首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
PCR-RFLP analysis of the vrrA gene and cerAB gene was used to investigate the genomic diversity in 21 strains of Bacillus anthracis and 28 strains of Bacillus cereus, and was compared with results obtained by ribotyping and enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) analysis. VrrA-typing divided the B. anthracis into four groups. Except for one Pasteur vaccine strain, the vrrA PCR-RFLP profiles of the B. anthracis were separated into three groups, which were different from those of the B. cereus strains. Ribotyping separated the B. anthracis isolates into seven ribotypes, and a common fragment of an approximately 850 bp band from the ERIC-PCR fingerprints separated most B. anthracis strains into two groups. VrrA/cerAB PCR-RFLP, ribotyping and ERIC-PCR generated 18, 22 and 23 types, respectively, from B. cereus strains. The results suggest that a combination of all three methods provides a high resolution typing method for B. anthracis and B. cereus. Compared with ribotyping and ERIC-PCR, PCR-RFLP is simple to perform and has potential as a rapid method for typing and discriminating B. anthracis strains from other B. cereus group bacteria.  相似文献   

2.
3.
Bacillus anthracis can be identified by detecting virulence factor genes located on two plasmids, pXO1 and pXO2. Combining multiplex PCR with arrayed anchored primer PCR and biotin-avidin alkaline phosphatase indicator system, we developed a qualitative DNA chip method for characterization of B. anthracis, and simultaneous confirmation of the species identity independent of plasmid contents. The assay amplifies pag gene (in pXO1), cap gene (in pXO2) and Ba813 gene (a B. anthracis specific chromosomal marker), and the results were indicated by an easy-to-read profile based on the color reaction of alkaline phosphatase. About 1 pg of specific DNA fragments on the chip wells could be detected after PCR. With the proposed method, the avirulent (pXO1+/2-, pXO1-/2+ and pXO1-/2-) strains of B. anthracis and distinguished 'anthrax-like' strains from other B. cereus group bacteria were unambiguously identified, while the genera other than Bacillus gave no positive signal.  相似文献   

4.
As 16S rRNA sequence analysis has proven inadequate for the differentiation of Bacillus cereus from closely related species, we employed the gyrase B gene (gyrB) as a molecular diagnostic marker. The gyrB genes of B. cereus JCM 2152(T), Bacillus thuringiensis IAM 12077(T), Bacillus mycoides ATCC 6462(T), and Bacillus anthracis Pasteur #2H were cloned and sequenced. Oligonucleotide PCR primer sets were designed from within gyrB sequences of the respective bacteria for the specific amplification and differentiation of B. cereus, B. thuringiensis, and B. anthracis. The results from the amplification of gyrB sequences correlated well with results obtained with the 16S rDNA-based hybridization study but not with the results of their phenotypic characterization. Some of the reference strains of both B. cereus (three serovars) and B. thuringiensis (two serovars) were not positive in PCR amplification assays with gyrB primers. However, complete sequencing of 1.2-kb gyrB fragments of these reference strains showed that these serovars had, in fact, lower homology than their originally designated species. We developed and tested a procedure for the specific detection of the target organism in boiled rice that entailed 15 h of preenrichment followed by PCR amplification of the B. cereus-specific fragment. This method enabled us to detect an initial inoculum of 0.24 CFU of B. cereus cells per g of boiled rice food homogenate without extracting DNA. However, a simple two-step filtration step is required to remove PCR inhibitory substances.  相似文献   

5.
Bacillus cereus, B. thuringiensis and B. anthracis are closely related medically and economically important bacterial species that belong to the B. cereus group. Members of the B. cereus group carry genes encoding several important virulence factors, including enterotoxins, phospholipases and exotoxins. Since it is difficult to differentiate among B. cereus group members, and because Bacillus virulence factors are very important for pathogenesis, we explored the use of microarray-based detection of virulence factor genes as a tool for strain identification and for determining virulence. Our method requires an initial multiplex PCR amplification step, followed by identification of the PCR amplicons by hybridization to an oligonucleotide microarray containing genes for all three types of Bacillus virulence factors including B. anthracis virulence factors. The DNA chip described here contains 21 identical arrays used for analysis of seven samples in triplicates. Using the arrays, we found that virulence factors are present in several combinations in the strains analyzed. This work also demonstrates the potential of oligonucleotide microarrays for medical, food safety and biodefense analysis of microbial pathogens.  相似文献   

