three supplied sources.  相似文献   

4.
Summary Comparisons were made of the levels of various solutes in xylem (tracheal) sap and fruit tip phloem sap of Lupinus albus (L.) and Spartium junceum (L.). Sucrose was present at high concentration (up to 220 mg ml-1) in phloem but was absent from xylem whereas nitrate was detected in xylem (up to 0.14 mg ml-1) but not in phloem. Total amino acids reached 0.5–2.5 mg ml-1 (in xylem) versus 16–40 mg ml-1 in phloem. Phloem: xylem concentration ratios for mineral nutrients (K, Na, Mg, Ca, Fe, Zn, Mn, Cu) spanned the range 0.7 to 20, the ratios generally reflecting an element's phloem mobility and its availability to the xylem from the roots.The accessibility of nitrate to xylem and phloem was studied in Lupinus. Increasing the nitrate supply to roots from 100 to 1000 mg NO3–Nl-1 increased nitrate spill over into xylem, but nitrate always failed to appear in phloem. However, phloem loading of small amounts of nitrate was induced by feeding 750 or 1000 mg NO3–Nl-1 directly to cut shoots via the transpiration stream. Transfer of reduced nitrogen to phloem was demonstrated by feeding 15NO3 to shoots and recovering 15N-enriched amides and amino acids in phloem sap. Increased nitrate supply to roots led to increased amino acid levels in xylem and phloem but did not alter markedly the balance between individual amino acids.The fate of xylem-fed 14C-labelled asparagine, glutamine and aspartic acid and of photosynthetically fed 14CO2 was studied in Spartium, with reference to phloem transport to seeds. Substantial fractions of the 14C of all sources appeared in non-amino compounds. [14C]asparagine passed largely in unchanged form to the phloem whereas the 14C from aspartic acid or glutamine appeared in phloem attached to other amino acids (e.g. asparagine and glutamic acid). Serine, asparagine and glutamine were the main amino compounds labelled in phloem sap after feeding 14CO2. The wide distribution of 14C amongst free and bound amino acids of seeds suggested that extensive metabolism of phloem-borne solutes occurred in the fruits.  相似文献   

5.
l-Aspartate-[U-14C] was quickly metabolized in rice seedlings into amino acids, organic acids and sugars. On feeding simultaneously with ammonium for 2 hr, about 1% of the total soluble radioactivity was recovered as asparagine. Major amino acids labelled were aspartate, glutamate, glutamine and alanine in both shoots and roots. On the other hand, on feeding l-aspartate-[U-14C] to rice seedlings precultured in an ammonium medium, asparagine accounted for 35% of the total soluble radioactivity in the roots. Different labelling patterns in amino acids from those of non-precultured tissues were observed, and the main amino acids labelled in this case were asparagine and γ-aminobutyrate in the roots; glutamate, asparagine and glutamine in the shoots. It was observed in the roots that this increase of asparagine labelling was associated with a decrease of label in glutamate.  相似文献   

6.
Feeding of 15N-nitrate, 15N(amide)-L-glutamine, or 15N-L-glutamicacid to detached shoots of pea through the transpiration streamresults in the soluble and insoluble nitrogen of stem, leaves,and fruits becoming extensively enriched with isotopic nitrogen.The time course of labelling suggests that non-reproductiveparts are the principal centres of uptake and assimilation andthat from them translocation takes place to the developing seeds. Distribution patterns for 15N in free and protein-bound aminoacids of leaf and seed indicate that each labelled source donatesnitrogen to a wide range of amino compounds, with no evidenceof consistent differences in the manner in which each is assimilated.Alanine, glutamic acid, homoserine, and -aminobutyric acid,are the main recipients of 15N in the soluble fraction of theleaves, whilst in the insoluble fraction nitrogen of the aminoacids serine, glycine, alanine, threonine, glutamic acid + glutamine,and aspartic acid + asparagine achieves high specific labelling.Amino acids of the seeds are labelled more uniformly with 15N. A complementary 14C-labelling experiment on the translocationof photosynthetically fixed carbon from leaf to seed is describedand the labelling patterns obtained for amino acids in leaf,seed, and phloem exudate are discussed in relation to thosefor 15N.  相似文献   

