首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The interphase nucleus ofLeishmania adleri has clumps of chromatin associated with the nuclear envelope and a large centrally located nucleolus. Prior to mitosis the basal bodies replicate at the cell anterior. Subsequently, dense plaques appear in the equatorial region of the nucleus at the time of spindle development. Microtubules appear in the nucleus adjacent to the nuclear envelope and embedded in the matrix of the plaques. A central spindle composed of a single bundle of microtubules develops and spans the nucleus. Plaques and nucleolar components laterally associate with the spindle and migrate towards the poles. The central spindle elongates to three to four times its original length separating the forming daughter nuclei and producing an interzonal spindle. A remnant of the interzonal spindle remains attached to each of the daughter nuclei until late into cytokinesis. The kinetoplast does not divide until after the completion of mitosis.  相似文献   

2.
The structure of centric, intranuclear mitosis and of organelles associated with nuclei are described in developing zoosporangia of the chytrid Rhizophydium spherotheca. Frequently dictyosomes partially encompass the sides of diplosomes (paired centrioles). A single, incomplete layer of endoplasmic reticulum with tubular connections to the nuclear envelope is found around dividing nuclei. The nuclear envelope remains intact during mitosis except for polar fenestrae which appear during spindle incursion. During prophase, when diplosomes first define the nuclear poles, secondary centrioles occur adjacent and at right angles to the sides of primary centrioles. By late metaphase the centrioles in a diplosome are positioned at a 40° angle to each other and are joined by an electron-dense band; by telophase the centrioles lie almost parallel to each other. Astral microtubules radiate into the cytoplasm from centrioles during interphase, but by metaphase few cytoplasmic microtubules are found. Cytoplasmic microtubules increase during late anaphase and telophase as spindle microtubules gradually disappear. The mitotic spindle, which contains chromosomal and interzonal microtubules, converges at the base of the primary centriole. Throughout mitosis the semipersistent nucleolus is adjacent to the nuclear envelope and remains in the interzonal region of the nucleus as chromosomes separate and the nucleus elongates. During telophase the nuclear envelope constricts around the chromosomal mass, and the daughter nuclei separate from each end of the interzonal region of the nucleus. The envelope of the interzonal region is relatively intact and encircles the nucleolus, but later the membranes of the interzonal region scatter and the nucleolus disperses. The structure of the mitotic apparatus is similar to that of the chytrid Phlyctochytrium irregulare.  相似文献   

3.
D. B. Gromov 《Protoplasma》1985,126(1-2):130-139
Summary The fine structure ofAmoeba proteus nuclei has been studied during interphase and mitosis. The interphase nucleus is discoidal, the nuclear envelope is provided with a honeycomb layer on the inside. There are numerous nucleoli at the periphery and many chromatin filaments and nuclear helices in the central part of nucleus.In prophase the nucleus becomes spherical, the numerous chromosomes are condensed, and the number of nucleoli decreases. The mitotic apparatus forms inside the nucleus in form of an acentric spindle. In metaphase the nuclear envelope loses its pore complexes and transforms into a system of rough endoplasmic reticulum cisternae (ERC) which separates the mitotic apparatus from the surrounding cytoplasm; the nucleoli and the honeycomb layer disappear completely. In anaphase the half-spindles become conical, and the system of ERC around the mitotic spindle persists. Electron dense material (possibly microtubule organizing centers—MTOCs) appears at the spindle pole regions during this stage. The spindle includes kinetochore microtubules attached to the chromosomes, and non-kinetochore ones which pierce the anaphase plate. In telophase the spindle disappears, the chromosomes decondense, and the nuclear envelope becomes reconstructed from the ERC. At this stage, nucleoli can already be revealed with the light microscope by silver staining; they are visible in ultrathin sections as numerous electron dense bodies at the periphery of the nucleus.The mitotic chromosomes consist of 10 nm fibers and have threelayered kinetochores. Single nuclear helices still occur at early stages of mitosis in the spindle region.  相似文献   

