首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the transforming growth factor-beta (TGF-beta) superfamily have wide-ranging influences on many tissue and organ systems including the ovary. Two recently discovered TGF-beta superfamily members, growth/differentiation factor-9 (GDF-9) and bone morphogenetic protein-15 (BMP-15; also designated as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play a key role in promoting follicle growth beyond the primary stage. Follicle growth to the small antral stage does not require gonadotrophins but appears to be driven by local autocrine/paracrine signals from both somatic cell types (granulosa and theca) and from the oocyte. TGF-beta superfamily members expressed by follicular cells and implicated in this phase of follicle development include TGF-beta, activin, GDF-9/9B and several BMPs. Acquisition of follicle-stimulating hormone (FSH) responsiveness is a pre-requisite for growth beyond the small antral stage and evidence indicates an autocrine role for granulosa-derived activin in promoting granulosa cell proliferation, FSH receptor expression and aromatase activity. Indeed, some of the effects of FSH on granulosa cells may be mediated by endogenous activin. At the same time, activin may act on theca cells to attenuate luteinizing hormone (LH)-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection appears to depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Activin may contribute to this selection process by sensitizing those follicles with the highest "activin tone" to FSH. Production of inhibin, like oestradiol, increases in selected dominant follicles, in an FSH- and insulin-like growth factor-dependent manner and may exert a paracrine action on theca cells to upregulate LH-induced secretion of androgen, an essential requirement for further oestradiol secretion by the pre-ovulatory follicle. Like activin, BMP-4 and -7 (mostly from theca), and BMP-6 (mostly from oocyte), can enhance oestradiol and inhibin secretion by bovine granulosa cells while suppressing progesterone secretion; this suggests a functional role in delaying follicle luteinization and/or atresia. Follistatin, on the other hand, may favor luteinization and/or atresia by bio-neutralizing intrafollicular activin and BMPs. Activin receptors are expressed by the oocyte and activin may have a further intrafollicular role in the terminal stages of follicle differentiation to promote oocyte maturation and developmental competence. In a reciprocal manner, oocyte-derived GDF-9/9B may act on the surrounding cumulus granulosa cells to attenuate oestradiol output and promote progesterone and hyaluronic acid production, mucification and cumulus expansion.  相似文献   

2.
Stage-specific expression of Smad2 and Smad3 during folliculogenesis   总被引:10,自引:0,他引:10  
Paracrine and autocrine growth factors can affect many different aspects of ovarian follicle development. Many members of the transforming growth factor beta (TGFbeta) family of growth factors and their receptors are expressed in developing follicles. However, the presence and function of the family of the TGFbeta signaling molecules known as Smads have not been evaluated during follicle development. We have demonstrated that two Smad family members that function as mediators for both activin and TGFbeta are expressed in granulosa cells of preantral follicles but not in large antral follicles. Smad2 expression, but not Smad3 expression, returns in luteal cells. Both Smad2 and Smad3 are translocated to the nucleus of granulosa cells in response to treatment with either TGFbeta or activin. However, Smad2 is more responsive to activin stimulation, and Smad3 is more responsive to TGFbeta stimulation. Stage-specific expression and differing ligand sensitivity of signaling molecules may work together to allow different effects of TGFbeta family ligands using the same signaling pathways over the course of follicular development.  相似文献   

3.
To investigate the interrelationship of inhibin alpha and growth differentiation factor 9 (GDF9) during early folliculogenesis, we generated mice lacking both inhibin alpha and GDF9. Our findings on these Inha Gdf9 double-mutant mice are as follows: 1). females develop ovarian tumors and a cachexia-like wasting syndrome, resembling mice lacking inhibin alpha alone. This indicates that the granulosa cells are competent to proliferate despite the lack of GDF9; 2). follicular development progresses to multiple-layer follicle stages before tumorigenesis. This demonstrates that the up-regulation of inhibin alpha in the Gdf9 knockout ovary directly prevents the proliferation of the granulosa cells at the primary follicle stage, an effect that is released in the absence of inhibin alpha; 3). a morphological theca forms around the preantral follicles with no detectable selective theca markers [i.e. 17alpha-hydroxylase (Cyp17), LH receptor (Lhr), and Kit]. These results indicate that the theca recruitment can occur independently of GDF9, but the differentiation of thecal cells is blocked; and 4). inhibin/activin subunits betaA, betaB, and Kit ligand (Kitl) mRNA are highly up-regulated, suggesting that the increased activins and KITL play functional roles in early folliculogenesis. Thus, GDF9 appears to function indirectly to regulate early granulosa cell proliferation and theca recruitment in vivo.  相似文献   

