首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four diastereomeric‐Leu‐Leu‐Aib‐Leu‐Leu‐Aib‐peptides, Boc‐D ‐Leu‐L ‐Leu‐Aib‐L ‐Leu‐L ‐Leu‐Aib‐OMe (1), Boc‐L ‐Leu‐D ‐Leu‐Aib‐L ‐Leu‐L ‐Leu‐Aib‐OMe (2), Boc‐L ‐Leu‐L ‐Leu‐Aib‐D ‐Leu‐L ‐Leu‐Aib‐OMe (3), and Boc‐L ‐Leu‐L ‐Leu‐Aib‐L ‐Leu‐D ‐Leu‐Aib‐OMe (4), were synthesized. The crystals of the four hexapeptides were characterized by X‐ray crystallographic analysis. Two diastereomeric hexapeptides 1 and 2 having D ‐Leu(1) or D ‐Leu(2) were folded into right‐handed (P) 3 10 ‐helical structures, while peptide 3 having D ‐Leu(4) was folded into a turn structure nucleated by type III′ and I$' \bf{\beta}$ ‐turns, and peptide 4 having D ‐Leu(5) was folded into a left‐handed (M) 3 10 ‐helical structure. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
High inhibits and low stimulates bone resorption, which mediates part of the effect of chronic acidosis or acid feeding on bone. Soluble adenylyl cyclase (sAC) is a bicarbonate sensor that can potentially mediate the effect of bicarbonate on osteoclasts. Osteoclasts were incubated in 0, 12, and 24 mM at pH 7.4 for 7–8 days and assayed for tartrate‐resistant acid phosphatase (TRAP) and vacuolar‐ATPase expression, and H+ accumulation. Total number and area of TRAP (+) multinucleated osteoclasts was decreased by in a dose‐dependent manner. V‐ATPase expression and H+ accumulation normalized to cell cross‐sectional area or protein were not significantly changed. The ‐induced inhibition of osteoclast growth and differentiation was blocked by either 2‐hydroxyestradiol, an inhibitor of sAC or sAC knockdown by sAC specific siRNA. The model of inhibiting osteoclast via sAC was further supported by the fact that the dose‐response on osteoclasts is flat when cells were saturated with 8‐bromo‐cAMP, a permeant cAMP analog downstream from sAC thus simulating sAC activation. To confirm our in vitro findings in intact bone, we developed a 1‐week mouse calvaria culture system where osteoclasts were shown to be viable. Bone volume density (BV/TV) determined by micro‐computed tomography (µCT), was higher in 24 mM compared to 12 mM treated calvaria. This effect on BV/TV was blocked by 2‐hydroxyestradiol. In summary, sAC mediates the inhibition of osteoclast function by , by acting as a sensor. J. Cell. Physiol. 220: 332–340, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Arsenite (As(III)) is the predominant arsenic (As) species in reducing environments. As(III) is less strongly adsorbed than As(V) at circumneutral pH conditions by common non‐iron metal oxides in sediments such as those of aluminum. Therefore, oxidation of As(III) to As(V) could contribute to an improved immobilization of As and thus help mitigate As contamination in groundwater. Microbial oxidation of As(III) is known to readily under aerobic conditions, however, the dissolved oxygen (O2) concentration in groundwater may be limited due to the poor solubility of O2 and its high chemical reactivity with reduced compounds. Nitrate (${\rm NO}_{3}^{{-} } $ ), can be considered as an alternative electron acceptor, which can support oxidation of As(III) to As(V) by denitrifying bacteria. In this study, two up‐flow sediment columns packed with activated alumina (AA) were utilized to demonstrate the role of denitrification on the oxidation of As(III) to As(V) and its contribution to improved As adsorption onto AA. One column was supplied with ${\rm NO}_{3}^{{-} } $ (C1) and its performance was compared with a control column lacking ${\rm NO}_{3}^{{-} } $ (C2). During most of the operation when the pH was in the circumneutral range (days 50–250), the release of arsenic was greater from C2 compared to C1. The effluent As concentrations started increasing on days 60 and 100 in C2 and C1, respectively. Complete breakthrough started on day 200 in C2; whereas in C1, complete breakthrough was never achieved. The effluent and solid phase As speciation was dominated by As(V) in C1, indicating the occurrence of As(III) oxidation due to ${\rm NO}_{3}^{{-} } $ ; whereas in C2, only As(III) was dominant. This study illustrates a bioremediation or natural attenuation process based on anoxic microbial ${\rm NO}_{3}^{{-} } $ ‐dependent oxidation of As(III) to more readily adsorbed As(V) as a means to enhance the immobilization of As on alumina oxide particles in subsurface environments. Biotechnol. Bioeng. 2010;107: 786–794. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