4.
T. Hori  J. C. Green 《Protoplasma》1985,125(1-2):140-151
Summary Mitosis and cytokinesis have been studied in the flagellate algaIsochrysis galbana Parke (Prymnesiophyceae). Nuclear division is preceded by replication of the flagella and haptonema, the Golgi body and the chloroplast; fission in the chloroplast occurs in the region of the pyrenoid. During prophase, spindle microtubules radiating from two ill-defined poles are formed. The nuclear envelope breaks down and the chromatin condenses. At metaphase the spindle is fully developed, some pole-to-pole microtubules passing through the well-defined chromatin plate, others terminating at it. No kinetochores or individual chromosomes were observed. By late metaphase, many Golgi-derived vesicles may be seen against the two poleward faces of the metaphase plate. During anaphase, the two daughter masses of chromatin move towards the poles. In early telophase, the nuclear envelope of each daughter nucleus is complete only on the side towards the adjacent chloroplast, remaining open on the interzonal side. However, during telophase each nucleus becomes reorientated so that it lies lateral to the long axis of the spindle and with its open side towards the chloroplasts. By late telophase, each new nuclear envelope is complete and confluence with the adjacent chloroplast ER established.Cytokinesis and subsequent segregation of the daughter cells are effected by the dilation of Golgi- and ER-derived vesicles in the interzonal region. No microtubular structures are involved. Comparisons with the results from other studies of mitosis in members of thePrymnesiophyceae show that they all have a number of features in common, but that there are differences in detail between species.  相似文献   

5.
In the present work, we followed the several phases of Tritrichomonas foetus and Trichomonas vaginalis cell cycles using immunofluorescence, serial thin sections, three-dimensional (3D) reconstruction, and transmission electron microscopy. In motile trichomonad cells or in pseudocyst forms, the nuclear envelope persists throughout mitosis, and the spindle is extranuclear. We found three types of spindle microtubules: pole-to-nucleus microtubules which are attached to the nuclear envelope, pole-to-pole microtubules forming a cylindrical, cytoplasmic groove on the nuclear compartment in pseudocysts of T. foetus cells, and pole-to-cytosol microtubules which extend freely into the cytoplasm. We demonstrated that: (1) in T. foetus, the spindle is assembled from an MTOC located at the base of the costa, underneath one of the basal bodies; (2) the spindle presents an unusual arc shape during the initial phases of mitosis in motile trophozoites; (3) the spindle microtubules are glutamylated, but not acetylated; (4) several membranes similar to those of the endoplasmic reticulum follow the spindle microtubules; (5) finger-like projections extend from the nucleus towards the cell poles in pseudocysts and multinucleated cells; and (6) vesicles formed in between the two nuclear membranes are seen in the course of mitosis in both trophozoite and pseudocyst forms.  相似文献   

6.
MITOSIS IN THE FUNGUS THRAUSTOTHECA CLAVATA   总被引:11,自引:10,他引:1       下载免费PDF全文
The ultrastructure of mitosis is described in Thraustotheca clavata, an oömycete fungus. An intranuclear spindle develops between differentiated regions of the nuclear envelope which move apart, each associated with 180° oriented centriole pairs. The spindle contains low numbers of continuous and interdigitating microtubules in addition to chromosomal microtubules. Each kinetochore is attached to only one microtubule. Serial section analysis shows that at meiosis there are probably 12 chromosomes in the diploid nucleus, yet at mitosis the methods utilized in the present study suggest that there may be less than 12 kinetochores connected to each pole. At mitosis many of the kinetochores within a given spindle are not arranged in opposite pairs. The behavior of the spindle microtubules during mitosis is comparable to that of higher organisms but the rarity of short intertubular distances appears to preclude significant force generation by means of intertubular bridge mechanisms. Evidence is presented for a nuclear envelope-microtubule interaction which is capable of generating shear forces during both mitosis and interphase nuclear movements.  相似文献   

7.
Cell division is described in the octaflagellate prasinophyte Pyramimonas amylifera Conrad and is compared in related genera. Basal bodies replicate at preprophase and move toward the poles. Cells remain motile throughout division. The nuclear envelope disperses and chromosomes begin to condense at prophase. Pairs of multilayered kinetochores are evident on the chromosomes of the metaphase plate. Spindle microtubules extending from the region of the basal bodies and rhizoplasts attach to the kinetochores or extend from pole to pole. Numerous vesicles and ribosomes have entered the nuclear region and the incipient cleavage furrow invaginates. The chromosomes move toward the poles at anaphase leaving a broad interzonal spindle between the two chromosomal plates. The nuclear envelope reforms first around the chromatin on the side adjacent to the spindle poles and later on the interzonal side. The cleavage furrow progresses into the interzonal spindle at telophase. By late telophase the nucleoli have reformed and the chromosomes have decondensed. The interzonal spindle has not been observed late in telophase. As the cleavage furrow nears completion the cells begin to twist and contort, ultimately separating the two cells.  相似文献   

