首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deletion mutants of simian virus 40 (SV40) with lesions at the three DdeI sites near the 3' end of the early region were constructed. Mutants with deletions at 0.203 and 0.219 map units (mu) which did not change the large T antigen reading frame were viable. This extends slightly the upstream boundary for the location of viable mutants with deletions in the 3' end of the A gene. Mutants with frameshift deletions at 0.193 and 0.219 mu were nonviable. These are the first nonviable mutants with deletions in this portion of the A gene. None of the three nonviable mutants with deletions at 0.219 mu produced progeny viral DNA. These three mutants all used the alternate reading frame located in this portion of the SV40 early region. The mutant with a deletion at 0.193 mu, dlA2459, was positive for viral DNA replication and was defective for adenovirus helper function. All of these mutations were located in the portion of the SV40 large T antigen which has no homology to the polyoma T antigens. These results indicate that this portion of large T antigen is required for some late step in the viral growth cycle and suggest that adenovirus helper function is required for productive infection by SV40.  相似文献   

2.
The carboxyl-terminal portion of simian virus 40 large T antigen is essential for productive infection of CV-1 and CV-1p green monkey kidney cells. Mutant dlA2459, lacking 14 base pairs at 0.193 map units, was positive for viral DNA replication, but unable to form plaques in CV-1p cells (J. Tornow and C.N. Cole, J. Virol. 47:487-494, 1983). In this report, the defect of dlA2459 is further defined. Simian virus 40 late mRNAs were transcribed, polyadenylated, spliced, and transported in dlA2459-infected cells, but the level of capsid proteins produced in infected CV-1 green monkey kidney cells was extremely low. dlA2459 large T antigen lacks those residues known to be required for adenovirus helper function, and the block to productive infection by dlA2459 occurs at the same stage of infection as the block to productive adenovirus infection of CV-1 cells. These results suggest that the adenovirus helper function is required for productive infection by simian virus 40. Mutant dlA2459 was able to grow on the Vero and BSC-1 lines of African green monkey kidney cells. Additional mutants affecting the carboxyl-terminal portion of large T were prepared. Mutant inv2408 contains an inversion of the DNA between the BamHI and BclI sites (0.144 to 0.189 map units). This inversion causes transposition of the carboxyl-terminal 26 amino acids of large T antigen and the carboxyl-terminal 18 amino acids of VP1. This mutant was viable, even though the essential information absent from dlA2459 large T antigen has been transferred to the carboxyl terminus of VP1 of inv2408. The VP1 polypeptide carrying this carboxyl-terminal portion of large T could overcome the defect of dlA2459. This indicates that the carboxyl terminus of large T antigen is a separate and separable functional domain.  相似文献   

3.
J Y Zhu  C N Cole 《Journal of virology》1989,63(11):4777-4786
Linker insertion mutants affecting the simian virus 40 (SV40) large tumor (T) antigen were constructed by inserting a 12-base-pair oligonucleotide linker into restriction endonuclease cleavage sites located within the early region of SV40. One mutant, with the insertion at amino acid 5, was viable in CV-1p and BSC-1 cells, indicating that sequences very close to the amino terminus of large T could be altered without affecting the lytic infection cycle of SV40. All other mutants affecting large T were not viable. In complementation assays between the linker insertion mutants and either a late-gene mutant, dlBC865, or a host range/helper function (hr/hf) mutant, dlA2475, delayed complementation was seen with the 6 of the 10 nonviable mutants. Of these 10 mutants, 5 formed plaques 3 to 4 days later than in control complementations, while complementation by one of the mutants, inA2827, with an insertion at amino acid 520, was delayed more than 1 week. Most mutants which showed delayed complementation replicated less well in Cos-1 cells than did a control mutant, dlA1209, which produced no T antigen. The replication of inA2827(aa520) was reduced by more than 90%. Similar interference with viral DNA replication was seen when CV-1, HeLa, or 293 cells were cotransfected with an origin-defective plasmid encoding wild-type large T antigen and with inA2827(aa520). Only one of the mutant T antigens, inA2807(aa303), was unstable. These results indicate that some of the mutant T antigens interfered with functions of wild-type T required for viral DNA replication. However, not all of the mutants which showed delayed complementation also showed interference with viral DNA replication. This indicates that mutant large T antigens may interfere trans dominantly with multiple activities of wild-type large T antigen.  相似文献   