A novel benzoylphloroglucinol derivative, garcimultiflorone G ( 1 ), was isolated from the fruits of Garcinia multiflora. The structure of 1 was determined through extensive 1D‐ and 2D‐NMR, and MS analyses. Garcimultiflorone G ( 1 ) showed inhibitory effects against superoxide anion (O$\rm{{_{2}^{{^\cdot} -}}}$ ) generation and elastase release by human neutrophils in response to formyl‐L ‐methionyl‐L ‐leucyl‐L ‐phenylalanine/cytochalasin B (fMLP/CB), with IC50 values of 6.97±1.56 and 11.70±1.58 μM , respectively.  相似文献   

5.
Indoleamine 2,3‐dioxygenase (IDO) is the rate‐limiting enzyme in the kynurenine (Kyn) pathway of tryptophan (Trp) metabolism. IDO is immunosuppressive and is induced by inflammation in macrophages and dendritic cells (DCs). Previous studies have shown the serum Kyn/Trp levels in patients with hemolytic anemia to be notably high. In the present study, we demonstrated that hemoglobin (Hb), but not hemin or heme‐free globin (Apo Hb), induced IDO expression in bone marrow‐derived myeloid DCs (BMDCs). Hb induced the phosphorylation and degradation of IκBα. Hb‐induced IDO expression was inhibited by inhibitors of PI3‐kinase (PI3K), PKC and nuclear factor (NF)‐κB. Hb translocated both RelA and p52 from the cytosol to the nucleus and induced the intracellular generation of reactive oxygen species (ROS). Hb‐induced IDO expression was inhibited by anti‐oxidant N‐acetyl‐L ‐cysteine (NAC) or mixtures of SOD and catalase, however, IDO expression was enhanced by 3‐amino‐1,2,4‐triazole, an inhibitor of catalase, suggesting that the generation of ROS such as O, H2O2, and hydroxyl radical is required for the induction of IDO expression. The generation of ROS was inhibited by a PKC inhibitor, and this action was further enhanced by addition of a PI3K inhibitor. Hb induced Akt phosphorylation, which was inhibited by a PI3K inhibitor and enhanced by a PKC inhibitor. These results suggest that the activation of NF‐κB through the PI3K‐PKC‐ROS and PI3K‐Akt pathways is required for the Hb‐induced IDO expression in BMDCs. J. Cell. Biochem. 108: 716–725, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Agrimonia pilosa Ledeb is used as the tonic for asthenia and fatigue in China. Considering that the energizing effect might be correlated with antioxidant properties, we investigated the antioxidant activities of aqueous extract (AE) from Agrimonia pilosa Ledeb by assessing radical‐scavenging and anti‐lipid‐peroxidation abilities. We found that AE shows a moderate antioxidant activity to scavenge DPPH., O , and .OH and inhibit β‐carotene bleaching with IC50 values of 13.0, 33.2, 351, and 11.9 μg/ml, respectively, while its AcOEt‐soluble fraction (ESF) and BuOH soluble fraction (BSF) exhibit remarkable efficiencies. The ESF's IC50 values of scavenging DPPH., O , and .OH, and inhibiting β‐carotene bleaching are 5.6, 5.8, 171, and 7.6 μg/ml, respectively, and those of BSF are 7.5, 8.4, 82.0, and 6.2 μg/ml, respectively. In addition, we found that there is a significant correlation between total phenol content and the antioxidant activity determined by O and .OH scavenging, and β‐carotene‐bleaching assays. Furthermore, HPLC analysis revealed the presence of quercetin, hyperoside, quercitrin, taxifoliol, luteolin‐7‐Oβ‐D ‐glucopyranoside, and rutin in Agrimonia pilosa Ledeb . Thus, we suggest that the extracts from Agrimonia pilosa Ledeb , could be considered as natural antioxidant sources and dietary nutritional supplements to prevent oxidation‐related diseases.  相似文献   

7.
