首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C-type natriuretic peptide (CNP), the third member of the atrial natriuretic peptide family, acts via guanylyl cyclase containing GC-B receptors to stimulate cyclic guanosine 3',5' monophosphate (cGMP) accumulation in the gonadotrope-derived alphaT3-1 cell line and rat pituitary cells. This effect is inhibited by concomitant activation of the phospholipase C (PLC)-coupled gonadotrophin hormone-releasing hormone (GnRH) receptors in these cells. Since GnRH stimulates gonadotrophin secretion from gonadotropes by increasing the cytosolic Ca2+ concentration ([Ca2+]i) and natriuretic peptides have been found to influence PLC/Ca2+ signalling in other systems, we have investigated whether CNP can alter basal or GnRH-stimulated changes in [Ca2+]i in alphaT3-1 cells. In Ca 2+-containing medium, 10(-7) M CNP modestly, but significantly increased [Ca2+]i over several min, but subsequently inhibited the elevation of [Ca2+]i in response to 10(-7) M GnRH in both Ca2+-containing and Ca2+-free medium. This inhibitory effect was mimicked by 10(-6) M 8-Br-cGMP, but not by ANP, indicating mediation by cyclic GMP and the CNP-specific GC-B receptor. However, basal and GnRH-stimulated inositol (1,4,5) trisphosphate (Ins(1,4,5)P3) generation were not measurably affected by CNP, and CNP failed to affect thapsigargin-induced capacitative Ca2+ entry. Thus, it appears that the cross-talk between CNP and GnRH in these cells is reciprocal in that GnRH modulates CNP effects on cGMP generation, whereas, CNP modulates GnRH effects on Ca2+ mobilisation.  相似文献   

2.
A J Hsueh  N C Ling 《Life sciences》1979,25(14):1223-1229
We have recently demonstrated that gonadotropin releasing hormone (GnRH) acts directly on ovarian granulosa cells to inhibit the follicle stimulating hormone (FSH)-induced increase in granulosa cell steroidogenesis invitro. A GnRH antagonist, [D-pGlu1, D-Phe2, D-Trp3,6] GnRH (A), which is known to antagonize GnRH-stimulated gonadotropin release by cultured pituitary cells, was tested in the granulosa cell system. GnRH (10?8M) inhibited estrogen and progesterone production by FSH-treated granulosa cells invitro, whereas the antagonist A (10?6M) did not affect FSH stimulation of steroidogenesis. Antagonist A, when added together with GnRH and FSH, blocked the GnRH inhibition of FSH-induced steroidogenesis. Estrogen and progesterone production by granulosa cells was increased by 50% at a molar ratio (IDR50) of 201and121 ([antagonist]/[GnRH]), respectively. At 10?6M, antagonist A completely prevented the GnRH (10?8M) inhibition. A similar effect of antagonist A was seen in FSH-induced increase of luteinizing hormone (LH) receptor content. FSH treatment for 2 days invitro induced an 8-fold increase in LH receptor content in cultured granulosa cells; concomitant treatment with 10?8M GnRH completely inhibited the FSH effect. Antagonist A (10?6M), by itself, had no effect on the FSH action. However, when added together with FSH and GnRH, antagonist A completely abolished the inhibitory effect of GnRH. These results demonstrate that the direct inhibitory effect of GnRH on granulosa cell function can be prevented by a GnRH antagonist and that the GnRH action at the ovarian level may require stringent stereospecific interactions of these peptides with putative GnRH recognition sites.  相似文献   

