首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A fatty liver is associated with fasting hyperinsulinemia, which could reflect either impaired insulin clearance or hepatic insulin action. We determined the effect of liver fat on insulin clearance and hepatic insulin sensitivity in 80 nondiabetic subjects [age 43 +/- 1 yr, body mass index (BMI) 26.3 +/- 0.5 kg/m(2)]. Insulin clearance and hepatic insulin resistance were measured by the euglycemic hyperinsulinemic (insulin infusion rate 0.3 mU.kg(-1).min(-1) for 240 min) clamp technique combined with the infusion of [3-(3)H]glucose and liver fat by proton magnetic resonance spectroscopy. During hyperinsulinemia, both serum insulin concentrations and increments above basal remained approximately 40% higher (P < 0.0001) in the high (15.0 +/- 1.5%) compared with the low (1.8 +/- 0.2%) liver fat group, independent of age, sex, and BMI. Insulin clearance (ml.kg fat free mass(-1).min(-1)) was inversely related to liver fat content (r = -0.52, P < 0.0001), independent of age, sex, and BMI (r = -0.37, P = 0.001). The variation in insulin clearance due to that in liver fat (range 0-41%) explained on the average 27% of the variation in fasting serum (fS)-insulin concentrations. The contribution of impaired insulin clearance to fS-insulin concentrations increased as a function of liver fat. This implies that indirect indexes of insulin sensitivity, such as homeostatic model assessment, overestimate insulin resistance in subjects with high liver fat content. Liver fat content correlated significantly with fS-insulin concentrations adjusted for insulin clearance (r = 0.43, P < 0.0001) and with directly measured hepatic insulin sensitivity (r = -0.40, P = 0.0002). We conclude that increased liver fat is associated with both impaired insulin clearance and hepatic insulin resistance. Hepatic insulin sensitivity associates with liver fat content, independent of insulin clearance.  相似文献   

2.
Objective: Adipocyte hypertrophy has been suggested to be causally linked with inflammation and systemic insulin resistance. The aim of the study was to determine whether increased adipocyte size is associated with increased liver fat content due to nonalcoholic fatty liver disease (NAFLD) in humans independent of obesity, fat distribution and genetic variation in the patatin‐like phospholipase domain‐containing 3 gene (PNPLA3; adiponutrin) at rs738409. Design and Methods: One hundred nineteen non‐diabetic subjects in a cross‐sectional study with a median age of 39 ( 26 ) years, mean ± SD BMI of 30.0 ± 5.7 kg m?2 were studied. Abdominal subcutaneous (SC) adipocyte size, liver fat [proton magnetic resonance spectroscopy (1H‐MRS)], intra‐abdominal (IA), and abdominal SC adipose tissue volumes [magnetic resonance imaging (MRI)] and the PNPLA3 genotype at rs738409 were determined. Univariate and multiple linear regression analysis were used to identify independent predictors of liver fat content. Results: In multiple linear regression analysis, age, gender, BMI, the IA/SC ratio, and PNPLA3 genotype explained 42% of variation in liver fat content. Addition of adipocyte size (P < 0.0001) to the model increased the percent of explanation to 53%. Thus, 21% of known variation in liver fat could be explained by adipocyte size alone. Conclusions: Increased adipocyte size highly significantly contributes to liver fat accumulation independent of other causes.  相似文献   