Fast growth of industrial microorganisms, such as Corynebacterium glutamicum, is a direct amplifier for the productivity of any growth coupled or decoupled production process. Recently, it has been shown that C. glutamicum when grown in a novel picoliter bioreactor (PLBR) exhibits a 50% higher growth rate compared to a 1 L batch cultivation [Grünberger et al. (2012) Lab Chip]. We here compare growth of C. glutamicum with glucose as substrate at different scales covering batch cultivations in the liter range down to single cell cultivations in the picoliter range. The maximum growth rate of standard batch cultures as estimated from different biomass quantification methods is ${\hat {\mu }} = 0.42\pm 0.03\,{\rm h}^{- 1} $ even for microtiter scale cultivations. In contrast, growth in a microfluidic perfusion system enabling analysis of single cells reproducibly reveals a higher growth rate of ${\hat {\mu }} = 0.62\pm 0.02\,{\rm h}^{- 1} $ . When in the same perfusion system cell‐free supernatant from exponentially grown shake flask cultures is used the growth rate of single cells is reduced to ${\hat {\mu }} = 0.47\pm 0.02\,{\rm h}^{- 1} $ . Likewise, when fresh medium is additionally supplied with 5 mM acetate, a growth rate of ${\hat {\mu }} = 0.51\pm 0.01\,{\rm h}^{- 1} $ is determined. These results prove that higher growth rates of C. glutamicum than known from typical batch cultivations are possible, and that growth is definitely impaired by very low concentrations of byproducts such as acetate. Biotechnol. Bioeng. 2013; 110: 220–228. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Cystathionine β‐lyase (CBL) catalyzes the hydrolysis of L ‐cystathionine (L ‐Cth) to produce L ‐homocysteine, pyruvate, and ammonia. A series of active‐site mutants of Escherichia coli CBL (eCBL) was constructed to investigate the roles of residues R58, R59, D116, W340, and R372 in catalysis and inhibition by aminoethoxyvinylglycine (AVG). The effects of these mutations on the kcat/K for the β‐elimination reaction range from a reduction of only 3‐fold for D116A and D116N to 6 orders of magnitude for the R372L and R372A mutants. The order of importance of these residues for the hydrolysis of L ‐Cth is: R372 >> R58 > W340 ≈ R59 > D116. Comparison of the kinetic parameters for L ‐Cth hydrolysis with those for inhibition of eCBL by AVG demonstrates that residue R58 tethers the distal carboxylate group of the substrate and confirms that residues W340 and R372 interact with the α‐carboxylate moiety. The increase in the pKa of the acidic limb and decrease in the pKa of the basic limb of the kcat/K versus pH profiles of the R58K and R58A mutants, respectively, support a role for this residue in modulating the pKa of an active‐site residue.  相似文献   

9.