6.
Aiming to develop a DNA marker specific for Bacillus anthracis and able to discriminate this species from Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides, we applied the randomly amplified polymorphic DNA (RAPD) fingerprinting technique to a collection of 101 strains of the genus Bacillus, including 61 strains of the B. cereus group. An 838-bp RAPD marker (SG-850) specific for B. cereus, B. thuringiensis, B. anthracis, and B. mycoides was identified. This fragment included a putative (366-nucleotide) open reading frame highly homologous to the ypuA gene of Bacillus subtilis. The restriction analysis of the SG-850 fragment with AluI distinguished B. anthracis from the other species of the B. cereus group.  相似文献   

7.
Bacillus anthracis has four plasmid possible virulence genotypes: pXO1+/pXO2+, pXO1+/pXO2-, pXO1-/pXO2+ or pXO1-/pXO2-. Due to the lack of a specific chromosomal marker for B. anthracis, differentiation of the pXO1-/pXO2- form of B. anthracis from closely related Bacillus cereus group species is difficult. In this study, we evaluate the ability of sspE, pXO1 and pXO2 primers to discriminate individual B. anthracis and the B. cereus group genotypes using multiplex real-time PCR and melting curve analysis. Optimal conditions for successful multiplex assays have been established. Purified DNAs from 38 bacterial strains including 11 strains of B. anthracis and 18 B. cereus group strains were analyzed. Nine of the B. cereus group near-neighbor strains were shown by multilocus sequence typing to be phylogenetically proximate to the B. anthracis clade. We have demonstrated that the four plasmid genotypes of B. anthracis and B. cereus group near-neighbors were differentially and simultaneously discriminated by this assay.  相似文献   

8.
AIMS: To determine whether microarray analysis could be employed for the differential identification of a range of environmental Bacillus sp. from four strains of Bacillus anthracis. METHODS AND RESULTS: Oligonucleotide probes were designed that were specific to virulence factor genes of B. anthracis (pag, lef and cap), the variable number tandem repeat region of the B. anthracis vrrA gene and to the 16S-23S rRNA intergenic transcribed spacer region (ITS) and pleiotropic regulator (plcR) regions of the Bacillus cereus subgroup species. Generic probes were also designed to hybridize with conserved regions of the 16S rRNA genes of Bacillus (as a positive control), Neisseria sp., Pseudomonas sp., Streptococcus sp., Mycobacterium sp. and to all members of the Enterobacteriaceae to allow simultaneous detection of these bacteria. Identification of B. anthracis was found to rely entirely on hybridization of DNA specific to regions of the pag, lef and cap genes. Cross-reaction was observed between B. anthracis and other Bacillus species with all the other Bacillus probes tested. Results obtained using microarray hybridizations were confirmed using conventional microbiological techniques and found to have very high comparability. CONCLUSIONS: Microarray-based assays are an effective method for the identification of B. anthracis from mixed-culture environmental samples without problems of false-positivity that have been observed with conventional PCR assays. SIGNIFICANCE AND IMPACT OF THE STUDY: Identification of environmental Bacillus sp. by conventional PCR is prone to potential for reporting false-positives. This study provides a method for the exclusion of such isolates.  相似文献   