3.
We studied the effects of platelet activating factor (PAF) on angiotensin-converting enzyme (ACE). PAF (1 x 10(-10) to 1 x 10(-6) M) had a novel effect on angiotensin I conversion. Pulmonary artery endothelial cells converted 1 nmol/dish of 125I-angiotensin I to angiotensin II in the absence of PAF. ACE activity was increased to 2.5 nmol/dish by the addition of 1 x 10(-6) M of PAF. To clarify the mechanism of this stimulatory effect of PAF on ACE, Ca2+ influx and inositol 1,4,5-trisphosphate (IP3) release in pulmonary artery endothelial cells were determined. PAF stimulated Ca2+ influx in a dose-dependent manner. PAF also stimulated phospholipase C (PLC) activity and released IP3. To study the relationship between PLC activity and ACE activity, neomycin was added. The Ca2+ influx and IP3 release stimulated by 10(-6) M of PAF were suppressed by about 60-70%. ACE activity was also inhibited up to 70% in the presence of PAF (10(-10) - 10(-6) M) by 50 M of neomycin. These results suggest that ACE was stimulated by PAF, and that its activity in endothelial cells may be mediated by the PI-turnover pathway via changes in PLC activity and IP3-mediated Ca2+ release from intracellular stores.  相似文献   

4.
Stimulation of various cell surface receptors leads to the production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) through phospholipase C (PLC) activation, and the IP3 and DAG in turn trigger Ca2+ release through IP3 receptors and protein kinase C activation, respectively. The amount of IP(3) produced is particularly critical to determining the spatio-temporally coordinated Ca(2+)-signaling patterns. In this paper, we report a novel signal cross-talk between DAG and the IP3-mediated Ca(2+)-signaling pathway. We found that a DAG derivative, 1-oleoyl-2-acyl-sn-glycerol (OAG), induces Ca2+ oscillation in various types of cells independently of protein kinase C activity and extracellular Ca2+. The OAG-induced Ca2+ oscillation was completely abolished by depletion of Ca2+ stores or inhibition of PLC and IP3 receptors, indicating that OAG stimulates IP3 production through PLC activation and thereby induces IP3-induced Ca2+ release. Furthermore, intracellular accumulation of endogenous DAG by a DAG-lipase inhibitor greatly increased the number of cells responding to agonist stimulation at low doses. These results suggest a novel physiological function of DAG, i.e. amplification of Ca2+ signaling by enhancing IP3 production via its positive feedback effect on PLC activity.  相似文献   

5.
We have investigated the stimulation of phospholipase D activity by the gonadotropin-releasing hormone receptor agonist [D-Ala6, des-Gly10]GnRH N-ethylamide (GnRH-A) in preovulatory, cultured granulosa cells. GnRH-A stimulated up to 10-fold accumulation of phosphatidylethanol, produced by phospholipase D phosphatidyl transferase activity when ethanol acts as the phosphatidyl group acceptor. The effect of GnRH-A was concentration dependent (EC50 = 1 nM) and was inhibited by a specific GnRH receptor antagonist. Low GnRH-A concentrations (less than 10 nM) stimulated also accumulation of phosphatidic acid, but at higher concentrations this response was attenuated. Propranolol, which inhibits phosphatidic acid phosphohydrolase, increased both basal and GnRH-A-stimulated production of phosphatidic acid. A protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA, 100 nM), increased up to 30-fold phosphatidylethanol levels. The effects of supramaximal concentrations of GnRH-A (50 nM) and TPA (1 microM) on the accumulation of phosphatidylethanol were additive, suggesting that the two agents may not act via the same mechanism. This is supported by the fact that 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, a protein kinase C inhibitor, inhibited the effect of TPA 50%, but not that of GnRH-A. However, 24 h pretreatment with TPA abolished cellular response to subsequent treatment with either TPA or GnRH-A. The stimulatory action of GnRH on steroidogenesis could be mimicked by elevating endogenous phosphatidic acid levels in granulosa cells. Exogenous phospholipase D (from Streptomyces chromofuscus, 10 IU/ml) significantly increased (2.7-fold) progesterone production by the cells; under the same conditions, GnRH-A and FSH stimulated progesterone production 3- and 2.6-fold, respectively. Similarly, propranolol stimulated progesterone production 2.2-fold. These results suggest that, in granulosa cells, GnRH receptors are coupled to a phospholipase D whose activation may participate in transducing the GnRH signal for accelerated steroidogenesis. Phospholipase D activity can be independently regulated also by protein kinase C. The possible interrelationships between phospholipase D and other phospholipases which may be activated by GnRH in these ovarian cells are discussed.  相似文献   