4.
5.
Several secreted products of the TGFbeta superfamily have important roles during follicular development and are produced by both oocytes and somatic cells (granulosa and theca) in the follicle. The proprotein convertases are a family of seven known proteins that process TGFbeta ligands and other secreted products to their mature active form. The present study examined the regulation of steady-state levels of Pcsk6 mRNA, which encodes a convertase protein known to process members of the TGFbeta superfamily, during mouse follicular development. Pcsk6 mRNA and protein were expressed in preantral but not cumulus or mural granulosa cells. Pcsk6 mRNA levels in preantral granulosa cells were not regulated by growing oocytes of preantral follicles, but were elevated by FSH. Furthermore, Pcsk6 mRNA in preantral granulosa cells was potently suppressed by factor(s) secreted by fully grown oocytes from antral follicles, in part through SMAD2/3-mediated pathways. Oocytes acquired the ability to suppress the steady-state levels of Pcsk6 mRNA in granulosa cells during the preantral to antral follicle transition. Suppression of Pcsk6 mRNA by oocytes could reflect a change in the mechanism(s) regulating the activity of members of the TGFbeta superfamily.  相似文献   

6.
The aim of this study was to locate a possible activin/activin receptor system within porcine ovaries containing functional corpora lutea. In situ hybridization was used to assess the gene expression of beta(A)- and beta(B)-activin subunits, and immunohistochemical studies were done to detect activin-A protein and activin receptor type II. mRNA expression of the beta(A)- and beta(B)-activin subunits was found in the granulosa from the unilaminar follicle stage onward, in the developing thecal layer of multilaminar and small antral follicles, in the theca interna of mid-sized antral follicles, in corpora lutea, and in the ovarian surface epithelium. Immunoreactive activin A protein could be detected at the same ovarian sites, but in thecal tissue of small antral follicles only. This protein was also demonstrated at the peripheral zone of oocytes from multilaminar and antral follicles. A positive immunoreaction for activin receptor was found in granulosa cells from multilaminar and older follicles and in oocytes from the earliest stages of follicular development onward. In late multilaminar follicles and in antral follicles, the oolemma was stained. Except for small antral follicles, a positive activin receptor immunoreaction was absent in the follicular theca. Activin receptor immunoreaction was furthermore present in corpora lutea and in the ovarian surface epithelium. It is concluded that, within porcine ovaries containing functional corpora lutea, an activin/activin receptor system is present in all intact follicles, the corpora lutea and the surface epithelium. Within follicles, granulosa and theca cells are the main sites of activin synthesis, while oocytes and granulosa cells are the main activin binding sites.  相似文献   

7.
Growth differentiation factor-9 (GDF-9), a secreted member of the transforming growth factor-beta superfamily, is expressed at high levels in the mammalian oocyte beginning at the type 3a primary follicle stage. We have previously demonstrated that GDF-9-deficient female mice are infertile because of an early block in folliculogenesis at the type 3b primary follicle stage. To address the molecular defects that result from the absence of GDF-9, we have analyzed the expression of several important ovarian marker genes. The major findings of our studies are as follows: 1) There are no detectable signals around GDF-9-deficient follicles for several theca cell layer markers [i.e. 17alpha-hydroxylase, LH receptor (LHR), and c-kit, the receptor for kit ligand]. This demonstrates that in the absence of GDF-9, the follicles are incompetent to emit a signal that recruits theca cell precursors to surround the follicle; 2) The primary follicles of GDF-9-deficient mice demonstrate an up-regulation of kit ligand and inhibin-alpha. This suggests that these two important secreted growth factors, expressed in the granulosa cells, may be directly regulated in a paracrine fashion by GDF-9. Up-regulation of kit ligand, via signaling through c-kit on the oocyte, may be directly involved in the increased size of GDF-9-deficient oocytes and the eventual demise of the oocyte; 3) After loss of the oocyte, the cells of the GDF-9-deficient follicles remain in a steroidogenic cluster that histologically resembles small corpora lutea. However, at the molecular level, these cells are positive for both luteal markers (e.g. LHR and P-450 side chain cleavage) and nonluteal markers (e.g. inhibin alpha and P-450 aromatase). This demonstrates that initially the presence of the oocyte prevents the expression of luteinized markers, but that the absence of GDF-9 at an early timepoint alters the differentiation program of the granulosa cells; and 4) As demonstrated by staining with either proliferating cell nuclear antigen (PCNA) or Ki-67 and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) labeling, the granulosa cells of GDF-9-deficient type 3b primary follicles fail to proliferate but also fail to undergo cell death. This suggests that granulosa cells of type 3b follicles require GDF-9 for continued growth and also to become competent to undergo apoptosis, possibly through a differentiation event Thus, these studies have enlightened us as to the paracrine roles of GDF-9 as well as the normal steps of granulosa cell and theca cell growth and differentiation within ovarian follicles.  相似文献   