9.
The aim of this study was to apply the multiplex PCR and PCR-RFLP method for the identification of the B. anthracis strains and to distinguish those bacteria from other members of the Bacillus cereus group. The multiplex PCR method enables to detect the virulence factors, i.e. the toxin and the capsule in B. anthracis strains. To do that, the authors have used 5 primer pairs specific for the fragments of lef, cya, pag genes which are present in the pXO1 plasmid and encode the toxin, the cap gene, which is present in the pXO2 plasmid and encodes the capsule, and the Ba813 chromosomal sequence. Among the four B. anthracis strains examined, three contained two plasmids and the Ba813 chromosomal sequence, while the fourth one contained the pXO1 plasmid only, together and the Ba813 chromosomal sequence. Other bacterial species, belonging to the B. cereus group, were also examined: 6 strains of B. cereus, 4 strains of B. thuringiensis and one strain of B. mycoides. The presence of Ba813 chromosomal sequence has been detected in two B. cereus strains. Neither plasmids nor Ba813 chromosomal sequence have been discovered in other B. cereus, B. thuringiensis and B. mycoides strains. The results of the survey indicate that the Ba813 chromosomal sequence does not occur solely in B. anthracis strains. The PCR-RFLP method with the use of SG-749f and SG-749r primers enabled to demonstrate the presence of DNA sequence (SG-749) in B. anthracis, B. cereus, B. thuringiensis and B. mycoides strains. Restriction analysis with enzyme AluI of the SG-749 sequence, has shown the presence of two DNA fragments at the size of about 90 and 660 bp in all B. anthracis strains. The restriction profile obtained was characteristic for B. anthracis strains and it did not occur in other investigated bacterial species belonging to the B. cereus group. It was not observed even in such B. cereus strains in which the presence of Ba813 sequence was discovered and it enabled to differentiate between B. anthracis strains and other closely related species of the B. cereus group.  相似文献   

10.
The three species of the group 1 bacilli, Bacillus anthracis, B. cereus, and B. thuringiensis, are genetically very closely related. All inhabit soil habitats but exhibit different phenotypes. B. anthracis is the causative agent of anthrax and is phylogenetically monomorphic, while B. cereus and B. thuringiensis are genetically more diverse. An amplified fragment length polymorphism analysis described here demonstrates genetic diversity among a collection of non-anthrax-causing Bacillus species, some of which show significant similarity to B. anthracis. Suppression subtractive hybridization was then used to characterize the genomic differences that distinguish three of the non-anthrax-causing bacilli from B. anthracis Ames. Ninety-three DNA sequences that were present in B. anthracis but absent from the non-anthrax-causing Bacillus genomes were isolated. Furthermore, 28 of these sequences were not found in a collection of 10 non-anthrax-causing Bacillus species but were present in all members of a representative collection of B. anthracis strains. These sequences map to distinct loci on the B. anthracis genome and can be assayed simultaneously in multiplex PCR assays for rapid and highly specific DNA-based detection of B. anthracis.  相似文献   

11.
T C Reif  M Johns  S D Pillai    M Carl 《Applied microbiology》1994,60(5):1622-1625
Anthrax is a fatal infection of humans and livestock that is caused by the gram-positive bacterium Bacillus anthracis. The virulent strains of B. anthracis are encapsulated and toxigenic. In this paper we describe the development of a PCR technique for identifying spores of B. anthracis. Two 20-mer oligonucleotide primers specific for the capB region of 60-MDa plasmid pXO2 were used for amplification. The amplification products were detected by using biotin- and fluorescein-labeled probes in a novel dual-probe hybridization format. Using the combination of PCR amplification and dual-probe hybridization, we detected two copies of the bacterial genome. Because the PCR assay could detect a minimum of 100 unprocessed spores per PCR mixture, we attempted to facilitate the release of DNA by comparing the effect of limited spore germination with the effect of mechanical spore disruption prior to PCR amplification. The two methods were equally effective and allowed us to identify single spores of B. anthracis in PCR mixtures.  相似文献   

12.
Abstract Bacillus anthracis can be identified on the basis of the detection of virulence factor genes located on two plasmids, pXO1 and pXO2. Thus isolates lacking both pXO1 and pXO2 are indistinguishable from closely related B. cereus group bacteria. We developed a multiplex PCR assay for characterization of B. anthracis isolates, and simultaneous confirmation of the species identity independent of plasmid content. The assay amplifies lef, cya, pag (pXO1) and cap (pXO2) genes, and a B. anthracis specific chromosomal marker, giving an easy-to-read profile. This system unambiguously identified virulent (pXO1+/2+) and avirulent (pXO1+/2, pXO1/2+ and pXO1/2) strains of B. anthracis and distinguished 'anthrax-like' strains from other B. cereus group bacteria.  相似文献   