6.
Effects of Erythropoietin on Neuronal Activity   总被引:28,自引:0,他引:28  
Recently, erythropoietin (EPO) receptors and synthesis of EPO have been identified in the brain. To clarify the effects of EPO on neuronal cells, we investigated the effects of EPO on Ca2+ uptake, intracellular Ca2+ concentration, membrane potential, cell survival, release and biosynthesis of dopamine, and nitric oxide (NO) production in differentiated PC12 cells, which possess EPO receptors. EPO (10(-12)-10(-10) M) increased 45Ca2+ uptake and intracellular Ca2+ concentration in PC12 cells in a dose-related manner; these increases were inhibited by nicardipine (1 microM) or anti-EPO antibody (1:100 dilution). EPO induced membrane depolarization in PC12 cells. After a 5-day culture without serum and nerve growth factor (NGF), viable cell number decreased to 50% of that of the control cells cultured with serum and NGF. EPO (10(-13)-10(-10) M) increased the number of viable cells cultured without serum and NGF; this increase was blunted by nicardipine or anti-EPO antibody. Incubation with EPO (10(-13)-10(-10) M) stimulated mitogen-activated protein kinase activity in PC12 cells. EPO (10(-13)-10(-10) M) increased dopamine release from PC12 cells and tyrosine hydroxylase activity; these increases were sensitive to nicardipine or anti-EPO antibody. Following a 4-h incubation with EPO (10(-14)-10(-10) M), NO production was increased, which was blunted by nicardipine and anti-EPO antibody. In contrast, maximal NO synthase activity was not changed by EPO. These results suggest that EPO stimulates neuronal function and viability via activation of Ca2+ channels.  相似文献   

7.
Mitogenic stimulation of density-arrested C3H 10T1/2 mouse fibroblasts by serum or purified platelet-derived growth factor (PDGF) was potently inhibited by retinyl acetate (RAc; IC50 = 0.1 microgram/ml, 0.3 x 10(-6) M) when administered during the first 2 hours of mitogen exposure. This inhibitory effect of RAc coincided with a period early in the cell growth-division cycle when density-arrested C3H 10T1/2 cells stimulated by PDGF were found to require physiological levels of extracellular Ca2+ for the transition from G0 to G1 of the cell cycle. To determine if the inhibitory effect of RAc was mediated through alterations in the Ca2+ signaling pathway induced by mitogens, we examined Fura-2-loaded fibroblasts for changes in the Ca2+ response elicited by PDGF. Addition of PDGF (5 ng/ml) induced a transient increase in the [Ca2+]i that was not significantly effected by the extracellular Ca2+ concentration. Treatment of cells with RAc caused a concentration- and time-dependent inhibition of this PDGF-stimulated Ca2+ flux (IC50 = 0.45 microgram/ml or 1.5 x 10(-6) M; t1/2 = 15 min), whereas release of intracellularly stored Ca2+ by thrombin was unaffected by RAc (1.2 micrograms/ml, 4 x 10(-6) M). Treatment with RAc did not significantly affect PDGF binding to cell surface receptors or the generation of inositol phosphates. These results suggest that the mechanism by which RAc inhibits PDGF- or serum-induced mitogenesis is through modulation of the Ca2+ signal stimulated by PDGF, and thereby depriving the cell of a rise in intracellular Ca2+ necessary for progression through the cell cycle.  相似文献   