8.
At the ultrastructural level, cell division in Ochromonas danica exhibits several unusual features. During interphase, the basal bodies of the 2 flagella replicate and the chloroplast divides by constriction between its 2 lobes. The rhizoplast, which is a fibrous striated root attached to the basal body of the long flagellum, extends under the Golgi body to the surface of the nucleus in interphase cells. During proprophase, the Golgi body replicates, apparently by division, and a daughter rhizoplast, appears. During prophase, the 2 pairs of flagellar basal bodies, each with their accompanying rhizoplast and Golgi body, begin to separate. Three or 4 flagella are already present at this stage. At the same time, there is a proliferation of microtubules outside the nuclear envelope. Gaps then appear in the nuclear envelope, admitting the microtubules into the nucleus, where they form a spindle. A unique feature of mitosis in O. danica is that the 2 rhizoplasts form the poles of the spindle, spindle microtubules inserting directly onto the rhizoplasts. Some of the spindle microtubules extend from pole to pole; others appear to attach to the chromosomes. Kinetochores, however, are not present. The nuclear envelope breaks down, except, in the regions adjacent, to the chloroplasts; chloroplast ER remains intact throughout mitosis. At late anaphase the chromosomes come to lie against part of the chloroplast ER. This segment of the chloroplast ER appears to be incorporated as part of the reforming nuclear envelope, thus reestablishing the characteristic nuclear envelope—chloroplast ER association of the interphase cell.  相似文献   

9.
Summary The three-dimensional ultrastructural organization of the mitotic apparatus ofDimastigella mimosa was studied by computer-aided, serial-section reconstruction. The nuclear envelope remains intact during nuclear division. During mitosis, chromosomes do not condense, whereas intranuclear microtubules are found in close association with six pairs of kinetochores. No discrete microtubule-organizing centers, except kinetochore pairs, could be found within the nucleus. The intranuclear microtubules form six separate bundles oriented at different angles to each other. Each bundle contains up to 8 tightly packed microtubules which push the daughter kinetochores apart. At late anaphase only, midzones of these bundles align along an extended interzonal spindle within the narrow isthmus between segregating progeny nuclei. The nuclear division inD. mimosa can be described as closed intranuclear mitosis with acentric and separate microtubular bundles and weakly condensed chromosomes.Abbreviation MTOC microtubule-organizing center  相似文献   

10.
Summary Mitosis and cytokinesis have been studied in the green algaZygnema C. A. Agardh using interference-contrast light and transmission electron microscopy. At prophase, the nucleolus disintegrates and numerous extranuclear microtubules near the nuclear periphery penetrate into the nucleoplasm. When aligned in the equatorial plane of the open metaphase spindle the chromosomes are coated with persistent nucleolar fragments. At anaphase, vacuoles intrude into the interzonal spindle region and seemingly contribute to the anaphase movement of the chromosomes. At telophase, the spindle is persistent and the reforming nuclei are separated by cytoplasmic strands containing microtubules, interspersed with vacuoles. Extensive bundles of microtubules, dictyosomes and parallel, slightly inflated ER-profiles extend from the poles of the telophase nucleus along the longitudinal side of the chloroplast. Conceivably, these microtubules guide the nucleus during its post-mitotic migration towards its central interphase position between the two halves of the dividing chloroplast. Throughout the mitotic cycle, ubiquitous dictyosomes, positioned near the chloroplast core, seem very active. Arrays of microtubules run towards these dictyosomes and may conduct the dictyosome-vesicles to the cleavage plane. At metaphase, septum growth becomes visible as an annular ingrowth of the plasmalemma. At late telophase or at entering interphase, an extensive clump of vesicles, associated with longitudinal bundles of microtubules, appears between the leading edges of the advanced furrow. Apparent fusion of these vesicles with the head of the centripetally-growing furrow results in its completion. The pattern of mitosis and cytokinesis inZygnema is compared with that of closely related green algae.  相似文献   

11.
12.
Gametophyte germlings from unialgal cultures of Membranoptera platyphylla were examined with the electron microscope. The events of mitosis were observed in dividing cells near the thallus apex. In prophase the nucleus is spindle-shaped and surrounded by microtubules and a layer of endoplasmic reticulum. A unique organelle, the polar ring, is present at each pole; its junction is not clear. At metaphase the nuclear envelope is intact except for fenestrations at the poles. Spindle microtubules are attached to distinct kinetochores on the chromosomes and continuous pole-to-pole microtubules are present. The nucleolus has dispersed but, its granular components are still evident in the nucleoplasm. As the chromosomes separate, the nucleus elongates and finally constricts in the middle to produce 2 daughter nuclei.  相似文献   

