首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Glycerol 3-phosphate acylation was studied in type II cells isolated from adult rat lung. The process was found to be largely microsomal. In the microsomes phosphatidic acid is the main product of glycerol 3-phosphate acylation. Glycerol-3-phosphate acyltransferase is rate limiting in the phosphatidic acid formation by the microsomes. Type II cell microsomes incorporate palmitoyl and oleoyl residues into phosphatidic acid at an equal rate if palmitoyl-CoA and oleoyl-CoA are added separately. However, if palmitoyl-CoA and oleoyl-CoA are added as an equimolar mixture the unsaturated fatty acyl moiety is incorporated much faster. Under the latter conditions monoenoic species constitute the most abundant products of glycerol 3-phosphate acylation. The microsomes incorporate both palmitoyl and oleoyl residues readily into both the 1- and 2-position of phosphatidic acid, even when palmitoyl-CoA and oleoyl-CoA are added together. Assuming that both phosphatidic acid phosphatase and cholinephosphotransferase do not discriminate against substrates with an unsaturated acyl moiety at the 1-position and a saturated acyl moiety at the 2-position, the last two observations indicate that a considerable percentage of phosphatidylcholine molecules synthesized de novo may have a saturated fatty acid at the 2-position and an unsaturated fatty acid at the 1-position, and that remodeling at the 1-position may be important for the formation of surfactant dipalmitoylphosphatidylcholine. They also indicate that type II cell microsomes are capable of synthesizing the dipalmitoyl species of phosphatidic acid. However, since there is a preference for the acylation of glycerol 3-phosphate with unsaturated fatty acyl residues, the percentage of dipalmitoyl species in the synthesized phosphatidic acid, and thereby the percentage of dipalmitoyl species in the phosphatidylcholine synthesized de novo, will probably depend on the relative availability of the various acyl-CoA species.  相似文献   

2.
The specific activity of lysophosphatidylcholine acyltransferase in sonicated fetal rat lung type II cells was found to be an order of magnitude greater than that of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase. The specific activity of lysophosphatidylcholine acyltransferase in sonicated fetal rat lung type II cells increases towards the end of gestation, whereas that of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase does not show a change. While lysophosphatidylcholine acyltransferase in whole fetal lung homogenate is more active towards oleoyl-CoA than towards palmitoyl-CoA, the enzyme in sonicated fetal type II cells is more active towards palmitoyl-CoA. If measured with palmitoyl-CoA as acyl donor, the specific activity of lysophosphatidylcholine acyltransferase in type II cells is higher than that in whole lung during late gestation. In contrast, the specific activity of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase in type II cells is lower than that in whole lung. These observations indicate that in fetal rat type II cells the deacylation-reacylation cycle is more important for the formation of dipalmitoylphosphatidylcholine than the deacylation-transacylation process.  相似文献   

3.
It is well known that cellular function declines with age. Since phosphatidic acid (PtdOH) biosynthesis is central to the generation of membrane phospholipids, the hypothesis that aging decreases PtdOH biosynthesis was tested. Glycerol-3-phosphate acyltransferase (GPAT) and lysophosphatidic acid acyltransferase (LAT) activities were examined in isolated mitochondria and microsomes from young and old rat liver. The results show that mitochondrial GPAT preference for palmitoyl-CoA over oleoyl-CoA was only observed if albumin or acyl-CoA binding protein (ACBP) were present in the assay in the young rats. Furthermore, mitochondrial GPAT activity was significantly reduced in the presence of albumin and ACBP in aged mitochondria using palmitoyl-CoA as the substrate. These data show, for the first time, that mitochondrial GPAT acyl-CoA preference is due to the presence of a protein that binds acyl-CoAs, not the enzyme itself, and that aging significantly reduces mitochondrial GPAT activity.  相似文献   