8.
9.
10.
We recently demonstrated that the reduction in the number of primordial follicles in ovaries of near-term baboon fetuses deprived of estrogen in utero was associated with increased expression of alpha-inhibin, but not activin betaA and betaB or the activin receptors. Therefore, we proposed that estrogen regulates fetal ovarian follicular development by controlling the intraovarian inhibin:activin ratio. As a prelude to conducting experiments to test this hypothesis, in the current study we determined whether the primate fetal ovary expressed Smads 2/3 and 4 and whether expression of these activin-signaling proteins was altered in fetal ovaries of baboons in which estrogen production was suppressed. Western blot analyses demonstrated that the 59 kDa Smad 2, 54 kDa Smad 3, and 64 kDa Smad 4 proteins were expressed in fetal ovaries of untreated baboons at both mid and late gestation and that the level of expression was not significantly altered in late gestation by in vivo treatment with CGS 20267 or CGS 20267 and estrogen. Immunocytochemistry localized Smads 2/3 and 4 to cytoplasm of oocytes and pregranulosa cells at midgestation and oocytes and granulosa cells of primordial follicles in late gestation. Smad 4 was also detected in granulosa cell nuclei in late gestation, and nuclear expression appeared to be decreased in fetal ovaries of baboons deprived of estrogen. The site of localization of Smads correlated with localization of the activin receptors IA and IIB, which we previously showed were abundantly expressed in oocytes and (pre)granulosa cells at both mid and late gestation and unaltered by estrogen deprivation. In summary, the results of the current study are the first to show that the intracellular signaling molecules required to transduce an activin signal are expressed in the baboon fetal ovary and that expression was not altered by estrogen deprivation in utero. These findings, coupled with our previous observations showing that estrogen deprivation reduced follicle numbers and upregulated/induced expression of inhibin but not activin or the activin receptors, lend further support to the hypothesis that estrogen regulates fetal ovarian folliculogenesis by controlling the intraovarian activin:inhibin ratio.  相似文献   

11.
12.
13.
Activin was originally isolated from follicular fluid as a factor stimulating FSH from the pituitary. Recent studies also suggest a local role for activin in the development of preantral and early antral follicles. In the present study, activin and activin receptor immunoreactivity are shown in oocyte and granulosa cells of bovine preantral follicles. In addition, activin immunoreactivity was observed in the theca of secondary follicles. During culture of isolated preantral follicles, activin increased follicular growth and granulosa cell proliferation in a dose-dependent manner. This increase was further stimulated by addition of FSH. In conclusion, activin and its receptor are present on bovine preantral follicles, and additional activin stimulates development of those follicles.  相似文献   

14.
In addition to pituitary gonadotropins and paracrine factors, ovarian follicle development is also modulated by oocyte factors capable of stimulating granulosa cell proliferation but suppressing their differentiation. The nature of these oocyte factors is unclear. Because growth differentiation factor-9 (GDF-9) enhanced preantral follicle growth and was detected in the oocytes of early antral and preovulatory follicles, we hypothesized that this oocyte hormone could regulate the proliferation and differentiation of granulosa cells from these advanced follicles. Treatment with recombinant GDF-9, but not FSH, stimulated thymidine incorporation into cultured granulosa cells from both early antral and preovulatory follicles, accompanied by increases in granulosa cell number. Although GDF-9 treatment alone stimulated basal steroidogenesis in granulosa cells, cotreatment with GDF-9 suppressed FSH-stimulated progesterone and estradiol production. In addition, GDF-9 cotreatment attentuated FSH-induced LH receptor formation. The inhibitory effects of GDF-9 on FSH-induced granulosa cell differentiation were accompanied by decreases in the FSH-induced cAMP production. These data suggested that GDF-9 is a proliferation factor for granulosa cells from early antral and preovulatory follicles but suppresses FSH-induced differentiation of the same cells. Thus, oocyte-derived GDF-9 could account, at least partially, for the oocyte factor(s) previously reported to control cumulus and granulosa cell differentiation.  相似文献   

15.
The ovary contains a pool of primordial follicles containing oocytes arrested in meiosis that are the source of developing follicles for the female. Growth and differentiation factor-9 (GDF-9) is a member of the transforming growth factor beta superfamily of growth factors, and follicles of GDF-9 knockout mice arrest in the primary stage of development. The effect of GDF-9 treatment on the primordial to primary follicle transition and on subsequent follicle progression was examined using a rat ovary organ culture system. Ovaries from 4-day-old rats were cultured under serum-free conditions in the absence or presence of growth factors. GDF-9 treatment caused a decrease in the proportion of stage 1 early primary follicles and a concomitant increase in the proportion of stage 2 mature primary follicles. GDF-9 did not effect primordial follicles or stage 0 to stage 1 follicle transition. GDF-9 also did not influence stage 3 or 4 secondary follicle numbers. Isolated antral follicle granulosa and theca cell cultures were used to analyze the actions of GDF-9. GDF-9 treatment did not directly influence either granulosa or theca cell proliferation. The ability of GDF-9 to influence the expression of another growth factor was examined. GDF-9 treatment increased kit ligand (KL) mRNA expression in bovine granulosa cells after 2 days of culture. Ovaries from 4-day-old rats were also cultured with or without GDF-9 treatment, and total ovary expression of KL mRNA was increased by GDF-9. In summary, GDF-9 was found to promote the progression of early primary follicle development but did not influence primordial follicle development. The actions of GDF-9 on specific stages of follicle development may in part be mediated through altering the expression of KL.  相似文献   