13.
Mitosis is described in the flagellate Oxyrrhis marina Dujardin and is compared in related genera. Dense plaques develop in the nuclear envelope at prophase and give rise to an intranuclear spindle. Some of the microtubules associate with the chromosomes while others extend across the nucleus. The basal bodies migrate toward the poles early in division and retain a position lateral to the nuclear poles throughout mitosis. Microtubules are not present between the nucleus and the basal bodies. The nucleolus is persistent and elongates throughout anaphase and telophase. Chromosomal separation is accomplished by sliding of non-chromosomal microtubules and by elongation of the nuclear envelope rather than by shortening of the spindle microtubules. The nuclear envelope begins to constrict in the center early in anaphase. Continued constriction of the envelope and elongation of the nucleus leads to the formation of a dumbbell-shaped nucleus by late telophase. Mitosis culminates by the constriction of the nucleus into two daughter nuclei. The taxonomic position of Oxyrrhis marina is discussed in light of these findings.  相似文献   

14.
Dividing cells of Spirogyra sp. were examined with both the light and electron microscopes. By preprophase many of the typical transverse wall micro-tubules disappeared while others were seen in the thickened cytoplasmic strands. Microtubules appeared in the polar cytoplasm at prophase and by prometaphase they penetrated the nucleus. They were attached to chromosomes at metaphase and early anaphase, and formed a sheath surrounding the spindle during anaphase; they were seen in the interzonal strands and cytoplasmic strands at telophase. The interphase nucleolus, containing 2 distinct zones and chromatinlike material, fragmented at prophase; at metaphase and anaphase nucleolar material coated the chromosomes, obscuring them by late anaphase. The chromosomes condensed in the nucleoplasm at prophase, moving into the nucleolus at prometaphase. The nuclear envelope was finally disrupted at anaphase during spindle elongation; at telophase membrane profiles coated the reforming nuclei. During anaphase and early telophase the interzonal region contained vacuoles, a few micro-tubules, and sometimes eliminated n ucleolar material; most small organelles, including swollen endoplasmic reticulum and tubular membranes, were concentrated in the polar cytoplasm. Quantitative and qualitative cytological observations strongly suggest movement of intact wall rnicrotubules to the spindle at preprophase and then back again at telophase.  相似文献   

15.
Summary Myxamoebae ofEchinostelium minutum exhibit extranuclear (open spindle) mitosis with centrioles present at the poles. Spindle microtubules are formed in association with a juxtanuclear MTOC which surrounds the cell's complement of centrioles. During late prophase or prometaphase the nuclear envelope breaks down and subsequently a metaphase plate is formed. Two anaphasic movements occur sequentially: firstly, the distance of the chromosomes to the poles shortens; secondly the distance between the spindle poles increases. The arrangement of spindle microtubules during anaphase is consistent with the hypothesis that chromosomal separation is due to lateral interaction (zippering) of microtubules. During telophase, reconstitution of the nuclear envelope usually takes place in the interzonal region prior to reformation in the polar region. Cytokinesis, which begins in anaphase or early telophase involves the participation of vesicles, microfilaments and microtubules.Based on the doctoral dissertation of the first author presented to the Department of Botany, University of Washington, Seattle, WA 98195, U.S.A.  相似文献   

16.
Summary Ornithogalum virens is a bicellular pollen species. In mature pollen, the generative nucleus is at advanced prophase. Mitosis of the generative cell is resumed just after pollen rehydration and prometaphase occurs within 10 min of germination. Prometaphase is manifested by nuclear envelope breakdown and the appearance of spindle microtubules in the nucleoplasm region. At this stage the number of cytoplasmic microtubules located in the generative cell periphery appears to decrease. Endoplasmic reticulum-like cisternae originating from the nuclear envelope tend to be spaced around the chromosomes, outside the area of the forming mitotic spindle. Some also begin to penetrate the spindle area. The results are discussed in terms of the generative cell cycle in bicellular pollen.  相似文献   

17.
In the present work we report the phosphorylation pattern of histone H3 and the development of microtubular structures using immunostaining techniques, in mitosis of Rhynchospora tenuis (2n = 4), a Cyperaceae with holocentric chromosomes. The main features of the holocentric chromosomes of R. tenuis coincide with those of other species namely: the absence of primary constriction in prometaphase and metaphase, and the parallel separation of sister chromatids at anaphase. Additionaly, we observed a highly conserved chromosome positioning at anaphase and early telophase sister nuclei. Four microtubule arrangements were distinguished during the root tip cell cycle. Interphase cells showed a cortical microtubule arrangement that progressively forms the characteristic pre-prophase band. At prometaphase the microtubules were homogeneously distributed around the nuclear envelope. Metaphase cells displayed the spindle arrangement with kinetochore microtubules attached throughout the entire chromosome extension. At anaphase kinetochoric microtubules become progressively shorter, whereas bundles of interzonal microtubules became increasingly broader and denser. At late telophase the microtubules were observed equatorially extended beyond the sister nuclei and reaching the cell wall. Immunolabelling with an antibody against phosphorylated histone H3 revealed the four chromosomes labelled throughout their entire extension at metaphase and anaphase. Apparently, the holocentric chromosomes of R. tenuis function as an extended centromeric region both in terms of cohesion and H3 phosphorylation.  相似文献   