13.
Three Bacillus anthracis Sterne strains (USAMRIID, 7702, and 34F2) and Bacillus cereus ATCC 14579 excrete two catecholate siderophores, petrobactin (which contains 3,4-dihydroxybenzoyl moieties) and bacillibactin (which contains 2,3-dihydroxybenzoyl moieties). However, the insecticidal organism Bacillus thuringiensis ATCC 33679 makes only bacillibactin. Analyses of siderophore production by previously isolated [Cendrowski et al., Mol. Microbiol. 52 (2004) 407-417] B. anthracis mutant strains revealed that the B. anthracis bacACEBF operon codes for bacillibactin production and the asbAB gene region is required for petrobactin assembly. The two catecholate moieties also were synthesized by separate routes. PCR amplification identified both asbA and asbB genes in the petrobactin producing strains whereas B. thuringiensis ATCC 33679 retained only asbA. Petrobactin synthesis is not limited to the cluster of B. anthracis strains within the B. cereus sensu lato group (in which B. cereus, B. anthracis, and B. thuringiensis are classified), although petrobactin might be prevalent in strains with pathogenic potential for vertebrates.  相似文献   

14.
Bacillus cereus group bacteria share a significant degree of genetic similarity. Thus, to differentiate and identify the Bacillus cereus group efficiently, a multiplex PCR method using the gyrB and groEL genes as diagnostic markers is suggested for simultaneous detection. The assay yielded a 400 bp amplicon for the groEL gene from all the B. cereus group bacteria, and a 253 bp amplicon from B. anthracis, 475 bp amplicon from B. cereus, 299 bp amplicon from B. thuringiensis, and 604 bp amplicon from B. mycoides for the gyrB gene. No nonspecific amplicons were observed with the DNA from 29 other pathogenic bacteria. The specificity and sensitivity of the B. cereus group identification using this multiplex PCR assay were evaluated with different kinds of food samples. In conclusion, the proposed multiplex PCR is a reliable, simple, rapid, and efficient method for the simultaneous identification of B. cereus group bacteria from food samples in a single tube.  相似文献   

15.
rpoB and gyr genes (and their fragments) of chromosomal DNA of bacteria from Bacillus cereus group - B. anthracis, B. cereus, and B. thuringiensis - which are the potential markers for their genotyping were sequenced and phylogenetic trees were constructed. Sets of primers for species-specific detection of B. anthracis, B. cereus, and B. thuringiensis by multiplex polymerase chain reaction were designed. Also primers sets, which allow to differentiate strains of B. anthracis with various plasmid profiles (containing both plasmids (pXO1+, pXO2+), and without one (pXO1+, pXO2- or pXO1-, pXO2+) or both plasmids (pXO1-, pXO2-), determining pathogenic characteristics of the strains, were developed. For multiplex PCR primer sets were optimized on the annealing temperature of primers and amplicon length. Itwas shown that phylogenetic tree can be applied as an indicator of reliability and accuracy of taxonomical classification of microorganisms' species and subspecies. Comparison of pXO1 and pXO2 plasmid sequences of B. anthracis showed that these plasmids contain 18 and 4 palindrome sequences respectively which can potentially form thermodynamically stable hairpin-loop structures.  相似文献   

16.
Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides, Bacillus thuringiensis, and Bacillus weihenstephanensis are closely related in phenotype and genotype, and their genetic relationship is still open to debate. The present work uses amplified 16S-23S internal transcribed spacers (ITS) to discriminate between the strains and species and to describe the genetic relationships within the "B. cereus group," advantage being taken of homoduplex-heteroduplex polymorphisms (HHP) resolved by polyacrylamide gel electrophoresis and silver staining. One hundred forty-one strains belonging to the six species were investigated, and 73 ITS-HHP pattern types were distinguished by MDE, a polyacrylamide matrix specifically designed to resolve heteroduplex and single-strand conformation polymorphisms. The discriminating bands were confirmed as ITS by Southern hybridization, and the homoduplex or heteroduplex nature was identified by single-stranded DNA mung bean nuclease digestion. Several of the ITS-HHP types corresponded to specific phenotypes such as B. anthracis or serotypes of B. thuringiensis. Unweighted pair group method arithmetic average cluster analysis revealed two main groups. One included B. mycoides, B. weihenstephanensis, and B. pseudomycoides. The second included B. cereus and B. thuringiensis, B. anthracis appeared as a lineage of B. cereus.  相似文献   