16.
17.
Ovarian follicular atresia represents a selection process that ensures the release of only healthy and viable oocytes during ovulation. The transition from preantral to early antral stage is the penultimate stage of development in terms of gonadotropin dependence and follicle destiny (survival/growth vs. atresia). We have examined whether and how oocyte-derived growth differentiation factor 9 (GDF-9) and FSH regulate follicular development and atresia during the preantral to early antral transition, by a novel combination of in vitro gene manipulation (i.e. intraoocyte injection of GDF-9 antisense oligos) and preantral follicle culture. Injection of GDF-9 antisense suppressed basal and FSH-induced preantral follicle growth in vitro, whereas addition of GDF-9 enhanced basal and FSH-induced follicular development. GDF-9 antisense activated caspase-3 and induced apoptosis in cultured preantral follicles, a response attenuated by exogenous GDF-9. GDF-9 increased phospho-Akt content in granulosa cells of early antral follicles. Although granulosa cell apoptosis induced by ceramide was attenuated by the presence of GDF-9, this protective effect of GDF-9 was prevented by the phosphatidylinositol 3-kinase inhibitor LY294002 and a dominant negative form of Akt. Injection of GDF-9 antisense decreased FSH receptor mRNA levels in cultured follicles, a response preventable by the presence of exogenous GDF-9. The data suggest that GDF-9 is antiapoptotic in preantral follicles and protects granulosa cells from undergoing apoptosis via activation of the phosphatidylinositol 3-kinase/Akt pathway. An adequate level of GDF-9 is required for follicular FSH receptor mRNA expression. GDF-9 promotes follicular survival and growth during the preantral to early antral transition by suppressing granulosa cell apoptosis and follicular atresia.  相似文献   

18.
19.
20.
The sustainability and production of collared peccary (Pecari tajacu) has been studied in the last few years; however, further information on its reproduction is necessary for breeding systems success. Understanding folliculogenesis aspects will contribute to effective reproductive biotechniques, which are useful in the preservation and production of wildlife. The aim of this study was-to evaluate the ovarian folliculogenesis in collared peccary. Ovaries from six adult females of collared peccary were obtained through ovariectomy and analyzed. These were fixed in aqueous Bouin's solution and sectioned into 7 microm slices, stained with hematoxilin-eosin and analyzed by light microscopy. The number of pre-antral and antral follicles per ovary was estimated using the Fractionator Method. The follicles, oocytes and oocyte nuclei were measured using an ocular micrometer. Results showed that the length, width, thickness, weight, and the gross anatomy of the right and left ovaries were not significantly different. However, the mean number of corpora lutea was different between the phases of the estrous cycle (p<0.05), with the highest mean in the luteal phase. Primordial follicles were found in the cortex; the oocytes were enveloped by a single layer of flattened follicular cells. In the primary follicles, proliferation of the follicular cells gave rise to cuboidal cells (granulosa cells). The secondary follicle was characterized by two or more concentric layers of cuboidal cells (granulosa), beginning of antrum formation, and the presence of pellucid zone and theca cells. Antral follicles were characterized by a central cavity (antrum), the presence of cumulus oophorus and theca layers (interna and externa). In the right ovary, the values of the primordial and primary follicles were similar, but significantly different from the secondary ones (p<0.05). In the left ovary, significant differences were observed between all follicles in the follicular phase (p<0.05); the mean number of primordial and primary follicles was similar in the luteal phase. The mean number of pre-antral follicles and antral follicles in the follicular phase was higher in the left ovary (p<0.05). The mean number of antral follicles in the luteal phase was similar in both ovaries. We also found significant differences in mean diameter of preantral follicles, oocyte, granulosa layer and oocyte nucleus during the estrous cycle. In the antral follicles a significant difference was observed only in follicular diameter (p<0.05). The predominance of active primordial and primary follicles was found in both phases; otherwise the secondary follicles and antral follicles showed a high degree of degeneration. The results obtained in the present work will strengthen the development of biotechnology programs to improve the productive potential and conservation of the collared peccary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号