8.
Local regulation of granulosa cell maturation   总被引:1,自引:0,他引:1  
Fluid from small antral follicles inhibits several functions of porcine granulosa cells from 3-10-mm follicles in vitro, whereas fluid from large follicles stimulates cells from small follicles. Local factors may be needed in vivo to enable granulosa cells to fully respond to gonadotrophins. Only those follicles containing local stimulators may develop while those containing inhibitors may become arrested in development or become atretic. We have compared the actions of GnRH analogs and chondroitin sulfate (CS) on porcine granulosa cell steroidogenesis with actions of follicular fluids. GnRH agonist mimicked follicular fluid inhibition of progesterone secretion but GnRH antagonist did not antagonize follicular fluid's inhibitory actions. GnRH antagonist mimicked follicular fluid enhancement of basal and LH-stimulated progesterone secretion, but did not mimic follicular fluid enhancement of FSH action or stimulation of estrogen secretion. GnRH agonist blocked the enhancement of LH-stimulated progesterone secretion by both GnRH antagonist and stimulatory follicular fluid. CS inhibited basal and LH-stimulated progesterone secretion but did not inhibit pregnenolone utilization, aromatase activity or estrogen secretion. GnRH-like molecules and CS may be partially responsible for follicular fluid actions on granulosa cells. The actions of other molecules are needed to explain the total effects of follicular fluids on granulosa cells.  相似文献   

9.
Vasoactive intestinal peptide (VIP) and VIPergic nerve fibers are present in the ovaries of several mammalian species, suggesting a possible ovarian action of VIP. We have investigated the direct effects of synthetic porcine VIP on rat granulosa cell steroidogenesis in vitro. The cells were obtained from immature, hypophysectomized, estrogen-primed rats, and cultured in a serum-free medium for 24 h in the absence or presence of varying amounts of VIP. Medium steroids were then determined by specific radioimmunoassay. Vasoactive intestinal peptide dose-dependently stimulated progesterone, 20 alpha-hydroxypregn-4-ene-3-one (20 alpha-OH-progesterone), and estrogen production with an approximate ED50 value of 3 X 10(-8) M. Maximum steroid production induced by VIP ranged from 15% to 28% of that seen with maximal follicle-stimulating hormone (FSH) stimulation. In contrast to the ability of FSH to induce luteinizing hormone (LH) receptor formation, treatment with VIP did not increase [125I]iodo-human chorionic gonadotropin (hCG) binding to granulosa cells. The ability of several gastrointestinal peptides, having 17-44% sequence identity to VIP, to stimulate granulosa cell steroidogenesis was also tested. The most closely related peptide, PHM-27 was less effective than VIP, and the least closely related, secretin and glucagon, were ineffective at 10(-6) M. Vasoactive intestinal peptide seems to act at least partly through cyclic 3',5'-adenosine monophosphate (cAMP)-dependent processes: addition of a phosphodiesterase inhibitor significantly potentiated the VIP stimulation of granulosa cell steroidogenesis, and VIP was capable of producing a dose- and time-dependent increase in both intracellular and medium cAMP levels. Vasoactive intestinal peptide stimulation of estrogen production seemed to be a result of increased aromatase activity. The increased progesterone production was associated with increased pregnenolone production, increased rate of conversion of pregnenolone to progesterone via 3 beta-hydroxysteroid dehydrogenase, and decreased metabolism of progesterone via 20 alpha-hydroxysteroid dehydrogenase. These results indicate that VIP exerts a specific action on granulosa cells to increase estrogen and progestin production. The observed direct effects of VIP, coupled with its identification in the ovary, suggest that VIP may be a physiologically important regulator of ovarian activity.  相似文献   

10.
Vasoactive intestinal contractor (VIC) caused a series of biochemical events, including the temporal biphasic accumulation of 1,2-diacylglycerol (DAG), transient formation of Ins(1,4,5)P3, and increase in intracellular free Ca2+ [( Ca2+]i) in neuroblastoma NG108-15 cells. In these cellular responses, VIC was found to be much more potent in NG108-15 cells than in cultured rat vascular smooth-muscle cells. The single cell [Ca2+]i assay revealed that in the presence of nifedipine (1 microM) or EGTA (1 mM), the peak [Ca2+]i declined more rapidly to the resting level in VIC-stimulated NG108-15 cells, indicating that the receptor-mediated intracellular Ca2+ mobilization is followed by Ca2+ influx through the nifedipine-sensitive Ca2+ channel. Pretreatment with pertussis toxin only partially decreased Ins(1,4,5)P3 generation as well as the [Ca2+]i transient induced by VIC, whereas these events induced by endothelin-1 were not affected by the toxin, suggesting involvement of distinct GTP-binding proteins. The VIC-induced transient Ins(1,4,5)P3 formation coincident with the first early peak of DAG formation suggested that PtdIns(4,5)P2 is a principal source of the first DAG increase. Labelling studies with [3H]myristate, [14C]palmitate and [3H]choline indicated that in neuroblastoma cells phosphatidylcholine (PtdCho) was hydrolysed by a phospholipase C to cause the second sustained DAG increase. Down-regulation of protein kinase C (PKC) by prolonged pretreatment with phorbol ester markedly prevented the VIC-induced delayed DAG accumulation. Furthermore, chelation of intracellular CA2+ completely abolished the second sustained phase of DAG production. These findings suggest that PtdCho hydrolysis is responsible for the sustained production of DAG and is dependent on both Ca2+ and PKC.  相似文献   