4.
The function of polyomavirus small T antigen in productive infection and in transformation was studied. Transfection of permissive mouse cells with mixtures of mutants that express only one type of T antigen showed that small T antigen increased large-T-antigen-dependent viral DNA synthesis approximately 10-fold. Under the same conditions, small T antigen was also essential for the formation of infectious virus particles. To analyze these activities of small T antigen, mutants producing protein with single amino acid replacements were constructed. Two mutants, bc1073 and bc1075, were characterized. Although both mutations led to the substitution of amino acid residues of more than one T antigen, the phenotype of both mutants was associated with alterations of the small T antigen. Both mutant proteins had lost their activity in the maturation of infectious virus particles. The bc1075 but not the bc1073 small T antigen had also lost its ability to stimulate viral DNA synthesis in mouse 3T6 cells. Finally, both mutants retained a third activity of small T antigen: to confer on rat cells also expressing middle T antigen the ability to grow efficiently in semisolid medium. The phenotypes of the mutants in these three assays suggest that small T antigen has at least three separate functions.  相似文献   

5.
Base substitution of the ori region of simian virus 40 leads to plaque morphology mutants with markedly decreased DNA replication. Second-site mutations within the simian virus 40 T antigen gene suppress the plaque phenotype and replication defect of base-substituted ori mutants. Two second-site mutations have been mapped to a small segment of the T antigen gene, just beyond the distal splice junction. DNA sequence analysis revealed a single missense change in this segment of the T antigen gene of each of these second-site revertants, leading to a change in codon 157 in one case and codon 166 in the other. The mutant T antigens displayed relaxed specificity for the ori signal, i.e., they can function with several variously modified ori sequences, including those with small nucleotide deletions or insertions that are inactive for replication when coupled with wild-type T antigen. Thus a region of T antigen has been identified that appears to be intimately involved in vivo in binding to the ori sequence to initiate viral DNA replication.  相似文献   

6.
From an undiluted passaged virus stock, two size classes of defective simian virus 40 (SV40) DNA were isolated from which two evolutionary variants were cloned. By means of restriction enzyme and heteroduplex analysis, physical maps of the mutants have been constructed. Both mutants contained the region of SV40 DNA coding for the early proteins plus some adjacent sequences (the region from 0.120 to 0.685 map unit, clockwise, on the standard SV40 DNA map). Furthermore, each mutant contained, in the form of two inverted repeats, four times the sequences from the region 0.625 to 0.685 map unit, clockwise. Some biological properties of the mutant DNA were examined, and we found that the mutant DNA (i) has, as compared with SV40 DNA, an impaired ability to induce T antigen in permissive and nonpermissive cells; (ii) does not complement a thermosensitive A mutant of SV40; (iii) replicates very inefficiently without a helper; and (iv), as an apparent contradiction, transforms nonpermissive baby rat kidney cells as well as SV40 DNA. A hypothetical mechanism for the expression of the mutant DNA that might explain the observed biological properties is presented.  相似文献   

7.
We report the characterization of three mutants of simian virus 40 with mutations that delete sequences near the 3' end of the gene encoding large tumor antigen (T antigen). Two of these mutants, dl1066 and dl1140, exhibit an altered viral host range. Wild-type simian virus 40 is capable of undergoing a complete productive infection on several types of established African green monkey kidney lines, including BSC40 and CV1P. dl1066 and dl1140 grow on BSC40 cells at 37 degrees C. However, both mutants fail to form plaques on BSC40 cells at 32 degrees C or on CV1P cells at any temperature. These mutants are capable of replicating viral DNA in the nonpermissive cell type, indicating a defect in an activity of T antigen not related to its replication function. Furthermore this defect can be complemented in trans by the wild type or by a variety of DNA replication-negative T antigen mutants, so long as they produce a normal carboxyl-terminal region of the molecule. Our data are consistent with the hypothesis that the C-terminal region of T antigen constitutes a functional domain. We propose that this domain encodes an activity that is required for simian virus 40 productive infection on the CV1P cell line, but not on BSC40.  相似文献   