There is increasing evidence showing that ammonia‐oxidizing bacteria (AOB) are major contributors to N2O emissions from wastewater treatment plants (WWTPs). Although the fundamental metabolic pathways for N2O production by AOB are now coming to light, the mechanisms responsible for N2O production by AOB in WWTP are not fully understood. Mathematical modeling provides a means for testing hypotheses related to mechanisms and triggers for N2O emissions in WWTP, and can then also become a tool to support the development of mitigation strategies. This study examined the ability of four mathematical model structures to describe two distinct mechanisms of N2O production by AOB. The production mechanisms evaluated are (1) N2O as the final product of nitrifier denitrification with NO as the terminal electron acceptor and (2) N2O as a byproduct of incomplete oxidation of hydroxylamine (NH2OH) to NO. The four models were compared based on their ability to predict N2O dynamics observed in three mixed culture studies. Short‐term batch experimental data were employed to examine model assumptions related to the effects of (1) NH concentration variations, (2) dissolved oxygen (DO) variations, (3) NO accumulations and (4) NH2OH as an externally provided substrate. The modeling results demonstrate that all these models can generally describe the NH, NO, and NO data. However, none of these models were able to reproduce all measured N2O data. The results suggest that both the denitrification and NH2OH pathways may be involved in N2O production and could be kinetically linked by a competition for intracellular reducing equivalents. A unified model capturing both mechanisms and their potential interactions needs to be developed with consideration of physiological complexity. Biotechnol. Bioeng. 2013; 110: 153–163. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Cystathionine γ‐synthase (CGS) catalyzes the condensation of O‐succinyl‐L ‐homoserine (L ‐OSHS) and L ‐cysteine (L ‐Cys), to produce L ‐cystathionine (L ‐Cth) and succinate, in the first step of the bacterial transsulfuration pathway. In the absence of L ‐Cys, the enzyme catalyzes the futile α,γ‐elimination of L ‐OSHS, yielding succinate, α‐ketobutyrate, and ammonia. A series of 16 site‐directed variants of Escherichia coli CGS (eCGS) was constructed to probe the roles of active‐site residues D45, Y46, R48, R49, Y101, R106, N227, E325, S326, and R361. The effects of these substitutions on the catalytic efficiency of the α,γ‐elimination reaction range from a reduction of only ~2‐fold for R49K and the E325A,Q variants to 310‐ and 760‐fold for R361K and R48K, respectively. A similar trend is observed for the kcat/K of the physiological, α,γ‐replacement reaction. The results of this study suggest that the arginine residues at positions 48, 106 and 361 of eCGS, conserved in bacterial CGS sequences, tether the distal and α‐carboxylate moieties, respectively, of the L ‐OSHS substrate. In contrast, with the exception of the 13‐fold increase observed for R106A, the K is not markedly affected by the site‐directed replacement of the residues investigated. The decrease in kcat observed for the S326A variant reflects the role of this residue in tethering the side chain of K198, the catalytic base. Although no structures exist of eCGS bound to active‐site ligands, the roles of individual residues is consistent with the structures inhibitor complexes of related enzymes. Substitution of D45, E325, or Y101 enables a minor transamination activity for the substrate L ‐Ala.  相似文献   

11.
Screening, isolation and in vitro assays have been used for characterization of antioxidative peptides derived from food proteins, and incompatible deductions of structural characteristics derived from the isolated peptides have been brought forward. However, there is still little information concerning the structure‐activity relationship of antioxidative peptides. QSAR modeling was performed, respectively, on synthetic tripeptides and tetrapeptides related to LLPHH. According to cumulative squared multiple correlation coefficients (R2), cumulative cross‐validation coefficients (Q2) and relative standard deviation for calibration set (RSDc), two credible models for tripeptide and tetrapeptide databases, respectively, have been built with partial least squares (PLS) regression (R2 for models of tripeptide and tetrapeptide are 0.744 and 0.943, Q2 are 0.631 and 0.414, and RSDc are 0.323 and 0.111, respectively). Meanwhile, according to the cumulative multiple correlation coefficient for the predictive set ($R_{\rm {ext}}^{2}$ ) and the relative standard deviation for the predictive set (RSDp), the predictive ability of the model for tripeptides also is excellent ($R_{\rm {ext}}^{2}$ and RSDp are 0.719 and 0.450, respectively). Hydrogen bond property and hydrophilicity of the amino acid residue next to the C‐terminus, and the hydrophobicity as well as electronic propertyof the N‐terminus are more significant; meanwhile, the electronic property of the C‐terminus is beneficial for antioxidant activity. The structural characteristics we found are very useful in understanding and predicting the peptide structures responsible for activity and development of functional foods with peptides as active compounds, or antioxidative peptides as alternatives to other antioxidants. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Endurance training improves cardiac function and protects against heart disease. The rodent intensity‐controlled running model replicates endurance exercise in humans and can be used to investigate molecular adaptations in the heart. Rats (n = 6, 280 ± 3 g) performed exercise tests to measure their peak oxygen uptake ( ) and training was prescribed at 70–75% for 30 min, 4 days/wk. Hearts were isolated 4 h after a final test and left ventricle proteomes compared to weight‐matched control animals (n = 6, 330 ± 2 g) using differential analysis of 2‐D gels. Proteins were identified by searching MS and MS/MS spectra against Swiss‐Prot using MASCOT (www.matrixscience.com). Average increased 23% (p = 0.008) over the 6‐week regimen and 23 gel spots differed (p<0.05) between exercised and control hearts. Expression of myofibrillar proteins (e.g. α‐myosin heavy chain and cardiac α‐actin) and proteins associated with fatty acid metabolism (e.g. heart fatty acid binding protein, acetyl coenzyme A dehydrogenase and mitochondrial thioesterase‐1) increased. In addition, this work discovered a novel increase in phosphorylation of heat shock protein 20 at serine 16. Previously this modification has been associated with improved cardiomyocyte contractility and protection against apoptosis.  相似文献   

13.