11.
Copper stimulated LH release from cultured rat pituitary cells in a dose-and time-dependent manner. After 4 h of incubation with 10 mu M Cu2+, LH release was stimulated by 3-fold. The release of LH stimulated by Cu2+ was Ca2+ dependent, thus excluding the possibility that the releasing activity of this divalent cation was due to a toxic effect on pituitary cells. The stimulatory action of Cu2+ is substantially mediated via the GnRH-receptors since Cu2+ inhibited 125I-Buserelin binding and since GnRH-antagonist blocked most of the Cu2+-stimulated LH release (80%). Both GnRH (1 microM) and Cu2+ (10 microM) induced desensitization of pituitary cells to a subsequent stimulation of either GnRH (0.5 nM) or Cu2+ (10 microM). However, in contrast to GnRH, Cu2+ did not induce down regulation of GnRH receptors. These findings suggest that the Cu2+ effects are mainly mediated through the GnRH receptors.  相似文献   

12.
The influence of cholinomimetics on follicle-stimulating hormone (FSH)-induced progestin production was studied in a primary culture of rat granulosa cells. Cells were cultured for 2 days with FSH and delta 4-androstenedione in the presence or absence of increasing concentrations of cholinergic agonists. Although ineffective as stimulators of steroidogenesis by themselves, the three nicotinic receptor-selective agonists lobeline, dimethylphenylpiperazinium iodide (DMPP), and phenyltrimethylammonium iodide (PTMA) inhibited FSH-induced progesterone and 20 alpha-hydroxypregn-4-en-3-one production in dose-dependent fashions. The rank order of inhibitory potencies was lobeline greater than DMPP greater than PTMA with IC50 values of 2 X 10(-6) M, 3 X 10(-5) M, and 3 X 10(-4) M, respectively. In contrast, the muscarinic receptor-selective agonists muscarine and bethanechol failed to inhibit steroid production. The inhibitory effect of lobeline on the time course of FSH-induced induced steroid production indicated an immediate inhibitory action; however, this inhibition was readily reversed upon removal of the drug. Further studies demonstrated that the FSH-stimulated increase in intracellular cAMP levels, as well as progesterone production induced by cholera toxin and forskolin (agents that stimulate cAMP production) and by dibutyryl cAMP (a cAMP analog), were also suppressed by lobeline. The present observations indicate that nicotinic, but not muscarinic, cholinergic agonists inhibit progesterone biosynthesis in cultured granulosa cells and suggest that endogenous acetylcholine may play a modulatory role in ovarian steroidogenesis.  相似文献   