7.
Excised 7-day-old oat (Avena sativa L. cv. Jaycee) leaves were incubated in media containing 7.1 millimolar KNO3 and 0.15 millimolar tabtoxin or 1 millimolar methionine sulfoximine (MSO) to investigate the sources of the observed ammonium accumulated. Tabtoxin and MSO are known inhibitors of glutamine synthetase, the first enzyme in the primary pathway of ammonium assimilation. During a 4- to 6-hour incubation, there was little net change in protein or total amino acid concentration. Alanine, aspartate/asparagine, and glutamate/glutamine decreased markedly under these treatments, whereas several other amino acids increased. Exogenous 15N from K15NO3 was taken up and incorporated into the nitrate and ammonium fractions of leaves treated with tabtoxin or MSO. This result and the high in vitro activities of nitrate reductase indicated that reduction of nitrate was one source of the accumulated ammonium. Leaves incubated under 2% O2 to reduce photorespiration accumulated only about 13% as much ammonium as did those under normal atmospheres. We conclude that most of the tabtoxin- or MSO-induced ammonium came from photo-respiration, and the remainder was from nitrate reduction.  相似文献   

8.
Comparison of incorporation of 15N-labeled ammonium into aminoacids in cells isolated from spinach leaves showed that ammoniumwas most actively incorporated into the amido-group of glutamine.The 15N contents of other amino acids were less than one-tenththat of the amido-group of glutamine. L-Methionine-DL-sulfoximine(MS) suppressed the incorporation of ammonium not only intothe amido-group of glutamine, but also into glutamic acid. Turningoff the light after 1 min illumination increased die 15N contentof glutamine while it decreased that of the glutamic acid, asparticacid and alanine. Illumination of the cells after die applicationof ammonium had a more significant effect on ammonium assimilationthan illumination before the application of ammonium. When 14C-U-15N(amido labeled)-glutamine was added to the cell suspension,the transfer of amido-group of glutamine was completely inhibitedin the dark, but no difference in the flow of 14C was observed. These results suggest that glutamine synthetase (GS) and glutamatesynthase (GOGAT) pathways operate in ammonium assimilation inthe cells isolated from spinach leaves, and that the formeris light-independent but die latter is light-dependent. (Received December 23, 1977; )  相似文献   

9.
Throughfall nitrogen of a 15-year-old Picea abies (L.) Karst. (Norway spruce) stand in the Fichtelgebirge, Germany, was labeled with either 15N-ammonium or 15N-nitrate and uptake of these two tracers was followed during two successive growing seasons (1991 and 1992). 15N-labeling (62 mg 15N m-2 under conditions of 1.5 g N m-2 atmospheric nitrogen deposition) did not increase N concentrations in plant tissues. The 15N recovery within the entire stand (including soils) was 94%±6% of the applied 15N-ammonium tracer and 100%±6% of the applied 15N-nitrate tracer during the 1st year of investigation. This decreased to 80%±24% and 83%±20%, respectively, during the 2nd year. After 11 days, the 15N tracer was detectable in 1-year-old spruce needles and leaves of understory species. After 1 month, tracer was detectable in needle litter fall. At the end of the first growing season, more than 50% of the 15N taken up by spruce was assimilated in needles, and more than 20% in twigs. The relative distribution of recovered tracer of both 15N-ammonium and 15N-nitrate was similar within the different foliage age classes (recent to 11-year-old) and other compartments of the trees. 15N enrichment generally decreased with increasing tissue age. Roots accounted for up to 20% of the recovered 15N in spruce; no enrichment could be detected in stem wood. Although 15N-ammonium and 15N-nitrate were applied in the same molar quantities (15NH 4 + : 15NO 3 - =1:1), the tracers were diluted differently in the inorganic soil N pools (15NH 4 + /NH 4 + : 15NO 3 - /NO 3 - =1:9). Therefore the measured 15N amounts retained by the vegetation do not represent the actual fluxes of ammonium and nitrate in the soil solution. Use of the molar ammonium-to-nitrate ratio of 9:1 in the soil water extract to estimate 15N uptake from inorganic N pools resulted in a 2–4 times higher ammonium than nitrate uptake by P. abies.  相似文献   