3.
The purpose of this study was to compare different methods to identify metabolically healthy but obese (MHO) individuals in a cohort of obese postmenopausal women. We examined the anthropometric and metabolic characteristics of 113 obese (age: 57.3 ± 4.8 years; BMI: 34.2 ± 2.7 kg/m2), sedentary postmenopausal women. The following methods were used to identify MHO subjects: the hyperinsulinemic–euglycemic clamp (MHO: upper quartile of glucose disposal rates); the Matsuda index (MHO: upper quartile of the Matsuda index); the homeostasis model assessment (HOMA) index (MHO: lower quartile of the HOMA index); having 0–1 cardiometabolic abnormalities (systolic/diastolic blood pressure ≥130/85 mm Hg, triglycerides (TG) ≥1.7 mmol/l, glucose ≥5.6 mmol/l, HOMA >5.13, high‐sensitive C‐reactive protein (hsCRP) >0.1 mg/l, high‐density lipoprotein‐cholesterol (HDL‐C) <1.3 mmol/l); and meeting four out of five metabolic factors (HOMA ≤2.7, TG ≤1.7 mmol/l, HDL‐C ≥1.3 mmol/l, low‐density lipoprotein‐cholesterol ≤2.6 mmol/l, hsCRP ≤3.0 mg/l). Thereafter, we measured insulin sensitivity, body composition (dual‐energy X‐ray absorptiometry), body fat distribution (computed tomography scan), energy expenditure, plasma lipids, inflammation markers, resting blood pressure, and cardiorespiratory fitness. We found significant differences in body composition (i.e., peripheral fat mass, central lean body mass (LBM)) and metabolic risk factors (i.e., HDL‐C, hsCRP) between MHO and at risk individuals using the different methods to identify both groups. In addition, significant differences between MHO subjects using the different methods to identify MHO individuals were observed such as age, TG/HDL, hsCRP, and fasting insulin. However, independently of the methods used, we noted some recurrent characteristics that identify MHO subjects such as TG, apolipoprotein B, and ferritin. In conclusion, the present study shows variations in body composition and metabolic profile based on the methods studied to define the MHO phenotype. Therefore, an expert consensus may be needed to standardize the identification of MHO individuals.  相似文献   

4.
Fenofibrate, a selective 1PPAR-α activator, is prescribed to treat human dyslipidemia. The aim of this study was to delineate the mechanism of fenofibrate-mediated reductions in adiposity, improvements in insulin sensitivity, and lowering of triglycerides (TG) and free fatty acids (FFA) and to investigate if these favorable changes are related to the inhibition of lipid deposition in the aorta. To test this hypothesis we used male LDLr deficient mice that exhibit the clinical features of metabolic syndrome X when fed a high fat high cholesterol (HF) diet. LDLr deficient mice fed HF diet and simultaneously treated with fenofibrate (100 mg/kg body weight) prevented development of obesity, lowered serum triglycerides and cholesterol, improved insulin sensitivity, and prevented accumulation of lipids in the aorta. Lowering of circulating lipids occurred via down-regulation of lipogenic genes, including fatty acid synthase, acetyl CoA carboxylase and diacyl glycerol acyl transferase-2, concomitant with decreased liver TG and cholesterol, and TG output rate. Fenofibrate also suppressed liver apoCIII mRNA levels and markedly increased lipoprotein lipase mRNA levels, known to enhance serum TG catabolism. In addition, fenofibrate profoundly reduced epididymal fat and mesenteric fat mass to the levels seen in lean mice. The reductions in body weight were associated with elevation of hepatic uncoupling protein 2 (UCP2) mRNA, a concomitant increase in the ketone body formation, and improved insulin sensitivity associated with tumor necrosis factor-α reductions and phosphoenol pyruvate carboxykinase down-regulation. These results demonstrate that fenofibrate improves lipid abnormalities partly via inhibition of TG production and partly via clearance of TG-rich apoB particles by elevating LPL and reduced apoCIII. The prevention of obesity development occurred via energy expenditure. Fenofibrate-mediated hypolipidemic effects together with improved insulin sensitivity and loss of adiposity led to the reductions in the aortic lipid deposition by inhibiting early stages of atherosclerosis possibly via vascular cell adhesion molecule-1 (VCAM-1) modulation. These results suggest that potent PPAR-α activators may be useful in the treatment of syndrome X. (Mol Cell Biochem xxx: 1–16, 2005)  相似文献   

5.
Androgen exposure during intrauterine life in nonhuman primates and in sheep results in a phenocopy of the reproductive and metabolic features of polycystic ovary syndrome (PCOS). Such exposure also results in reproductive features of PCOS in rodents. We investigated whether transient prenatal androgen treatment produced metabolic abnormalities in adult female rats and the mechanisms of these changes. Pregnant dams received free testosterone or vehicle injections during late gestation, and their female offspring were fed regular or high-fat diet (HFD). At 60 days of age, prenatally androgenized (PA) rats exhibited significantly increased body weight; parametrial and subcutaneous fat; serum insulin, cholesterol and triglyceride levels; and hepatic triglyceride content (all P < 0.0125). There were no significant differences in insulin sensitivity by intraperitoneal insulin tolerance test or insulin signaling in liver or skeletal muscle. HFD had similar effects to PA on body weight and composition as well as on circulating triglyceride levels. HFD further increased hepatic triglyceride content to a similar extent in both PA and control rats. In PA rats, HFD did not further increase circulating insulin, triglyceride, or cholesterol levels. In control rats, HFD increased insulin levels, but to a lesser extent than PA alone ( approximately 2.5- vs. approximately 12-fold, respectively). We conclude that transient prenatal androgen exposure produces features of the metabolic syndrome in adult female rats. Dyslipidemia and hepatic steatosis appear to be mediated by PA-induced increases in adiposity, whereas hyperinsulinemia appears to be a direct result of PA.  相似文献   