8.
Tumor antigens induced by nontransforming mutants of polyoma virus.   总被引:48,自引:0,他引:48  
J Silver  B Schaffhausen  T Benjamin 《Cell》1978,15(2):485-496
We have studied the tumor (T) antigens induced by wild-type polyoma virus and several nontransforming mutants using immunoprecipitation with antisera from animals bearing polyomya-induced tumors followed by sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis. In a variety of mouse cells, wild-type virus induces a major T antigen species with apparent molecular weight of 100,000 daltons, and four minor T antigen species with apparent molecular weights of 63,000, 56,000, 36,000 and 22,000 daltons. Hr-t mutants, which have an absolute defect in transformation, induce a normal 100,000 dalton T antigen but are altered in the minor T antigen species. Hr-t deletion mutants induce none of the minor T antigen species seen in wild-type virus. In their place, these mutants induce T antigen species with molecular weights in the range of 6,000--9,000 daltons. The size of the very small T antigen products does not correlate in any simple way with the size or location of the deletions in the viral DNA. Point hr-t mutants induce two of the four minor T antigen species; they make apparently normal amounts of the 56,000 dalton product and reduced amounts of the 22,000 dalton product, but none of the 63,000 or 36,000 dalton species. Ts-a mutants, which have a temperature-sensitive defect in the ability to induce stable transformation, and which complement hr-t mutants, induce T antigens with the same mobility as wild-type; however, the 100,000 dalton T antigen of ts-a mutants is thermolabile compared to wild-type. A double mutant virus carrying both a ts-a mutation and a deletion hr-t mutation induces a thermolabile 100,000 dalton product and none of the minor T antigen species. Cell fractionation studies with productively infected cells have been carried out to localize the T antigen species.  相似文献   

9.
T antigen is able to transactivate gene expression from the simian virus 40 (SV40) late promoter and from several other viral and cellular promoters. Neither the mechanisms of transactivation by T antigen nor the regions of T antigen required for this activity have been determined. To address the latter point, we have measured the ability of a set of SV40 large T antigen mutants to stimulate gene expression in CV-1 monkey kidney cells from the SV40 late promoter and Rous sarcoma virus (RSV) long terminal repeat (LTR) promoter. Transactivation, although reduced, was retained by an N-terminal 138-amino-acid fragment of T antigen. Mutants with alterations at various locations within the N-terminal 85 amino acids transactivated the RSV LTR promoter less well than did wild-type T antigen. Most of these were also partially defective in their ability to transactivate the SV40 late promoter. Two mutants with lesions in the DNA-binding domain that were unable to bind to SV40 DNA were completely defective for transactivation of both promoter, while a third mutant with a lesion in the DNA-binding domain which retained origin-binding activity transactivated both promoters as well as did wild-type T antigen. Only a low level of transactivation was seen with mutant T antigens which had lesions in or near the zinc finger region (amino acids 300 to 350). Mutations which caused defects in ATPase activity, host range/helper function, binding to p53, binding to the retinoblastoma susceptibility protein, or nuclear localization had little or no effect on transactivation. These results suggest that N-terminal portion of T antigen possesses an activation activity. The data are consistent with the idea that the overall conformation of T antigen is important for transactivation and that mutations in other regions that reduce or eliminate transactivation do so by altering the conformation or orientation of the N-terminal region so that its ability to interact with various targets is diminished or abolished.  相似文献   

10.
Ten temperature-sensitive mutants of simian virus 40 have been isolated and characterized in permissive cells. The mutants could be divided into three functional groups and two complementation groups. Seven mutants produced T antigen, infectious viral deoxyribonucleic acid (DNA), and structural viral antigen but predominantly the empty shell type of viral particles. Two mutants produced T antigen and infectious viral DNA, but, although viral structural protein(s) could be detected immunologically, no V antigen or viral particles were found. These two functional groups of mutants did not complement each other. A single mutant was defective in the synthesis of viral DNA, viral structural antigens, and viral particles. T antigen could be detected in infected cells by fluorescent antibody but was reduced by complement fixation assay. This mutant stimulated cell DNA synthesis at the restrictive temperature and complemented the other two functional groups of mutants.  相似文献   