13.
We studied the effects of 17 beta-estradiol (E2) on luteinizing hormone (LH) and follicle-stimulating hormone (FSH) release induced by drugs that activate different intracellular signal transduction mechanisms in rat anterior pituitary cells. Cells were pretreated with E2 (6 x 10(-10) M) or diluent for 24 h. Then, both E2- and diluent-pretreated cells were incubated for 4 h with E2 or diluent, respectively, with or without drugs, and in the presence or absence of gonadotropin-releasing hormone (GnRH). Media were assayed for LH and FSH by radioimmunoassays. E2 treatment had no effect on basal FSH release, but occasionally stimulated basal LH release. Phospholipase C (PLC), L-alpha-1,2-dioctanoyl glycerol (C8), veratridine, 8-bromo-cyclic adenosine 3',5'-monophosphate (8-Br-cAMP), melittin (a phospholipase A2 [PLA2] activator), arachidonic acid, PLA2, and GnRH all stimulated LH and FSH release in both E2- and diluent-treated cells. E2 treatment increased both LH and FSH release induced by GnRH, PLC, C8, veratridine, and 8-Br-cAMP, but not by melittin, arachidonic acid, and PLA2. Neither C8, PLA2, nor arachidonic acid in combination with a maximal dose of GnRH had additive effects on either LH or FSH release, whereas melittin increased the maximal response to GnRH in both E2- and diluent-treated cells. The effects of veratridine and 8-Br-cAMP depended on dose of GnRH and presence or absence of E2. These results suggest that E2 augments stimulus-coupled gonadotropin release by interacting with the Ca2+-, and/or diacylglycerol-, and cAMP-activated pathways, but not with the arachidonic acid-activated pathway.  相似文献   

14.
The effect of an agonistic gonadotropin releasing hormone (GnRH)-analog (D-Ala6, des-Gly10-NH2-GnRH-ethylamide, GnRHa) on granulosa cell steroidogenesis in the presence or absence of follicle-stimulating hormone (FSH) or luteinizing hormone (LH) was studied. Granulosa cells, isolated from preovulatory follicles of pregnant mare's serum gonadotropin (PMSG)-treated immature rats or from the less mature follicles of untreated immature rats, were cultured for a period of 72 h with daily changes of medium, and progesterone and its metabolite, 20 alpha-dihydro-progesterone (20 alpha-OHP), were assayed in the medium. In granulosa cells from preovulatory follicles, LH and FSH caused a much greater stimulation of steroidogenesis than did GnRHa. There appeared to be no interaction between GnRHa and FSH during the first 10 h, but at 24 h and later the presence of GnRHa clearly inhibited the steroidogenic response to LH and FSH. Steroidogenesis in granulosa cells from immature rats was considerably lower and the effects of GnRHa and FSH alone less pronounced. In these cells, FSH-stimulated progesterone secretion was inhibited by GnRHa only at 72 h. In contrast, 20 alpha-OHP secretion in the same cultures was potentiated by the combined presence of FSH and GnRHa. In conclusion, it seems as though the effects of GnRHa on granulosa cell steroidogenesis varies with exposure time, the initial response being stimulatory and the later inhibitory. Furthermore, the response is also to some extent determined by the maturational stage of the granulosa cells.  相似文献   

15.
In Experiment 1, the influence of exogenous GH on steroid secretion by granulosa and theca interna cells recovered from small (1-3 mm), medium (4-6 mm) and large (8-12 mm) follicles was tested. In the second experiment, theca cells (Tc) and granulosa cells (Gc) obtained from large follicles were cultured separately or in two types, Tc/Gc co-culture, where both types of cells were mixed in one well or Gc and Tc were separated by cell culture membrane inserts. In the third experiment, the influence of GH on the morphology of Gc and Tc cells and activity of Delta(5),3beta-hydroxysteroid dehydrogenase (3beta-HSD) was studied. Cells were grown in the control medium (M199+5% of calf serum) or supplemented with 100 ng/ml GH. Testosterone (10(-7) M) was added as the aromatase substrate to granulosa cells cultures. The media were assayed after 48 h of culture for progesterone and oestradiol by RIA. GH added to the culture media had no effect on oestradiol and progesterone secretion by granulosa cells isolated from small and medium follicles while it stimulated both oestradiol and progesterone secretion by Gc isolated from large preovulatory follicles. A stimulatory effect on oestradiol secretion by Tc isolated from all size follicles was observed. GH did not stimulate progesterone secretion by Tc isolated from small follicles but stimulated progesterone secretion by Tc isolated from medium and large preovulatory follicles. Both co-culture systems exhibited synergistic effect on oestradiol secretion. The stimulatory effect on progesterone secretion under the influence of GH was observed in Gc cultured alone and Tc cultured alone. In contrast, the secretion of progesterone was attenuated in both co-culture systems and the addition of GH further augmented this attenuation. A statistically significant increase in oestradiol secretion was observed in all culture conditions. The addition of GH to the culture medium stimulated the activity of 3beta-HSD compared with the control culture from both types of cells. In conclusion, the present studies indicate that there are direct and follicular development stage dependent actions of GH on steroidogenesis of porcine follicular cells.  相似文献   