6.
PURPOSE OF REVIEW: This review addresses a syndrome of dyslipidemia and lipodystrophy that has emerged in HIV-infected patients receiving highly active antiretroviral therapy (HAART). The term 'HIV/HAART associated dyslipidemic lipodystrophy (HADL)' describes this syndrome. Although HAART increases patient survival rates, their increased longevity and dyslipidemias place them at risk for cardiovascular disease. Identification of rationally based therapies requires an understanding of the mechanistic basis of HADL. RECENT FINDINGS: A case definition for HIV lipodystrophy, based on age, gender, duration of HIV disease, serum HDL cholesterol and anthropometry, provides high diagnostic sensitivity and specificity. The dyslipidemias, mainly hypercholesterolemia, hypertriglyceridemia and low-plasma HDL cholesterol, among HIV-infected patients in the pre- and post-HAART eras are summarized. Clinical studies of HADL patients show increased lipolysis, which increases free fatty acid transfer to liver for incorporation into lipoprotein triglycerides that are secreted, and to skeletal muscle where they impair normal insulin signaling. A model of HADL that includes preferential lipolysis in femoral-gluteal fat depots is presented. Relevant therapies include those that inhibit lipolysis (niacin) or increase hepatic fatty acid oxidation (fibrates). SUMMARY: HADL is one of several disorders characterized by dyslipidemia, insulin resistance, and lipodystrophy. The relative acuteness of HADL should facilitate identification of the sequence of metabolic changes that gives rise to the syndrome. Current evidence suggests that deranged energy storage in femoral-gluteal and other peripheral sites is important; the molecular details for the derangement are unknown but are under scrutiny by many investigators.  相似文献   

7.
Non-alcoholic fatty liver disease (NAFLD) is a condition defined by significant lipid accumulation (5–10%) in hepatic tissue in the absence of significant chronic alcohol consumption. We aim to detect frequency of fatty liver among overweight/obese adults and children and associated clinical; anthropological measures; biochemical; genetic and imaging studies. Eighty three consecutive adults and 72 children included in the study. All patients underwent clinical measurements of height, body weight, body mass index (BMI), waist and hip circumference. Biochemical investigations were done to all subjects including liver function tests; lipid profile; fasting blood glucose; insulin resistance (IR); high sensitivity C reactive protein (hs-CRP); adiponectin and genotyping of adiponectin genes. Abdominal ultrasonography was done to search for fatty liver; to measure subcutaneous fat thickness (SFT) and visceral fat thickness (VFT). Fatty liver was detected in 47 (65.3%) children and in 52 (62.7%) adults. Correlation analysis in both groups revealed that enlarged liver was highly positively correlated to age; BMI, systolic blood pressure (SBP), diastolic blood pressure (DBP); waist circumference; hip circumference, subcutaneous fat thickness (SFT) and Visceral fat thickness (VFT), alanine aminotransferase (ALT), aspartate aminotransferase/alanine aminotransferase (AST/ALT). In addition in adults to fasting blood glucose, cholesterol, triglycerides (TG), low density lipoprotein (LDL), IR and hs-CRP. Homozygous T adiponectin genotype at position +276 was significantly increased among children with enlarged liver size and hs-CRP. NAFLD affects a substantial portion of adults and children; it is associated with the metabolic syndrome.  相似文献   

8.
PPARdelta differs from the other two PPAR isotypes (alpha and gamma) by its more wide-spread tissue-specific expression pattern, its involvement in developmental processes and its profound impact on muscle and heart fat metabolism. Activation of PPARdelta modulates inflammatory responses of macrophages and is linked to altered lipoprotein metabolism, most importantly a significant raise of HDL cholesterol. PPARdelta activation in the liver decreases hepatic glucose output, thereby contributing to improved glucose tolerance and insulin sensitivity. Several studies have shown that PPARdelta polymorphisms are associated with plasma lipid levels, body mass index and the risk for diabetes and coronary heart disease. These findings support that high affinity PPARdelta agonists may be promising drugs of the future to treat the metabolic syndrome which is an expanding overweight-related health threat characterized by insulin resistance, hyperglycemia, dyslipidemia, hypertension, and accelerated atherosclerosis.  相似文献   