11.
We analyzed the biological activity of an amber mutation, am404, at map position 0.27 in the T antigen gene of simian virus 40. Immunoprecipitation of extracts from am404-infected cells demonstrated the presence of an amber protein fragment (am T antigen) of the expected molecular weight (67,000). Differential immunoprecipitation with monoclonal antibody demonstrated that am T antigen was missing the carboxy-terminal antigenic determinants. The amber mutant was shown to be defective for most of the functions associated with wild-type T antigen. The mutant did not replicate autonomously, but this defect could be complemented by a helper virus (D. R. Rawlins and N. Muzyczka, J. Virol. 36:611-616, 1980). The mutant failed to transform nonpermissive rodent cells and did not relieve the host range restriction of adenovirus 2 in monkey cells. However, stimulation of host cell DNA, whose functional region domain has been mapped within that portion of the protein synthesized by the mutant, could be demonstrated in am404-infected cells. A number of unexpected observations were made. First, the am T antigen was produced in unusually large amounts in a simian virus 40-transformed monkey cell line (COS-1), but overproduction was not seen in nontransformed monkey cells regardless of whether or not a helper virus was present. This feature of the mutant was presumably the result of the inability of am T antigen to autoregulate, the level of wild-type T antigen in COS-1 cells, and the unusually short half-life of am T antigen in vivo. Pulse-chase experiments indicated that am T antigen had an intracellular half-life of approximately 10 min. In addition, although the am T antigen retained the major phosphorylation site found in simian virus 40 T antigen, it was not phosphorylated. Thus, phosphorylation of simian virus 40 T antigen is not required for the stimulation of host cell DNA synthesis. Finally, fusion of am404-infected monkey cells with Escherichia coli protoplasts containing appropriate procaryotic suppressor tRNAs showed that am404 is a suppressible nonsense mutation.  相似文献   

12.
从1个369nt的黄瓜花叶病毒(Cucumbermosaicvirus,CMV)卫星RNA的cDNA出发,采用DNA改组技术构建人工突变体,经过体外转录,将其与不携带卫星RNA的黄瓜花叶病毒株进行假重组,鉴定突变体的生物活性,结果显示所获得的4个卫星RNA的点突变子MS1、MS5、MS6和MS11中,只有MS11仍然具有复制能力;而其他3个点突变子,尽管均只有1个位点的替换,却不能在辅助病毒作用下复制。序列比较分析发现MS11的突变位点位于卫星RNA变异区内,发生的突变与自发突变一致,其他3个突变子的突变位点发生在卫星RNA的高度保守区。而且通过侵染性试验证实突变子MS11与野生型Yi没有明显的差异。由此可推测卫星RNA序列中的高度保守区与卫星RNA的生物活性密切相关,个别碱基的突变会导致RNA二级结构的改变,进而引起其复制能力或稳定性的完全丧失。  相似文献   

13.
A model of human immunodeficiency virus infection in T helper cell clones   总被引:1,自引:0,他引:1  
We present a mathematical model of the activation and proliferation of a clone of T helper cells in response to a replicating antigen. This is able to show types of behaviour akin to persistent infection and to immune memory. This model is expanded to include the infection and destruction of activated T helper cells by human immunodeficiency virus and the growth of a population of circulating human immunodeficiency virus. The resulting model is used to investigate the circumstances under which the human immunodeficiency virus can destabilize persistent infections and destroy immune memory, and to illustrate the impact of antigenic stimulation of infected T helper cell clones upon human immunodeficiency virus replication rates.  相似文献   

14.
A series of mutants of simian virus 40 has been constructed with deletions in the coding sequence for large T antigen. Nucleotide sequence analysis indicates that 4 mutants have in-phase and 11 have out-of-phase deletions. Mutant DNAs were assayed for the following activities: the ability to form plaques, the ability to produce T antigen as scored by indirect immunofluorescence, viral DNA replication, and morphological transformation of rat cells. Two viable mutants were found, and these had deletions confined to the carboxyl terminus of T antigen. Only those mutants coding for polypeptides greater than 40% of the length of wildtype T antigen produced detectable nuclear fluorescence. The two viable mutants with deletions in the carboxyl terminus of the protein retained the ability both to replicate their DNA, although at a reduced level, and to transform nonpermissive cells. Mutants with sequence changes that result in the loss of more than 117 amino acids from the carboxyl terminus were not viable and were also defective in the DNA replication and transformation functions of T antigen, although several produced detectable nuclear fluorescence. These functions were also sensitive to the removal of amino acids near the amino terminus and in the middle of the protein.  相似文献   