18.
Based on the assumption that the ancestral proto-eukaryote evolved from an ameboid prokarybte I propose the hypothesis that nuclear division of the proto-eukaryote was effected by the same system of contractile filaments it used for ameboid movement and cytosis. When the nuclear membranes evolved from the cell membrane, contractile filaments remained associated with them. The attachment site of the genome in the nuclear envelope was linked to the cell membrane by specialized contractile filaments. During protomitosis, i.e., nuclear and cell division of the proto-eukaryote, these filaments performed segregation of the chromosomes, whereas others constricted and cleaved the nucleus and the mother cell. When microtubules (MTs) had evolved in the cytoplasm, they also became engaged in nuclear division. Initially, an extranuolear bundle of MTs assisted chromosome segregation by establishing a defined axis. The evolutionary tendency then was towards an increasingly important role for MTs. Spindle pole bodies (SPBs) developed from the chromosomal attachment sites in the nuclear envelope and organized an extranuclear central spindle. The chromosomes remained attached to the SPBs during nuclear division. In a subsequent step the spindle became permanently lodged inside the nucleus. Chromosomes detached from the SPBs and acquired kinetochores and kinetochore-MTs. At first, this spindle segregated chromosomes by elongation, the kinetochore-MTs playing the role of static anchors. Later, spindle elongation was supplemented by poleward movement of the chromosomes. When dissolution of the nuclear envelope at the beginning of mitosis became a permanent feature, the open spindle of higher eukaryotes was born.  相似文献   

19.
Mitosis in the cellular slime mold Polysphondylium violaceum   总被引:9,自引:9,他引:0       下载免费PDF全文
Myxamebas of Polysphondylium violaceum were grown in liquid medium and processed for electron microscopy. Mitosis is characterized by a persistent nuclear envelope, ring-shaped extranuclear spindle pole bodies (SPBs), a central spindle spatially separated from the chromosomal microtubules, well-differentiated kinetochores, and dispersion of the nucleoli. SPBs originate from the division, during prophase, of an electron-opaque body associated with the interphase nucleus. The nuclear nevelope becomes fenestrated in their vicinity, allowing the build-up of the intranuclear, central spindle and chromosomal microtubules as the SPBs migrate to opposite poles. At metaphase the chromosomes are in amphitelic orientation, each sister chromatid being directly connected to the corresponding SPB by a single microtubule. During ana- and telophase the central spindle elongates, the daughter chromosomes approach the SPBs, and the nucleus constricts in the equatorial region. The cytoplasm cleaves by furrowing in late telophase, which is in other respects characterized by a re- establishment of the interphase condition. Spindle elongation and poleward movement of chromosomes are discussed in relation to hypotheses of the mechanism of mitosis.  相似文献   

20.
Chromosome elimination in Heteropeza pygmaea   总被引:1,自引:0,他引:1  
Chromosome elimination in the 3rd cleavage division of the gall midge Heteropeza pygmaea was observed with the Differential Interference Contrast method and recorded with photomicrography and time-lapse cinémicrography. The chromosomes which move all the way to the poles (S-chromosomes) are included in the presumptive somatic nuclei while the lagging chromosomes are eliminated (E-chromosomes). In early prometaphase of an elimination division the nuclear envelope is replaced by the spindle envelope which persists until late telophase and separates nucleoplasm and cytoplasm. In prometaphase the volume of the spindle decreases considerably. Until mid-anaphase the E and the S-chromosomes cannot be distinguished from each other either morphologically or topologically and they both behave like chromosomes in a normal cleavage division. In early anaphase the velocity of the E-chromosomes is usually less than that of the S-chromosomes. After variable amounts of anaphase movement the E-chromosomes return towards the equator with a velocity which is less than their velocity in early anaphase. Their kinetochores are still oriented towards the poles. The two chromatids of an E-chromosome usually move symmetrically towards the poles and back to the equator. At the time when the E-chromosomes stop moving towards the poles the S-chromosomes sometimes accelerate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号