10.
 Three-year-old Norway spruce trees were planted into a low-nitrogen mineral forest soil and supplied either with two different levels of mineral nitrogen (NH4NO3) or with a slow-release form of organic nitrogen (keratin). Supply of mineral nitrogen increased the concentrations of ammonium and nitrate in the soil solution and in CaCl2-extracts of the rhizosphere and bulk soil. In the soil solution, in all treatments nitrate concentrations were higher than ammonium concentrations, while in the soil extracts ammonium concentrations were often higher than nitrate concentrations. After 7 months of growth, 15N labelled ammonium or nitrate was added to the soil. Plants were harvested 2 weeks later. Keratin supply to the soil did not affect growth and nitrogen accumulation of the trees. In contrast, supply of mineral nitrogen increased shoot growth and increased the ratio of above-ground to below-ground growth. The proportion of needle biomass to total above-ground biomass was not increased by mineral N supply. The atom-% 15N was higher in younger needles than in older needles, and in younger needles higher in plants supplied with 15N-nitrate than in plants supplied with 15N-ammonium. The present data show that young Norway spruce plants take up nitrate even under conditions of high plant internal N levels. Received: 1 April 1998 / Accepted: 9 October 1998  相似文献   

11.
Cooper  H. D.  Clarkson  D. T.  Ponting  Helen E.  Loughman  B. C. 《Plant and Soil》1986,91(3):397-400
Summary Nitrate fertiliser labelled with15N was applied to a field grown crop of winter wheat. Uptake and assimilation of fertiliser nitrate was studied by monitoring the appearance of labelled nitrate and labelled amino acids in the xylem sap. Shortly after applying15N-nitrate to the soil about 30 per cent of recently absorbed15N was in the reduced form, indicating that roots of cereal crops can make a substantial contribution in reducing nitrate. Seasonal changes in crop growth andin vivo NRA are also described.  相似文献   

12.
When rice seedling roots were fed 15N-ammonium for 1 hr, theamide nitrogen of glutamine showed the highest 15N abundance.Moreover, glutamine amino, glutamic acid, aspartic acid andalanine showed higher 15N abundance than ammonium did. In roots whose GS activity was inhibited with MS, both the amountof ammonium and its 15N abundance were increased. In contrast,both the amount of all examined amino acids containing glutamicacid and their 15N abundance decreased in roots whose GS activitywas inhibited. From these results, it could be concluded thatthe first step of ammonium assimilation in rice seedling rootswas mainly glutamine synthesis by GS and the second was glutamicacid formation by the GOGAT system. The results of an experiment using 15N glutamine also supportedthis conclusion. (Received February 23, 1977; )  相似文献   

13.
In the young leaves of pea (Pisum sativum L.) plants, there was a diurnal variation in the levels of amino acids. In the light, total amino nitrogen increased for the first few hours, then stabilized; in the dark, there was a transient decrease followed by a gradual recovery. Asparagine, homoserine, alanine, and glutamine accounted for much of these changes. The incorporation of 15N into various components of the young leaves was followed after supply of 15N-nitrate. 15N appeared most rapidly in ammonia, due to reduction in the leaf, and this process took place predominantly in the light. A large proportion of the primary assimilation took place through the amide group of glutamine, which became labeled and turned over rapidly; labeling of glutamic acid and alanine was also rapid. Asparagine (amide group) soon became labeled and showed considerable turnover. Slower incorporation and turnover were found for aspartic acid, γ-aminobutyric acid, and homoserine. Synthesis and turnover of all of the amino acids continued at a low rate in the dark. γ-Aminobutyric acid was the only compound found to label more rapidly in the dark than in the light.  相似文献   