9.
Beneficial effects of subcutaneous fat transplantation on metabolism   总被引:2,自引:0,他引:2  
Subcutaneous (SC) and visceral (VIS) obesity are associated with different risks of diabetes and the metabolic syndrome. To elucidate whether these differences are due to anatomic location or intrinsic differences in adipose depots, we characterized mice after transplantation of SC or VIS fat from donor mice into either SC or VIS regions of recipient mice. The group with SC fat transplanted into the VIS cavity exhibited decreased body weight, total fat mass, and glucose and insulin levels. These mice also exhibited improved insulin sensitivity during hyperinsulinemic-euglycemic clamps with increased whole-body glucose uptake, glucose uptake into endogenous fat, and insulin suppression of hepatic glucose production. These effects were observed to a lesser extent with SC fat transplanted to the SC area, whereas VIS fat transplanted to the VIS area was without effect. These data suggest that SC fat is intrinsically different from VIS fat and produces substances that can act systemically to improve glucose metabolism.  相似文献   

10.
Abstract

Metabolic syndrome is characterized with abdominal obesity, insulin resistance, dyslipidemia and hepatic dysfunction. Glycogen synthase kinase-3β (GSK-3β) expression has been observed in adipose tissues in obese and diabetic humans, and in rodents. The aim of study was to investigate role of GSK-3β in modulation of metabolic alterations in alcoholic fed rats. Male Wistar albino rats (180–220?g) were used. High fat diet (HFD) for 8 weeks and alcohol (2%) from third to eighth week were given. Lithium chloride (LiCl), a GSK-3β inhibitor (60?mg/kg) was used orally from third to eighth week. HFD treatment caused significant (p?<?0.05) increase in the percentage of body weight gain, BMI, Lee index, different fat pads, liver weights, serum glucose, leptin, triglyceride, LDL, VLDL, cholesterol, alanine transaminase, aspartate transaminase, tissue thio-barbituric acid reactive substances, nitrate/nitrite and significant decrease in food intake (g), serum HDL and tissue GSH in HFD control rats, as compared to normal control (NC). Administration of alcohol (2%) ad libitum potentiated the effect of normal and HFD, respectively, in NC and HFD control rats, respectively. Administration of LiCl produced significant amelioration in biochemical and pathological changes caused in the form of metabolic syndrome in HFD alone and HFD and alcohol-treated rats. The histological observations also showed similar findings in liver tissue. It may be concluded that inactivation of GSK-3β consequently leads to increased leptin and insulin sensitivity as evidenced by the reversal of alterations caused due to metabolic syndrome in rodents fed with HFD and mild alcohol.  相似文献   

11.
High-protein diets have been shown to promote weight loss, to improve glucose homeostasis and to increase energy expenditure and fat oxidation. We aimed to study whether leucine supplementation is able to mimic the alleviating effects of high-protein diets on metabolic syndrome parameters in mice fed high-fat diet.Male C57BL/6 mice were fed for 20 weeks with semisynthetic high-fat diets (20% w/w of fat) containing either an adequate (10% protein, AP) or high (50% protein, HP) amount of whey protein, or an AP diet supplemented with l-leucine corresponding to the leucine content of the HP diet (6% leucine, AP+L). Body weight and composition, energy expenditure, glucose tolerance, hepatic triacylglycerols (TG), plasma parameters as well as expression levels of mRNA and proteins in different tissues were measured. HP feeding resulted in decreased body weight, body fat and hepatic TG accumulation, as well as increased insulin sensitivity compared to AP. This was linked to an increased total and resting energy expenditure (REE), decreased feed energy efficiency, increased skeletal muscle (SM) protein synthesis, reduced hepatic lipogenesis and increased white fat lipolysis. Leucine supplementation had effects that were intermediate between HP and AP with regard to body composition, liver TG content, insulin sensitivity, REE and feed energy efficiency, and similar effects as HP on SM protein synthesis. However, neither HP nor AP+L showed an activation of the mammalian target of rapamycin pathway in SM. Leucine supplementation had no effect on liver lipogenesis and white fat lipolysis compared to AP. It is concluded that the essential amino acid leucine is able to mimic part but not all beneficial metabolic effects of HP diets.  相似文献   