4.
Microsomal membrane preparations from rat lung catalyse the incorporation of radioactive linolenic acid from [14C]linolenoyl-CoA into position 2 of sn-phosphatidylcholine. The incorporation was stimulated by bovine serum albumin and free CoA. Free fatty acids in the incubation mixtures were not utilised in the incorporation into complex lipids. Fatty acids were transferred to the acyl-CoA pool during the incorporation of linolenic acid into phosphatidylcholine. An increase in lysophosphatidylcholine occurred in incubations containing both bovine serum albumin and free CoA and in the absence of acyl-CoA. The results were consistent with an acyl-CoA: lysophosphatidylcholine acyltransferase operating in both a forwards and backwards direction and thus catalysing the acyl exchange between acyl-CoA and position 2 of sn-phosphatidylcholine. In incubations with mixed species of acyl-CoAs, palmitic acid was the major fatty acid substrate transferred to phosphatidylcholine in acyl exchange, whereas this acid was completely selected against in the acylation of added lysophosphatidylcholine. The selectivity for palmitoyl-CoA was particularly enhanced when the mixed acyl-CoA substrate was presented to the microsomes in molar concentrations equivalent to the molar ratios of the fatty acids in position 2 of sn-phosphatidylcholine. During acyl exchange, the predominant fatty acid transferred to phosphatidylcholine from acyl-CoA was palmitic acid, whereas arachidonic acid was particularly selected for in the reverse reaction from phosphatidylcholine to acyl-CoA. A hypothesis is presented to explain the differential selectivity for acyl species between the forward and backward reactions of the acyltransferase that is based upon different affinities of the enzyme for substrates at high and low concentrations of acyl donor. Acyl exchange between acyl-CoA and phosphatidylcholine offers, therefore, a possible mechanism for the acyl-remodelling of phosphatidylcholine for the production of lung surfactant.  相似文献   

5.
The incorporation of oleate from oleoyl-CoA into lipids by microsomes from developing sunflower (Helianthus annuus L.) seeds has been investigated. Oleate was incorporated mainly into position 2 of phosphatidylcholine or released as free fatty acid. The addition of exogenous 1-acyl-lysophosphatidylcholine increased the incorporation of oleate into position 2 of phosphatidylcholine and decreased the release of free oleate. In the absence of exogenous lysophosphatidylcholine, the incorporation of oleate into phosphatidylcholine was limited by the amount of endogenous acceptor present. DH-990, an inhibitor of acyl-CoA:lysophosphatidylcholine acyltransferase, almost completely inhibited the incorporation of oleate from oleoyl-CoA into phosphatidylcholine at a concentration of 2.5 mM. These results indicate that the incorporation of oleate from oleoyl-CoA into microsomal phosphatidylcholine occurs mainly by the acylation of a 1-acyl-lysophosphatidylcholine acceptor rather than by acyl exchange between oleoyl-CoA and phosphatidylcholine. While the incorporation of oleoyl-CoA was completed within 2 to 5 min, exogenous 1-acyl-lysophosphatidylcholine was incorporated into phosphatidylcholine for up to 30 min. Addition of oleoyl-CoA resulted in an increase in both the rate and magnitude of lysophosphatidylcholine incorporation, which could not be accounted for by a stoichiometric reaction between the two substrates. Evidence is provided that free CoA had an independent stimulatory effect on the incorporation of lysophosphatidylcholine. The implications of this finding are discussed.  相似文献   

6.
Membrane preparations from Tetrahymena pyriformis catalyzed the acylations of glycerophosphate, isomeric monoacylglycerophosphate, and 1-acylglycerylphosphoryl-choline. Under the optimal conditions, glycerophosphate acyltransferase and 1-acylgly-cerophosphate acyltransferase used saturated and unsaturated acyl-CoA at comparable rates. The specificities of these acyltransferase systems for various acyl-CoAs as compared with the respective maximal velocities do not directly explain the fatty acid distribution in glycerophospholipids. However, the acylation of 2-acylglycerophosphate was highly selective for palmitate when the incubations were carried out in the presence of palmitoyl-CoA, oleoyl-CoA, 1-acylglycerophosphate, and 2-acylglycerophosphate. The 1-acylglycerylphosphorylcholine acyltransferase system showed relatively higher specificity for unsaturated acyl-CoA, which is consistent with the fatty acid pattern of phospholipids. Significant amounts of diglyceride and triglyceride were formed together with phosphatidic acid from acyl-CoA and glycerophosphate, indicating that the enzymes involved in triglyceride synthesis are closely associated with acyltransferase systems involved in phosphatidate synthesis in microsomes. These acyltransferase activities were found mainly in microsomes, and to a lesser extent, in pellicles, too. No significant difference was observed in the properties of acyltransferase systems in microsomes and pellicles.  相似文献   