16.
Kim JH  Yoon YD  Shin I  Han JS 《IUBMB life》1999,48(4):445-452
Although recent studies have demonstrated that ovarian follicular atresia occurs by apoptosis of granulosa cells, the intracellular signaling pathways involved in apoptotic cell death are still poorly characterized. We examined the role of ceramide as a candidate intracellular mediator of Fas-mediated signaling in cultured granulosa cells. Expression of Fas antigen was demonstrated by Western blot of granulosa cell lysates and immunostaining of cultured granulosa cells. Exposure of granulosa cells to anti-Fas monoclonal antibody (anti-Fas mAb) resulted in significant sphingomyelin hydrolysis, which was accompanied by a progressive increase in endogenous levels of ceramide. The addition of exogenous C6-ceramide induced drastic morphological change, including nuclear fragmentation and typical apoptotic DNA degradation. Furthermore, both anti-Fas mAb and C6-ceramide decreased phospholipase D (PLD) activity and diacylglycerol (DAG) concentrations in a time- or a dose-dependent manner. In addition, treatment with phorbol 12-myristate 13-acetate completely attenuated the ceramide-induced inhibition of PLD activity and partially suppressed ceramide-induced apoptosis. These results indicate that the Fas/ceramide signaling pathway might play a role in granulosa cell apoptosis and suggest that the PLD/DAG pathway might be cross-linked to the Fas/ceramide pathway in apoptotic processes of granulosa cells.  相似文献   

17.
LH controls Leydig cell steroidogenesis by interaction with specific membrane receptors initiating membrane coupling events. Stimulation of the androgen pathways occurs mainly through cAMP mediated mechanism including LH induced guanyl nucleotide binding, membrane phosphorylation and adenylate cyclase activation. cAMP dependent kinase activation presumably causes phosphorylation of key proteins of the steroidogenic pathway and consequent increase in testosterone production. The hormone also appears to facilitate the androgen stimulus by a cyclic AMP independent mechanism located at the plasma membrane or intracellular sites. The stimulatory event can be negatively influenced by the action of certain peptide hormones (i.e. angiotensin II) through the guanyl nucleotide inhibitory subunit of adenylate cyclase (Gi). In recent studies we have presented evidence for a Ca2+ sensitive kinase system present in purified cell membranes. Gpp(NH)p, GTP, and phospholipid in presence of nanomolar Ca2+ induce phosphate incorporation into Mr 44,500 substrate with marked inhibition at microM Ca2+. Similarly a biphasic pattern of activation was observed with adenylate cyclase activity. Membrane phosphorylation may be a modifier of LH-stimulated adenylate cyclase activity and possibly other LH induced actions in the activated Leydig cell membrane. Furthermore we have defined the stimulatory effects of forskolin on all Leydig cell cyclic AMP pools and have provided additional evidence of functional compartmentalization and/or cAMP independent facilitory stimulus of steroidogenesis by the trophic hormone. The demonstration of a novel high affinity inhibitory action of forskolin upon adenylate cyclase activity and cyclic AMP generation mediated by the Gi subunit of adenylate cyclase has provided a new approach for direct evaluation of functional inhibitory influence of Gi subunit in the Leydig cell. The cultured fetal Leydig cell system has provided a useful model to elucidate mechanisms involved in the development of gonadotropin induced estradiol mediated desensitization of steroidogenesis. We have isolated from the fetal testis a small population (2-5% of total) of transitional cells with morphological characteristics of cells found in 15 day postnatal testis but functional capabilities of the adult cell. We have also demonstrated after appropriate treatment (i.e. estrogen, and frequent or a high gonadotropin dose) the emergence of a functional adult-like cell type from the fetal Leydig cell population.  相似文献   