12.
13.
High fat diet (HFD) is a common cause of metabolic syndrome and type 2 diabetes mellitus. Published data showed that HFD and subsequent dyslipidemia are major triggers for oxidative stress. Forty-eight male Sprague–Dawley rats, weighing 170–200 g, were divided into six groups: control, control with vitamin E (100 mg/kg/day, i.p.), control with simvastatin (SIM) (10 mg/kg of body weight/day), HFD, HFD with vitamin E, and HFD with SIM. Standard and high cholesterol diets were given for 15 weeks and SIM and vitamin E were added in the last 4 weeks. In all rats, serum vitamin E, total cholesterol (TC), triglycerides (TG), low (LDL) and high (HDL) density lipoproteins, alanine (ALT) and aspartate (AST) transaminases, alkaline phosphatase (ALP), and gamma glutamyl transpeptidase (GGT) as well as cardiac and hepatic thiobarbituric acid-reactive substances (TBARS) and antioxidants (reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT)) were measured. Also, electrocardiogram (ECG) was recorded. HFD significantly increased QTc interval, heart rate (HR), serum TC, TG, LDL, ALT, AST, ALP, GGT, liver TG, and cardiac and hepatic TBARS but decreased antioxidants and HDL, while SIM decreased HR, liver TG, serum TC, TG, and LDL and increased HDL in HFD rats. Vitamin E had no effect. Moreover, SIM and vitamin E decreased QTc interval, serum ALT, AST, ALP, GGT, and cardiac and hepatic TBARS and increased antioxidants in HFD rats. Histopathological observations confirm the biochemical parameters. SIM and vitamin E slow progression of hypercholesterolemia-induced oxidative stress in liver and heart and improve their functions.  相似文献   

14.
Dyslipoproteinaemia is a cardinal feature of the metabolic syndrome that accelerates atherosclerosis. It is usually characterised by high plasma concentrations of triglyceride-rich and apolipoprotein (apo) B-containing lipoproteins, with depressed concentrations of high-density lipoprotein (HDL). Dysregulation of lipoprotein metabolism in these subjects may be due to a combination of overproduction of very-low-density lipoprotein (VLDL) apoB-100, decreased catabolism of apoB-containing particles, and increased catabolism of HDL apoA-I particles. These abnormalities may be consequent on a global metabolic effect of insulin resistance that increases the flux of fatty acids from adipose tissue to the liver, the accumulation of fat in the liver, the increased hepatic secretion of VLDL-triglycerides and the remodelling of both low-density lipoprotein (LDL) and HDL particles in the circulation; perturbations in lipolytic enzymes and lipid transfer proteins contribute to the dyslipidaemia. Our in vivo understanding of the kinetic defects in lipoprotein metabolism in the metabolic syndrome has been chiefly achieved by ongoing developments in the use of stable isotope tracers and mathematical modelling. Knowledge of the pathophysiology of lipoprotein metabolism in the metabolic syndrome is well complemented by extensive cell biological data. Nutritional modifications and increased physical exercise may favourably alter lipoprotein transport in the metabolic syndrome by collectively decreasing the hepatic secretion of VLDL-apoB and the catabolism of HDL apoA-I, as well as by increasing the clearance of LDL-apoB. Pharmacological treatments, such as statins, fibrates or fish oils, can also correct the dyslipidaemia by several mechanisms of action including decreased secretion and increased catabolism of apoB, as well as increased secretion and decreased catabolism of apoA-I. The complementary mechanisms of action of lifestyle and drug therapies support the use of combination regimens to treat dyslipidaemia in the metabolic syndrome.  相似文献   

15.

Objective:

Gender and sex hormones influence the development of obesity and metabolic syndrome in humans and Göttingen minipigs. The aim of this study was to investigate possible gender differences in the metabolic response to a high energy diet in young Göttingen minipigs as a model of childhood/adolescent obesity.

Design and Methods:

Nine‐week‐old male and female Göttingen minipigs were fed restrictedly on either a low energy diet (LED) or a high energy diet (HED) for 4 months (n = 5‐7). Parameters of interest were fat percentage, visceral fat mass, plasma lipids and glucose tolerance, insulin resistance, and β‐cell function measured by oral and intravenous glucose tolerance tests.