7.
Membrane preparations from Saccharomyces cerevisiae OC-2 catalyzed the acylation of glycerophosphate, 1-acyl and 2-acyl isomers of monoacylglycerophosphate, and 1-acyl and 2-acyl isomers of monoacylglycerylphosphorylcholine. The acyl-CoA:glycerophosphate acyltransferase system (EC 2.3.1.15) showed a broad specificity for acyl-CoAs when the maximal velocities were compared under optimized conditions. The acyl-CoA:2-acylglycerophosphate acyltransferase activity was much lower than the 1-acyl-glycerophosphate acyltransferase activity. Although the 1-acylglycerophosphate acyltransferase system utilized saturated and unsaturated acyl-CoAs at comparable rates, the acylations at the 1- and 2-positions were relatively more selective for palmitate and oleate, respectively, when assayed in the presence of palmitoyl-CoA, oleoyl-CoA, 1-acylglycerophosphate, and 2-acylglycerophosphate. The acyl-CoA:1-acylglyceryl-phosphorylcholine acyltransferase system (EC 2.3.1.23) was relatively more specific for unsaturated acyl-CoAs, while the acyl-CoA:2-acylglycerylphosphorylcholine acyltransferase system (EC 2.3.1.23) utilized both palmitoyl-CoA and oleoyl-CoA at a comparable rate. Although various acyltransferase systems showed a different degree of specificity for acyl-CoAs, the positional distribution of fatty acids in the phospholipid molecules could not be explained simply by the observed specificities. Zymolyase, β-1,3-glucanase from Arthrobacter luteus, was used successfully for the protoplast formation. Subcellular fractionation of the protoplast revealed that these acyltransferase activities were localized mainly in the microsomal fraction. However, the glycerophosphate and 1-acylglycerophosphate acyltranferase activities in the mitochondrial fraction could not be explained by the contamination of microsomes in this fraction. These observations are apparently inconsistent with a current concept that the mitochondrial fraction is the major site of phospholipid synthesis in yeast.  相似文献   

8.
Solubilized glycerophosphate acyltransferase from Escherichia coli was reconstituted in small unilamellar vesicles consisting of phosphatidylcholine/phosphatidylglycerol in a molar ratio of 4:1. Glycerol 3-phosphate, trapped inside these vesicles, cannot be acylated by the enzyme upon addition of extra-vesicular palmitoyl-CoA. Thus, substrate-binding sites and active sites are asymmetrically oriented in the model membrane. When up to 10 mol/100 mol lysophosphatidic acid was incorporated in the vesicles a decrease in glycerophosphate acyltransferase activity is observed at amounts exceeding 1 mol% lysophosphatidate. Similar experiments, using lysophosphatidylcholine and phosphatidic acid, suggest the decrease to result from an increase in negative surface charge. Reconstituted glycerophosphate acyltransferase exhibits a preference for palmitoyl-CoA over oleoyl-CoA. This preference increases considerably at elevated temperatures. The glycerophosphate acyltransferase could, therefore, participate in the temperature-dependent changes in the fatty acid composition of the phospholipids in E. coli.  相似文献   