15.
We have combined in vitro DNA replication reactions and immunological techniques to analyze biochemical interactions between simian virus (SV40) large T antigen and components of the cellular replication apparatus. First, in vitro SV40 DNA replication was characterized with specific origin mutants. Next, monoclonal antibodies were used to demonstrate that a specific domain of T antigen formed a complex with cellular DNA polymerase alpha. Several antibodies were identified that coprecipitated T antigen and DNA polymerase alpha, while others were found to selectively prevent this interaction and concomitantly inhibit DNA replication. DNA polymerase alpha also bound efficiently to a T-antigen affinity column, confirming the immunoprecipitation results and providing a useful method for purification of the complete protein complex. Taken together, these results suggest that the T-antigen-polymerase association may be a key step in the initiation of SV40 DNA replication.  相似文献   

16.
We have completed the cloning and sequencing of all known temperature-sensitive, amino acid substitution mutants of simian virus 40 large T antigen (tsA mutants). Surprisingly, many of the mutants isolated from distinct viral strains by different laboratories are identical. Thus, 17 independently isolated mutants represent only eight distinct genotypes. This remarkable clustering of tsA mutations in a few "hot spots" in the amino acid sequence of T antigen and the temperature-sensitive phenotypes of the mutations strongly suggest that these amino acids play crucial roles in organizing the structure of one or more functional domains. Most of the mutations are located in highly conserved regions of T antigen that correlate with DNA binding, protein-protein interactions, or ATP binding. With the exception of one mutant with a lesion in the putative ATP-binding region, all the mutants are temperature sensitive for DNA replication.  相似文献   

17.
trans-dominant defective mutants of simian virus 40 T antigen.   总被引:10,自引:7,他引:3       下载免费PDF全文
We constructed a collection of linker insertion mutants in the simian virus 40 (SV40) genome and studied several of these with changes limited to a part of the large T antigen gene corresponding to an amino acid sequence shared with other ATPases. Two of these mutants were found to have a novel phenotype in that they could not be complemented for plaque formation by a late-region deletion mutant. These two mutants, in contrast to other mutants in this region, were able to transform rat cells in culture at a frequency close to that of the wild-type gene. The noncomplementing mutants were found to be potent inhibitors of SV40 DNA replication despite the presence of wild-type T antigen in the transfected cells. This inhibition was shown to be the result of the introduced mutations in the large T antigen gene. We conclude that the large T antigens of the noncomplementing mutants can act as inhibitors of SV40 DNA replication.  相似文献   

18.
A series of mutants of simian virus 40 was constructed by oligonucleotide-directed mutagenesis to study the role of phosphorylation in the functions of large T antigen. Each of the previously mapped phosphorylated serine and threonine residues in large T antigen was replaced by an alanine or cysteine residue or, in one case, by glutamic acid. Mutant DNAs were assayed for plaque-forming activity, viral DNA replication, expression of T antigen, and morphological transformation of rat cells. Viable mutants were isolated, suggesting that modification of some residues is not essential for the biological functions of T antigen. Two of these mutants replicated more efficiently than did the wild type. Seven mutants were partially or completely deficient in viral DNA replication but retained cell transformation activity comparable with that of the wild-type protein. Biochemical analysis of the mutant T antigens demonstrated novel origin DNA-binding properties of several mutant proteins. The results are consistent with the idea that differential phosphorylation defines several functional subclasses of T-antigen molecules.  相似文献   

19.
20.
Transfection of a pBR322-based, recombinant plasmid, pAV2, containing the entire adeno-associated virus (AAV) type 2 genome into human 293 cells in the presence of helper adenovirus resulted in rescue and replication of AAV to yield infectious particles. We constructed mutants of pAV2 containing deletions within the AAV sequence. We describe here the phenotypes of these AAV deletion mutants. The results can be summarized as follows. Mutants (cap-) with deletions between map positions 53 and 85 did not synthesize capsid antigen or progeny single-stranded DNA but accumulated normal levels of duplex replicating form DNA. Mutants (rep-) with deletions between map positions 17 and 36 failed to rescue or replicate any AAV DNA. The rep- mutants could be complemented for replicating form DNA synthesis by a cap- mutant. This clearly demonstrates an AAV-coded replication function which is different from the capsid antigen. Other mutants (inf-) with deletions in the region between map positions 40 and 52 synthesized abundant amounts of replicating form DNA and capsid antigen but gave a low yield of infectious particles. This suggests that there may be an additional region of AAV, perhaps within the intron, which is required for efficient particle assembly. This work shows that AAV is genetically complex and expresses at least three clearly different functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号