17.
The multiplex amplification test system for the identification of Bacillus anthracis with primers to plasmid cya (pX01), capC (pX02) genes and chromosomal sap gene were developed. The primers to sap gene were selected by the authors and, after being tested on 72 microbial strains of the genus Bacillus, proposed as more specific in comparison with the known primers to chromosomal locus Ba 813. The proposed test system permitted the simultaneous identification of B. anthracis of all plasmid variants, the evaluation of their potential virulence and the differentiation of B. anthracis nonplasmid strains from bacilli of the group Bacillus cereus.  相似文献   

18.
目的:利用扩增片段长度多态性(AFLP)分析建立鉴别炭疽芽孢杆菌和蜡样芽孢杆菌的分子生物学方法。方法:3株炭疽芽孢杆菌和3株蜡样芽孢杆菌基因组经限制性内切酶EcoRⅠ和MseⅠ酶切后与对应接头连接,通过预扩增和选择性扩增获得特异性DNA片段,将片段进行毛细管电泳,并利用GeneScan和BioNumerics软件对电泳数据进行分析。结果:选择性扩增最佳引物组合为EcoRⅠ-G/MseⅠ-A,其扩增片段在100~500 bp范围内的有效数量为40~50条;比较炭疽芽孢杆菌和蜡样芽孢杆菌的AFLP特征峰值图和DNA指纹图谱,确定了5个有明显差异的片段区。结论:利用AFLP分析可对芽孢杆菌属中相近的炭疽芽孢杆菌和蜡样芽孢杆菌进行鉴别,该方法可作为炭疽芽孢杆菌传统鉴定方法的补充。  相似文献   

19.
Aims:  In order to improve the diagnosis of Bacillus anthracis in environmental samples, we established a DNA microarray based on the ArrayTube technology of Clondiag.
Methods and Results:  Total DNA of a bacterial colony is randomly biotinylated and hybridized to the array. The probes on the array target the virulence genes, the genomic marker gene rpoB , as well as the selective 16S rDNA sequence regions of B. anthracis , of the Bacillus cereus group and of Bacillus subtilis . Eight B. anthracis reference strains were tested and correctly identified. Among the analysed environmental Bacillus isolates, no virulent B. anthracis strain was detected.
Conclusions:  This array clearly differentiates B. anthracis from members of the B. cereus group and other Bacillus species in environmental samples by chromosomal ( rpoB ) and plasmid markers. Additionally, recognition of B. cereus strains harbouring the toxin genes or atypical B. anthracis strains that have lost the virulence plasmids is feasible.
Significance and Impact of the Study:  The array is applicable to the complex diagnostics for B. anthracis detection in environmental samples. Because of low costs, high security and easy handling, the microarray is applicable to routine diagnostics.  相似文献   

20.
AIMS: To evaluate the genetic relationship in the Bacillus cereus group by rep-PCR fingerprinting. METHODS AND RESULTS: A collection of 112 strains of the six species of the B. cereus group was analysed by rep-PCR fingerprinting using the BOX-A1R primer. A relative genetic distinctness was found among the species. Cluster analysis of the rep-PCR patterns showed clusters of B. thuringiensis strains quite separate from those of B. cereus strains. The B. anthracis strains represented an independent lineage in a B. cereus cluster. The B. mycoides, B. pseudomycoides and B. weihenstephanensis strains were clustered into three groups at some distance from the other species. Comparison of sequences of AC-390, a typical B. anthracis rep-PCR fragment, from 27 strains of B. anthracis, B. cereus, B. thuringiensis and B. weihenstephanensis, representative of different clusters identified by rep-PCR fingerprinting, confirmed that B. anthracis diverges from its related species. CONCLUSIONS: The genetic relationship deduced from the rep-PCR patterns indicates a relatively clear separation of the six species, suggesting that they can indeed be considered as separate units. SIGNIFICANCE AND IMPACT OF THE STUDY: rep-PCR fingerprinting can make a contribution in the clarification of the genetic relationships between the species of the B. cereus group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号