9.
Acyl-CoA:1-acyl-sn-glycero-3-phosphocholine-O-acyltransferase has been purified approximately 3000-fold from bovine brain microsomes by detergent solubilization followed by ion-exchange and affinity chromatography. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed a single protein of molecular weight 43,000. The specificity of the purified enzyme was studied by measuring the catalytic activity with various lysophospholipids and acyl-CoA derivatives. Of the lysophospholipids tested, only lysophosphatidylcholine was a substrate. Less specificity was exhibited toward the acyl-CoA derivatives, although the enzyme showed a clear preference for arachidonoyl-CoA and little or no activity with palmitoyl-CoA or stearoyl-CoA. High concentrations of arachidonoyl-CoA inhibited the enzyme. The velocity was a sigmoidal function of the concentration of lysophosphatidylcholine (LPC) with little activity obtained below 20 microM LPC. The specificity and kinetic properties of the enzyme were altered, however, by incorporation of the enzyme into liposomes composed of a mixture of phospholipids. Decanoyl-CoA and myristoyl-CoA, which were effective substrates for the soluble enzyme, did not serve as acyl donors for the liposome-bound acyltransferase. Furthermore, the liposome-bound enzyme, in contrast to the soluble form of the enzyme, was active at concentrations of LPC below the critical micelle concentration. The liposome-bound enzyme was also substantially less susceptible to thermal denaturation and proteolytic digestion. This modulation of the acyltransferase activity by interaction with phospholipids may relate to the kinetic properties and the regulation of the enzyme in vivo.  相似文献   

10.
Fatty acid ethyl esters are a family of non-oxidative metabolites of ethanol present in many tissues after ethanol consumption. In this report we demonstrate the existence in human liver of an acyl-CoA: ethanol acyltransferase activity which may be responsible in part for the synthesis of these compounds in vivo. The effects of oleoyl-CoA and ethanol concentrations, presence or absence of bovine serum albumin and detergent, pH and enzyme concentration on this activity have been determined. Acyl-CoA: ethanol acyltransferase activity is localised in the membrane-bound fraction. Using inhibitors directed against related enzyme activities, it has been shown that the activity is not related to serine-dependent carboxylesterases or acyl-CoA: cholesterol acyltransferase, but that it may be associated with acyl-CoA hydrolase activity. We have also compared acyl-CoA: ethanol acyltransferase activity with fatty acid ethyl ester synthase activity in microsomes and cytosol from the same liver. Our data indicate that these activities are comparable in vitro (on a units/g liver basis), and suggest that both may be significant in vivo.  相似文献   

11.
Bovine heart muscle microsomes rapidly convert lysophosphatidylcholine (LPC) into phosphatidylcholine (PC) in the presence of oleoyl-CoA. Both substrates are incorporated into the product, although the rate of incorporation of radiolabel into PC from 1-[14C]palmitoyl-LPC was approximately threefold higher than the rate of incorporation from [14C]oleoyl-CoA. Furthermore, the rate of incorporation of radiolabel from [14C]LPC was stimulated fivefold by the presence of oleoyl-CoA. These results demonstrate the presence of both acyl-CoA:1-acyl-sn-glycero-3-phosphocholine O-acyltransferase (EC 2.3.1.23) and an LPC:LPC transacylase (EC 3.1.1.5) in microsomes. Separation of the two enzymatic activities and purification of the acyltransferase was achieved by a procedure involving extraction with 3-[3-cholamidopropyl)dimethylammonio)-1-propanesulfonate detergent and chromatography on DEAE-cellulose, Reactive blue agarose, and Matrex gel green A. The isolated acyltransferase was a single species of 64,000 Da as judged by polyacrylamide gel electrophoresis in the presence of dodecyl sulfate. The substrate specificity of the enzyme was studied by using a series of lysophospholipids as acyl acceptors and acyl-CoA derivatives as acyl donors. The enzyme was catalytically active with LPC as acyl acceptor but displayed little or no activity with lysophosphatidylethanolamine, lysophosphatidylinositol, or lysophosphatidylserine. Of the LPC derivatives tested, the highest activity was obtained with 1-palmitoyl-LPC. Wider specificity was exhibited for the nature of the acyl donor, for which arachidonoyl-CoA, linoleoyl-CoA, and oleoyl-CoA were highly active substrates. These properties of the acyltransferase are in accord with a role of the enzyme in determining the composition of PC in myocardium.  相似文献   