14.
The role of the host in the nitrogen nutrition of Striga hermonthica (Del.) Benth. (Scrophulariaceae) parasitic on Sorghum bicolor cv. SH4 Arval has been investigated using (15)N-nitrate as the tracer. It is shown that, when nitrate is absorbed only by the roots of the host plant, a rapid transfer of nitrogen to the parasite can be detected. The xylem sap of S. hermonthica contained approximately equal amounts of nitrate and amino acids, mostly glutamine and asparagine. Infection altered the free amino acid profile of the host tissues, leading notably to a large increase in asparagine and a decrease in glutamine. The haustoria of S. hermonthica, although rich in nitrate, showed a low concentration of free amino acids, particularly lacking in asparagine and glutamine. The roots of S. hermonthica, in contrast, were rich in both asparagine and glutamine while, in the shoots, asparagine constituted 80% of the total FAA pool. Asparagine was also found to be the primary (15)N-enriched amino acid in the shoots of S. hermonthica while, interestingly, it was glutamate that was most strongly enriched in the roots. It is concluded that nitrogen nutrition in S. hermonthica is based on a supply of both nitrate and amino acids from the host. This implies a non-specific transfer in the transpiration stream. Nitrate reduction probably occurs mainly in the leaves of the parasite. Assimilation also occurs in S. hermonthica and excess nitrogen is stored as the non-toxic nitrogen-rich compound, asparagine. This specific trait of nitrogen metabolism of the parasite is discussed in relation to the effect of nitrogen fertilization on reducing infestation.  相似文献   

15.
Summary One part of a split root system of wheat seedlings received full nutrient solution with15N-nitrate, the other received an identical solution with unlabelled nitrate. Appearance of labelled amino compounds was measured in the xylem sap exuding from roots not supplied directly with15N-nitrate after removal of the15N-nitrate-fed roots. This material indicates cycling of nitrogen from the shoots and through the roots. About 60 per cent of the nitrogen in the xylem appears to be cycling in this way.  相似文献   

16.
15N-ammonium sulphate equivalent to 0.5 kg N/ha was added as a tracer to lysimeters containing the organic horizons of an acid forest soil. The effect of logging debris (brash), vegetation and second rotationPicea sitchensis seedlings on the amount of the15N found in various soil, vegetation and leachate pools was followed over a period of 60 days. Transformation of15N-ammonium to nitrate occurred within 24 hours. Although total nitrate leachate losses were high, tracer-derived nitrate represented only 0.4%–4.2% of the applied15N-ammonium. The atom % excess of the KCI-extractable organic-N pool was initially lower than for the inorganic species but due to the large pool size, consistently represented 3–6% of the applied15N-ammonium. The similarity of the atom % excess of the ammonium and nitrate pools indicated an autotrophic nitrification pathway.A significant proportion of the15N-ammonium passed through the microbial biomass which contained between 16 and 48% of the15N-ammonium 2 days after addition of the15N-ammonium. This nitrogen was in a readily available form or short-term pool for the first two weeks (with no change in the overall biomass pool), after which the nitrogen appeared to become transformed into more stable compounds representing a long-term pool. Total recovery of the15N was between 68% and 99% for the different treatments. The presence of brash reduced microbial immobilisation of the15N-ammonium and total retention in the organic matter. This is suggested to be a consequence of greater nitrification and denitrificatiion rate in organic horizons beneath a brash covering due to different microclimatic conditions.  相似文献   

17.
The concentrations of glutamine and glutamate, and the abundanceof 15N in these compounds, were measured in roots of intact,nitrate-grown maize plants fed with 15N-nitrate or 15N-ammoniumfor periods of 3–80 min. On supplying 15N-ammonium therewas a rapid and almost linear accumulation of glutamine, itsconcentration in the roots rising 3-fold over 1 h. Supplying15N-nitrate instead of 15N-ammonium did not increase root glutamine,and the concentration of glutamate was not affected by eithertreatment. The time-course of amide 15N-labelling seen in glutamine extractedfrom roots which had been supplied with 15N-ammonium could bestbe explained by a model in which (a) the ‘additional’glutamine which accumulates rapidly during 15N-ammonium feedingis heavily amide-labelled from the outset, and (b) of the glutaminealready present in the roots, only a small proportion (c. 10–15%)incorporates 15N during the initial 60–80 min of 15N-ammoniumfeeding, the remainder (c. 85–90%) remaining essentiallyunlabelled over this period. The latter is assumed to be locatedin the vacuoles. Even though prior N-starvation stimulated ammonium net uptakemarkedly, the data were not of sufficient quality to show whetherthe relative sizes of the extra-vacuolar and vacuolar glutaminefractions were altered by this treatment. For that reason itwas not possible to determine whether cytosolic glutamine hasa role in regulating N-absorption. Key words: Subcellular compartmentation, regulation, N-absorption  相似文献   