Results:

At 11 to 12 weeks of age, after 2 weeks diet feeding, both genders on HED had increased fat percentage, glucose intolerance, decreased insulin sensitivity, and increased plasma levels of cholesterol and triglycerides (TGs). There was no gender difference in body weight (BW) or fat percentage, but males had lower glucose tolerance than females. After 3.5 to 4 months on the diets, the pigs on HED had increased BW, fat percentage, and visceral fat mass and were more glucose intolerant and insulin resistant than pigs on LED. Also increases in plasma cholesterol and TG levels were observed in the pigs on HED. Females had higher fat percentage and more visceral fat, were more insulin resistant, and had a more unfavorable lipid profile compared with males independent of diet.

Conclusion:

In conclusion, the young Göttingen minipig, and especially the female gender, seems to be a potential model for diet induced childhood/adolescent obesity and metabolic syndrome.  相似文献   

16.
Objective: To assess whether insulin sensitivity can explain the associations of leg‐fat mass (LFM) and trunk‐fat mass (TFM) with the cardiovascular disease (CVD) risk profile in healthy European men and women. Methods and Procedures: We studied 142 healthy men and women of a multicenter European study on insulin sensitivity, aged 30–60 years, from the centres in Hoorn, the Netherlands and Rome, Italy. Whole‐body dual‐energy X‐ray absorptiometry (DXA) was used to determine fat and lean soft tissue mass in the trunk and legs. Fasting glucose, insulin, and lipid levels were measured. Insulin sensitivity (M/I‐ratio) was measured during a euglycemic‐hyperinsulinemic clamp. Associations between fat distribution and CVD risk factors were studied with linear regression analyses with adjustment for other body compartments, and subsequent adjustment for insulin sensitivity. Results: In men, larger LFM was significantly and independently associated with lower triglyceride levels (TGs) and higher high‐density lipoprotein (HDL) cholesterol (P < 0.10) and tended to be associated also with lower low‐density lipoprotein (LDL) cholesterol, and lower fasting insulin levels. In women, larger LFM was associated with favorable values of all CVD risk factors, although the associations were not statistically significant. In both sexes, larger TFM was independently and significantly associated with unfavorable values of most CVD risk factors, and most associations did not markedly change after adjustment for insulin sensitivity. Discussion: In a relatively young and healthy European population, larger LFM is associated with a lower and TFM with a higher cardiovascular and metabolic risk, which can not be explained by insulin sensitivity.  相似文献   

17.
Objective: The objective was to determine the prevalence and heritability of obesity and risk factors associated with metabolic syndrome (MS) in a pedigreed colony of vervet monkeys. Design: A cross‐sectional study of plasma lipid and lipoprotein concentrations, glycemic indices, and morphometric measures with heritability calculated from pedigree analysis. A selected population of females was additionally assessed for insulin sensitivity and glucose tolerance. Subjects: All mature male (n = 98), pregnant (n = 40) and non‐pregnant female (n = 157) vervet monkeys were included in the study. Seven non‐pregnant females were selected on the basis of high or average glycated hemoglobin (GHb) for further characterization of carbohydrate metabolism. Measurements: Morphometric measurements included body weight, length, waist circumference, and calculated BMI. Plasma lipids [total cholesterol (TC), triglycerides (TG), high‐density lipoprotein cholesterol (HDL‐C)] and glycemic measures (fasting blood glucose, insulin, and GHb) were measured. A homeostasis model assessment index was further reported. Glucose tolerance testing and hyperinsulinemic‐euglycemic clamps were performed on 7 selected females. Conclusion: Vervet monkeys demonstrate obesity, insulin resistance, and associated changes in plasma lipids even while consuming a low‐fat (chow) diet. Furthermore, these parameters are heritable. Females are at particular risk for central obesity and an unfavorable lipid profile (higher TG, TC, and no estrogen‐related increase in HDL‐C). Selection of females by elevated GHb indicated impaired glucose tolerance and was associated with central obesity. This colony provides a unique opportunity to study the development of obesity‐related disorders, including both genetic and environmental influences, across all life stages.  相似文献   