12.
The effect of phospholipid fatty acyl composition on the activity of acylcoenzyme A:cholesterol acyltransferase was investigated in rat liver microsomes. Specific phosphatidylcholine replacements were produced by incubating the microsomes with liposomes and bovine liver phospholipid-exchange protein. Although the fatty acid composition of the microsomes was modified appreciably, there was no change in the microsomal phospholipid or cholesterol content. As compared to microsomes enriched for 2 h with dioleoylphosphatidylcholine, those enriched with dipalmitoylphosphatidylcholine exhibited 30-45% less acyl-CoA:cholesterol acyltransferase activity. Enrichment with 1-palmitoyl-2-linoleoylphosphatidylcholine increased acyl-CoA:cholesterol acyltransferase activity by 20%. By contrast, dilinoleoylphosphatidylcholine abolished microsomal acyl-CoA:cholesterol acyltransferase activity almost completely. Addition of cofactors that stimulated microsomal lipid peroxidation inhibited acyl-CoA:cholesterol acyltransferase activity by only 10%, however, and did not increase the inhibition produced by submaximal amounts of dilinoleoylphosphatidylcholine. Certain of the phosphatidylcholine replacements produced changes in palmitoyl-CoA hydrolase, NADPH-dependent lipid peroxidase, glucose-6-phosphatase and UDPglucuronyl transferase activities, but they did not closely correlate with the alterations in acyl-CoA:cholesterol acyltransferase activity. Electron spin resonance measurements with the 5-nitroxystearate probe indicated that microsomal lipid ordering was reduced to a roughly similar extent by dioleoyl- or by dilinoleoylphosphatidylcholine enrichment. Since these enrichments produce widely different effects on acyl-CoA:cholesterol acyltransferase activity, changes in bulk membrane lipid fluidity cannot be the only factor responsible for phospholipid fatty acid compositional effect on acyl-CoA:cholesterol acyltransferase. The present results are more consistent with a modulation resulting from either changes in the lipid microenvironment of acyl-CoA:cholesterol acyltransferase or a direct interaction between specific phosphatidylcholine fatty acyl groups and acyl-CoA:cholesterol acyltransferase.  相似文献   

13.
Moreau RA  Stumpf PK 《Plant physiology》1982,69(6):1293-1297
Acyl-CoA:O-lysophospholipid acyltransferase activity was measured in extracts of developing safflower (Carthamus tinctorius var. UC-1) seeds. Acyltransferase activity was present in all subcellular fractions. The microsomal acyltransferase activity was solubilized with either 30 mm-n-octylglucoside, 1% deoxycholate, or 100 mum lysophosphatidylcholine. The pH optimum of the lysophosphatidylcholine-dependent acyltransferase activity was at 9.0. Among the various acyl-CoA's tested, oleoyl-CoA was the best substrate and with it the enzyme had a K(m) of 9.5 mum. Among the various acyl acceptors tested, lysophosphatidylcholine (oleoyl) gave the highest activity and the optimal concentration was 30 mum. Acyltransferase activity was stimulated by ethanol and inhibited by bovine serum albumin and divalent cations.  相似文献   

14.
Acyl-CoA:2-acyl-sn-glycero-3-phosphocholine (GPC) acyltransferase is required for the maintenance of the asymmetric distribution of saturated fatty acids at the C-1 position of phosphatidylcholine; however, this activity has been reported to be absent in cardiac tissue. In the present study a very active acyl-CoA:2-acyl-GPC activity was detected and characterized in guinea-pig heart microsomes (microsomal fractions); the mitochondria did not appear to possess this activity. The acyl-CoA specificity of the microsomal acyl-CoA:2-acyl-GPC acyltransferase was distinct from the corresponding acyl-CoA:1-acyl-GPC acyltransferase. These differences were due to the position of the fatty acid on the lysophospholipid rather than the composition of the fatty acids. The enzyme did not exhibit a distinct preference for saturated fatty acids, as might be expected. Our results suggest that, in the heart, control of the intracellular composition and concentration of acyl-CoAs by acyl-CoA hydrolase and acyl-CoA synthetase may play an important role in maintaining the asymmetric distribution of fatty acids in phosphatidylcholine.  相似文献   