18.
Progesterone biosynthesis and metabolization to 20 alpha-hydroxyprogesterone was stimulated in granulosa cells cultured in the presence of 20 ng/ml of follicle stimulating hormone (FSH) or increasing concentrations of PGE2 (10(-9)-10(-7)M). Concurrent treatment with the synthetic progestin R5020 (10(-6) M) enhanced the FSH or PGE2 stimulated progesterone and 20 alpha-hydroxyprogesterone accumulation in culture media, as well as delta 5-3 beta-hydroxysteroid dehydrogenase activity in granulosa cell homogenates. These findings may represent another example of an autocrine control mechanism in which the steroidogenic product of the granulosa cell exerts an ultra-short loop regulation of its own production.  相似文献   

19.
The hamster islet B cell line HIT retains the ability to secret insulin in response to glucose and several receptor agonists. We used HIT cells to study the initial signaling events in glucose or receptor agonist-stimulated insulin secretion. Glucose stimulated insulin release from HIT cells in a dose-dependent manner with a half-maximal effect seen already at 1 mM. Insulin release was also stimulated by carbachol in a glucose-dependent manner. Glucose depolarized the HIT cell membrane potential as assessed with the fluorescent probe bisoxonol and raised intracellular Ca2+ as revealed by fura-2 measurements. Using a Mn2+ fura-2 quenching technique, we could show that the rise in intracellular Ca2+ was due to Ca2+ influx following opening of voltage-gated Ca2+ channels. Glucose is thought to increase the diacylglycerol (DAG) content of insulin-secreting cells. However, although HIT cells respond to glucose in terms of insulin secretion, membrane depolarization, and Ca2+ rise, the hexose was unable to increase the proportion of protein kinase C activity associated with membranes. In contrast, the membrane-associated protein kinase C activity increased in HIT cells exposed to the two receptor agonists carbachol and bombesin. Bombesin was shown to generate DAG with the expected fatty acid composition of activators of phospholipase C. Glucose, in contrast, only caused minor increases in DAG containing myristic and palmitic acid without affecting total DAG mass. The failure to detect stimulation of protein kinase C by glucose could be due to both the limited amount and to the different fatty acid composition of the metabolically generated DAG. The latter was in part supported by experiments performed on protein kinase C partially purified from HIT cells. Indeed, 1,2-dipalmitoylglycerol, presumed to be the main DAG species generated by glucose, was only one-third as active as 1,2-dioleoylglycerol and 1-stearoyl-2-arachidonylglycerol in stimulating the isolated enzyme at physiological Ca2+ concentration. It is therefore unlikely that DAG and protein kinase C play a major role in glucose-stimulated insulin secretion.  相似文献   

20.
The mechanism through which iloprost permits cerebral vasodilation induced by specific stimuli is incompletely understood. Previous study suggests there might be interplay between the adenylyl cyclase and phospholipase C (PLC) systems. Coupling of the prostacyclin receptor with the PLC pathway system was investigated. Iloprost, a stable prostacyclin analog, was used as a prostacyclin receptor agonist. We investigated the effects of iloprost (10-12-10-6 M) on inositol 1,4,5-trisphosphate (IP3) production by piglet cerebrovascular smooth muscle cells in primary culture. Iloprost caused concentration- and time-dependent increases in IP3 production in control cells and in cells pretreated with LiCl (to prevent further IP3 metabolism). Iloprost treatment (10-12 M) of cerebrovascular smooth muscle cells, in the absence and presence of 20 mM LiCl, resulted in 2-fold and 4-fold increases in the formation of IP3, respectively. In contrast, 10-10 M to 10-6 M iloprost, either in the presence or absence of LiCl, induced moderate or no increase in IP3 formation. Iloprost (10-10-10-12 M) strongly stimulated diacylglycerol (DAG) generation, whereas higher concentrations (10-8 M) did not induce an increase. In conclusion, the results suggest that prostacyclin receptors on cerebromicrovascular smooth muscle can couple to PLC, generating the second messengers, IP3 and DAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号