Living microbial cells are considered to be the catalyst of choice for selective terpene functionalization. However, such processes often suffer from side product formation and poor substrate mass transfer into cells. For the hydroxylation of (S)‐limonene to (S)‐perillyl alcohol by Pseudomonas putida KT2440 (pGEc47ΔB)(pCom8‐PFR1500), containing the cytochrome P450 monooxygenase CYP153A6, the side products perillyl aldehyde and perillic acid constituted up to 26% of the total amount of oxidized terpenes. In this study, it is shown that the reaction rate is substrate‐limited in the two‐liquid phase system used and that host intrinsic dehydrogenases and not CYP153A6 are responsible for the formation of the undesired side products. In contrast to P. putida KT2440, E. coli W3110 was found to catalyze perillyl aldehyde reduction to the alcohol and no oxidation to the acid. Furthermore, E. coli W3110 harboring CYP153A6 showed high limonene hydroxylation activities (7.1 U g). The outer membrane protein AlkL was found to enhance hydroxylation activities of E. coli twofold in aqueous single‐phase and fivefold in two‐liquid phase biotransformations. In the latter system, E. coli harboring CYP153A6 and AlkL produced up to 39.2 mmol (S)‐perillyl alcohol L within 26 h, whereas no perillic acid and minor amounts of perillyl aldehyde (8% of the total products) were formed. In conclusion, undesired perillyl alcohol oxidation was reduced by choosing E. coli's enzymatic background as a reaction environment and co‐expression of the alkL gene in E. coli represents a promising strategy to enhance terpene bioconversion rates. Biotechnol. Bioeng. 2013; 110: 1282–1292. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The fruit of Tetradium ruticarpum is widely used in healthcare products for the improvement of blood circulation, headache, abdominal pain, amenorrhea, chill limbs, migraine, and nausea. A new quinolone, 2‐[(6Z,9Z)‐pentadeca‐6,9‐dienyl]quinolin‐4(1H)‐one ( 1 ), has been isolated from the fruits of T. ruticarpum, together with eleven known compounds. The structure of the new compound was determined by NMR and MS analyses. Rutaecarpine ( 4 ), evodiamine ( 5 ), and skimmianine ( 7 ) exhibited inhibition (IC50≤20.9 μM ) of O$\rm{{_{2}^{{^\cdot} -}}}$ generation by human neutrophils in response to N‐formyl‐L ‐methionyl‐L ‐leucyl‐L ‐phenylalanine/cytochalasin B (fMLP/CB). In addition, 1 , evocarpine ( 2 ), 4, 7 , and evodol ( 8 ) inhibited fMLP/CB‐induced elastase release with IC50 values ≤14.4 μM .  相似文献   

15.