18.
The metabolic syndrome, as defined by the International Diabetes Federation, was investigated in five large, extended, highly consanguineous, healthy Omani Arab families of a total of 1277 individuals. Heritability (h2) of the phenotypic abnormalities that make up the syndrome and other related traits was estimated by variance decomposition method using SOLAR software. The overall prevalence of the syndrome was 23%. The prevalence of abnormalities making the syndrome in a descending order were: obligatory waist circumference, hypertension, raised fasting blood glucose, low serum high-density lipoprotein (HDL), and raised serum triglycerides (TGs). Highly significant, but widely spread, h2 values were obtained for: height (0.68), weight (0.68), BMI (0.68), serum HDL (0.63), serum leptin (0.55), percentage body fat (0.53), total serum cholesterol (0.53), fasting serum insulin (0.51), homeostasis model assessment-insulin resistance index (0.48), serum TG (0.43), waist circumference (0.40), diastolic blood pressure (0.38), and 2-hour glucose level (0.17), whereas for the metabolic syndrome itself, h2 was 0.38. The wide spread of h2 results (0.07 to 0.68) indicates that some determinants, such as weight, BMI, and HDL level, are under significant genetic influence among the Omani Arabs. Other determinants such as insulin resistance, abdominal obesity, diastolic blood pressure, and TG levels seem to be more environmentally driven.  相似文献   

19.
Insulin resistance increases cardiovascular risk of obese patients. Triglyceride to high‐density lipoprotein cholesterol ratio (TG/HDL) ≥3.0 (in mg/dl) is a marker of insulin resistance in overweight persons. We aimed at assessing cardiovascular risk profile in 301 overweight elderly Neapolitan outpatients, according to TG/HDL ratio and metabolic syndrome (MS), diagnosed by National Cholesterol Education Program (NCEP) and International Diabetes Federation (IDF) criteria. TG/HDL ratio was ≥3.0 in 97 patients (group A) and <3.0 in 204 (group B). Overall, 93–97% of group A patients and 38–51% of group B patients had MS, depending on the diagnostic criterion. Group A patients with MS had significantly higher waist‐to‐hip ratio, total and non‐HDL cholesterol than group B patients with MS. In group B, MS and non‐MS patients had similar waist‐to‐hip ratio, blood pressure, total and non‐HDL cholesterol. Ten year coronary risk, calculated by the Framingham equations (n = 243), was 10.3 ± 5% in group B, non‐MS patients; 13.1 ± 6% in group B, MS patients; 19.9 ± 8% in group A (F = 32.8; P < 0.001). At the multiple regression analysis, TG/HDL ratio was associated with coronary risk (r2 = 0.227) more closely than gender, blood pressure, waist‐to‐hip ratio, non HDL cholesterol, and MS considered as a whole. A separate regression analysis showed that the logarithmically transformed TG/HDL ratio, an index of the HDL cholesterol esterification rate, is also associated with coronary risk (r2 = 0.252). Thus, TG/HDL ratio could help to characterize high‐risk overweight patients deserving a special therapeutic effort. Cardiovascular risk profile of insulin‐sensitive patients, identified by lower values of this parameter, is only moderately affected by MS.  相似文献   

20.
Objective: Adiponectin, a novel adipokine with antiinflammatory and insulin‐sensitizing properties, has an important role in glucose metabolism and is negatively correlated with body fat amount in adults. The purpose of this study was to evaluate the association of plasma adiponectin level with metabolic risk profiles and insulin resistance status among Taiwanese children. Research Methods and Procedures: We enrolled 1248 children (608 boys and 640 girls) to ascertain their demographic, anthropometric, and cardiovascular risk factors distribution in Taipei. We measured plasma insulin, adiponectin, and leptin levels by radioimmunoassay (Linco Research Inc, St. Charles, MO). We calculated an insulin resistance index (IRI) using the Homeostasis Model Assessment model and also calculated an insulin resistance syndrome (IRS) summary score for each individual by adding the quartile ranks from the distribution of systolic blood pressure, serum triglyceride, high‐density lipoprotein‐cholesterol (HDL‐C) (inverse), and insulin levels. Results: In general, the boys had larger BMI, higher systolic blood pressure, serum total cholesterol, and triglyceride, and lower plasma leptin and adiponectin levels than girls. Plasma adiponectin levels were correlated negatively with BMI, leptin, insulin, IRI, and IRS summary score but positively correlated with HDL‐C in both boys and girls. In multivariate regression analyses, adiponectin was negatively associated with insulin (girls only), IRI (girls only), and IRS score, and positively associated with HDL‐C in both genders even after adjusting for age, BMI, plasma leptin level, and other potential confounders. Discussion: These data suggest that plasma adiponectin levels were negatively associated with metabolic risk profiles that may have played a protective role in the development of insulin resistance among Taiwanese school children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号