15.
Acyl-CoA : lysolecithin and lysolecithin : lysolecithin acyltransferases, as well as acyl-CoA hydrolase are important enzymes in lung lipid metabolism. They use amphiphylic lipids as substrates and differ in subcellular localization. In this sense, lipid-protein interactions can be an essential factor in their activity. We have studied the effect of albumin, as lipid-binding protein model, in the activities of these enzymes. Acyl-CoA hydrolase was inhibited in the presence of albumin, whereas acyl-CoA : lysolecithin acyltransferase showed a complex effect of activation depending on both albumin concentration and palmitoyl-CoA/lysolecithin molar ratio. Lysolecithin : lysolecithin acyltransferase was affected differentially on its two activities. Hydrolysis remained unaffected and transacylation was inhibited by albumin. These results are consequence of the interaction of albumin with both lipidic substrates that changes their critical micellar concentration.Abbreviations TNS 6-(p-toluidino)-2-naphthalene-sulfonic acid - CMC Critical Micellar Concentration - LP Lysolecithin (1-acyl-sn-glycero-3-phosphocholine) - PalmCoA palmitoyl-CoA  相似文献   

16.
The elongation of different substrates was studied using several subcellular fractions from Brassica napus rapeseed. In the presence of malonyl-CoA, NADH and NADPH, very-long-chain fatty acid (VLCFA) synthesis was observed from either oleoyl-CoA (acyl-CoA elongation) or endogenous primers (ATP-dependent elongation). No activity was detected using oleic acid as precursor. Acyl-CoA and ATP-dependent elongation activities were mainly associated with the 15 000 g/25 min membrane fraction. Reverse-phase TLC analysis showed that the proportions of fatty acids synthesized by these activities were different. Acyl-CoA elongation increased up to 60 microM oleoyl-CoA, and ATP-dependent elongation was maximum at 1 mM ATP. Both activities increased with malonyl-CoA concentration (up to 200 microM). Under all conditions tested, acyl-CoA elongation was higher than ATP-dependent elongation, and, in the presence of both ATP and oleoyl-CoA, the elongation activity was always lower. ATP strongly inhibited acyl-CoA elongation, whereas ATP-dependent elongation was slightly stimulated by low oleoyl-CoA concentrations (up to 15 microM) and decreased in the presence of higher concentrations. CoA (up to 150 microM) had no effect on the ATP-dependent elongation, whereas it inhibited the acyl-CoA elongation. These marked differences strongly support the presence in maturing rapeseed of two different elongating activities differently modulated by ATP and oleoyl-CoA.  相似文献   

17.
Both glycerophosphate and monoacylglycerophosphate acyltransferases from Euglena microsomes were inhibited by N-ethylmaleimide, but their responses to heat inactivation and sn-glyceraldehyde-3-phosphate differed. Glycerophosphate acyltransferase had a higher V with palmitoyl-CoA compared to oleoyl-CoA; the reverse was true for monoacylglycerophosphate acyltransferase. Km's (microM) for the glycerophosphate acyltransferase were: palmitoyl-CoA, 21; oleoyl-CoA, 14; and sn-glycerol-3-phosphate, 2900. Km's (microM) for monoacylglycerophosphate acyltransferase were: palmitoyl-CoA, 7; oleoyl-CoA, 4; and 1-palmitoyl-sn-glycerol-3-phosphate, 48.  相似文献   