18.
Cut, fruiting shoots of Lupinus albus L. supplied with 14C-and 15N-labelled L-asparagine, L-glutamine, L-aspartic acid,or L-glutamic acid through the transpiration stream readilytransferred the labelled carbon and nitrogen of each compoundto pods and seeds of fruits. A time course of labelling of phloemsap collected from petioles and fruit tips following feedingof labelled asparagine indicated that xylem to phloem exchangein leaflets was an immediate and effective route of transferof the amide to fruits and that this and the loading onto phloemof additional asparagine from unlabelled pools of the amidein stems furnished a major source of the nitrogen for fruitfilling. Xylem to phloem exchange of nitrogen was accomplishedin different ways for each amino acid. The amide nitrogen ofasparagine was transferred mainly in the unmetabolized compound,the nitrogen of aspartate and glutamate largely in a wide rangeof amino acids synthesized in the leaf, and the amide nitrogenof glutamine was transferred in a manner intermediate betweenthese extremes. Glutamine and asparagine were the principalphloem solutes labelled with nitrogen from any of the suppliedcompounds, but the photosynthetically produced amino acids,glutamate, aspartate, serine, alanine, and valine also became15N-labelled in phloem. The main pathway for glutamine synthesisin vegetative parts of the shoot appeared to be by amidationof glutamate, but asparagine was not considered to be derivedsimilarly from aspartate. Leaflets metabolized glutamine morereadily than asparagine, but in each case the amide nitrogenwas used for synthesis of a variety of amino acids and the carbonwas recovered largely in non-amino compounds.  相似文献   

19.
To determine the fate of atmospheric ammonium in forest soils, one calcareous and two acid forest soils were incubated with 15N ammonium. In the calcareous soil about 65% of the applied 15N-ammonium was recovered as nitrate after 98 days of incubation, whereas in the acid soils less than 10% of the 15N-ammonium was converted to nitrate. In all soils a large proportion of the 15N was incorporated in organic nitrogen compounds. This incorporation limits the use of 15N tracers for the elucidation of the fate of atmospheric ammonium in soils.  相似文献   

20.
Weissman , Gerard S. (Rutgers U., Camden, N. J.) Influence of ammonium and nitrate on the protein- and amino acids in shoots of wheat seedlings. Amer. Jour. Bot. 46(5): 339–346. 1959.—Total and protein nitrogen per shoot of wheat seedlings grown with endosperm attached increased at a steady rate during a 96-hr. growth period, and protein nitrogen, as a percentage of total nitrogen, remained constant at about 53%. Total and protein nitrogen concentration was greatest for 24-hr. shoots and declined as the shoots became older. Total and protein nitrogen were determined in 96-hr. shoots of seedlings grown with endosperm attached but also supplied with ammonium, nitrate, or both in the culture solution. Total nitrogen was greatest in shoots supplied with ammonium, but only 38% was in the form of protein. Maximum protein synthesis occurred in shoots grown in both ammonium and nitrate and protein nitrogen as a percentage of total nitrogen approximated that achieved in shoots lacking nitrogen in the culture solution. The protein amino acid composition of 48-, 72-, and 96-hr. shoots was very similar but differed from 24-hr. shoots which contained higher percentages of arginine and lysine and lower percentages of alanine and threonine. This may be correlated with the higher proportion of meristematic cells in 24-hr. shoots. The protein amino acids in shoots grown with ammonium resembled that of shoots lacking nitrogen in the culture solution, but nitrate shoot protein contained a higher percentage of arginine and a lower percentage of lysine. Nitrate may stimulate the formation of enzymes, possibly of a nitrate-reducing system, with high arginine- low lysine content. Free asparagine and glutamine were both at a maximum in ammonium shoots and at a minimum in nitrate shoots, but asparagine predominated in shoots supplied with ammonium while glutamine was greatest in nitrate shoots. Aspartic acid, asparagine, and glutamine appeared to have ammonia-storage functions, but glutamic acid appeared to be primarily concerned with protein synthesis. Amino acid accumulation was greatest in shoots supplied with both ammonium and nitrate. Protein synthesis in these appeared to be limited by inadequate concentrations of glutamic acid and proline. A hypothesis is proposed in explanation of the high glutamic acid concentration in shoots provided with ammonium and nitrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号