Two new biphenyl‐type neolignan derivatives, 2‐[2‐(hydroxymethyl)‐1‐benzofuran‐5‐yl]‐4‐(prop‐2‐en‐1‐yl)phenol ( 1 ) and 2′‐ethoxy‐5,5′‐di(prop‐2‐en‐1‐yl)biphenyl‐2‐ol ( 2 ), were isolated from the twigs of Magnolia denudata, together with six known compounds ( 3 – 8 ). The structures of 1 and 2 were determined through extensive 1D‐ and 2D‐NMR and mass‐spectrometric analyses. Magnolol ( 6 ) and honokiol ( 7 ) exhibited potent inhibition (IC50 values=4.4±0.2 and 0.71±0.13 μg/ml, resp.) of O$\rm{{_{2}^{{^\cdot} -}}}$ generation by human nutrophils in response to N‐formyl‐L ‐methionyl‐L ‐leucyl‐L ‐phenylalanine/cytochalasin B (fMLP/CB). In addition, 2‐[2‐(hydroxymethyl)‐1‐benzofuran‐5‐yl]‐4‐(prop‐2‐en‐1‐yl)phenol ( 1 ), 2′‐ethoxy‐5,5′‐di(prop‐2‐en‐1‐yl)biphenyl‐2‐ol ( 2 ), magnolol ( 6 ), and vanillic acid ( 8 ) inhibited fMLP/CB‐induced elastase release with IC50 values=6.4±1.5, 2.4±0.4, 1.5±0.2, and 4.8±0.5 μg/ml, respectively.  相似文献   

16.
Let x1x2x3 … ≤xr be the r smallest observations out of n observations from a location-scale family with density $ \frac{1}{\sigma}f\left({\frac{{x - \mu}}{\sigma}} \right) $ where μ and σ are the location and the scale parameters respectively. The goal is to construct a prediction interval of the form $ \left({\hat \mu + k_1 \hat \sigma,\,\hat \mu + k_2 \hat \sigma} \right) $ for a location-scale invariant function, T(Y) = T(Y1, …, Ym), of m future observations from the same distribution. Given any invariant estimators $ \hat \mu $ and $ \hat \sigma $, we have developed a general procedure for how to compute the values of k1 and k2. The two attractive features of the procedure are that it does not require any distributional knowledge of the joint distribution of the estimators beyond their first two raw moments and $ \hat \mu $ and $ \hat \sigma $ can be any invariant estimators of μ and σ. Examples with real data have been given and extensive simulation study showing the performance of the procedure is also offered.  相似文献   

17.
The expression of cystic fibrosis transmembrane conductance regulator (CFTR) in lymphocytes has been reported for nearly two decades; however, its physiological role remains elusive. Here, we report that co‐culture of lymphocytes with lung epithelial cell line, Calu‐3, promotes epithelial HCO production/secretion with up‐regulated expression of carbonic anhydrase 2 and 4 (CA‐2, CA‐4) and enhanced bacterial killing capability. The lymphocyte‐enhanced epithelial HCO secretion and bacterial killing activity was abolished when Calu3 cells were co‐cultured with lymphocytes from CFTR knockout mice, or significantly reduced by interfering with E‐cadherin, a putative binding partner of CFTR. Bacterial lipopolysaccharide (LPS)‐induced E‐cadherin and CA‐4 expression in the challenged lung was also found to be impaired in CFTR knockout mice compared to that of the wild‐type. These results suggest that the interaction between lymphocytes and epithelial cells may induce a previously unsuspected innate host defense mechanism against bacterial infection by stimulating epithelial HCO production/secretion, which requires CFTR expression in lymphocytes. J. Cell. Physiol. 227: 3887–3894, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G‐protein gated inwardly rectifying potassium channels (Kir3) and directly compared the effects of co‐expression of G‐protein coupled receptor kinase (GRK) and arrestin on agonist‐dependent desensitization of the receptor response. We found, as described previously, that co‐expression of a GRK and an arrestin synergistically increased the rate of agonist‐dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin‐dependent GRK‐independent desensitization of D2R‐Kir3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin‐dependent GRK‐independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist‐dependent desensitization even after GRK co‐expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor.

  相似文献   


19.
Atlantic cod Gadus morhua experienced oxygen deficit () when exposed to oxygen levels below their critical level (c. 73% of pcrit) and subsequent excess post‐hypoxic oxygen consumption (CEPHO) upon return to normoxic conditions, indicative of an oxygen debt. The mean ± s.e . CEPHO: was 6·9 ± 1·5, suggesting that resorting to anaerobic energy production in severe hypoxia is energetically expensive.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号