18.
The enzyme acyl-CoA:1-acyl-sn-glycero-3-phosphoinositol acyltransferase (LPI acyltransferase, EC 2.3.1.23) was purified approximately 11,000-fold to near homogeneity from bovine heart muscle microsomes. The purification was effected by extraction with the detergent 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate, followed by chromatography on Cibacron blue agarose, DEAE-cellulose, and Matrex gel green A. The isolated enzyme was a single protein of 58,000 Da as measured by polyacrylamide gel electrophoresis in the presence of dodecyl sulfate. This purification procedure also allows isolation of the related enzyme lysophosphatidylcholine (LPC) acyltransferase, which was separated from LPI acyltransferase at the final chromatographic step. The purified LPI acyltransferase exhibits an absolute specificity for LPI as the acyl acceptor. Broader specificity was found for acyl-CoA derivatives as substrates, although the preferred substrates are long-chain, unsaturated derivatives: measured reactivities were in the order arachidonoyl-CoA greater than oleoyl-CoA greater than eicosadienoyl-CoA greater than linoleoyl-CoA. Little activity was found with palmitoyl-CoA or stearoyl-CoA as potential substrates. These properties are consistent with a role of the enzyme in controlling the acyl group composition of phosphoinositides. Comparison of LPC acyltransferase and LPI acyltransferase shows that these two enzymes have distinct kinetic and physical properties and are affected differently by local anesthetics, which are potent inhibitors.  相似文献   

19.
Microsomes from young leaves of pea,Pisum sativum L., metabolized oleate principally by the reactions mediated by oleoyl-CoA synthetase, oleoyl-CoA thioesterase, oleoyl-CoA: phosphatidylcholine acyltransferase and oleoyl phosphatidylcholine desaturase. Hydrogen peroxide specifically inhibited oleate desaturation and the evidence presented argues for a specific inhibition of the terminal enzyme of the desaturase system, i.e. oleoyl phosphatidylcholine desaturase. Catalase, ascorbic acid, or ascorbate peroxidase, in conjunction with ascorbic acid, stimulated oleate desaturation, possibly by the removal of hydrogen peroxide. Lysophosphatidylcholine was found to be the preferred acceptor for acyl transfer from oleoyl-CoA, which indicates that the transfer of oleoyl moieties was catalyzed predominantly by oleoyl-CoA:lysophosphatidylcholine acyltransferase. Acyl exchange between oleoyl-CoA and phosphatidylcholine, with a possible involvement of phospholipases, was also detected but at much lower rates than acyl transfer. When intact or broken chloroplasts were added to microsomes, which had been preincubated with oleoyl-CoA, some stimulation of the reactions catalyzed by oleoyl-CoA:phosphatidylcholine acyltransferase and oleoyl phosphatidylcholine desaturase was observed. However, only minor amounts of microsomal linoleoyl phosphatidylcholine were converted to galactolipids containing linolenoyl moieties.Abbreviations FA unesterified fatty acid (s) - PC phosphatidylcholines - 18:1 oleoyl moieties - 18:2 lmoleoyl moieties Dedicated to Professor Helmut K. Mangold, Bundesanstalt für Fettforschung, Münster, on his 60th birthday  相似文献   

20.
The effects of aging on lipid absorption, particularly on fatty acid glycerophospholipid and triacylglycerol esterification, were investigated in 2.5-,12- and 24-month-old mice and rats. Two intestinal mucosa microsomal enzymes, involved in the dietary fatty acid absorption, were assayed:acylCoA:2-monoacylglycerol acyltransferase and acylCoA:1-lysophosphatidylcholine acyltransferase. In both mice and rats, the activities of both enzymes varied with the nature of the acyl-CoA. Indeed acylCoa:2-monoacylglycerol acyltransferase activities were significantly higher with oleoyl-CoA and linoleoyl-CoA than with palmitoyl-CoA and arachidonoyl-CoA, while acylCoA:1-lysophosphatidylcholine acyltransferase activities were highest with arachidonoyl-CoA. AcylCoA:2-monoacylglycerol acyltransferase activity did not decrease significantly with aging in mice or rats, whatever the acyl-CoA used. In contrast, acylCoA:1-lysophosphatidylcholine acyltransferase activity in the 24-month-old rats was significantly lower (−47 %) than in 2.5-month-old rats, with oleoyl-CoA, linoleoyl-CoA and arachidonoyl-CoA. Simultaneously we observed that less glycerophospholipid esterification of oleic and linoleic acid occurs in older rats than in 2.5-month-old rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号