首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Abstract. The contribution of resprouts and seedling recruitment to post-fire regeneration of the South African fynbos conifer Widdringtonia nodiflora was compared eight months after wildfires in 1990. Stems on all trees were killed by fire but resprouting success was > 90 % at all but one site. A demographic study of burned skeletons revealed that prior to these fires, nearly all plants were multi-stemmed (4–9 stems/plant) and multi-aged, indicating continuous sprout production between fires. All stems were killed by these 1990 fires and at most sites > 90 % of the stems were burned to ground level. All diameter stems were susceptible to such incineration as, at most sites, there was no difference in average diameter of stems burned to ground level and those left standing. Individual genets usually had all ramets incinerated to ground level or all ramets charred, but intact, suggesting certain micro-sites burned hotter, whereas other sites were somewhat protected. Although not true of the 1990 fires, there was evidence that occasionally Widdring-tonia stems may survive fire. At one site, four of the 16 plants sampled had a burned stem twice as old as the oldest burned stem on the other 12 plants at the site, suggesting some stems had survived the previous fire (ca. 1970) and this conclusion was supported by fire-scars on these four stems that dated to ca. 1970. Based on the highly significant correlation between stem diameter and cone density left standing after the 1990 fires, we calculated that for most sites > 80 % of the initial cone crop was incinerated by fire. This is important because we observed a strong relationship between size of the canopy cone crop surviving fire and post-fire seedling recruitment. Under these conditions we hypothesize that sprouting confers a selective advantage to genets when fires cause heavy losses of seed. The infrequent occurrence of sprouting in the Cupressaceae suggests the hypothesis that resprouting is an apomorphic or derived trait in Widdringtonia. Data from this study suggests resprouting provides a selective advantage under severe fynbos fires, which are not only 'stand-replacing fires,’but also are intense enough to incinerate cone-bearing stems.  相似文献   

2.
Little is known about the effects of fire on the structure and species composition of Neotropical savanna seedling communities. Such effects are critical for predicting long‐term changes in plant distribution patterns in these ecosystems. We quantified richness and density of seedlings within 144 plots of 1 m2 located along a topographic gradient in long‐unburned (fire protected since 1983) and recently burned (September 2005) savannas in Brazil. These savannas differ in tree density and canopy cover. Sites along the gradient, however, did not differ in species composition prior to the fire. In recently burned savannas we also evaluated the contribution of vegetative reproduction relative to sexual reproduction by quantifying richness and density of root suckers. Finally, we tested seed tolerance to pulses of high temperatures—similar to those occurring during fires on the soil surface and below—of five dominant savanna tree species. Seedlings were more abundant and diverse in unburned than in burned savannas. Seedling species composition differed among unburned and burned savannas probably reflecting early differences in root: shoot biomass allocation patterns. In recently burned savannas, root suckers were more abundant and diverse than seedlings. Relatively long exposures (>10 min) of temperatures of 90 °C reduced seed germination in all studied species suggesting a negative effect of fire on germination of seeds located at or aboveground level. Because vegetative reproduction contributes more than sexual reproduction in burned environments, frequent fires are likely to cause major shifts in species composition of Neotropical savanna plant communities, favoring clonally produced recruits along tree density/topographic gradients.  相似文献   

3.
黑龙江省大兴安岭林区火烧迹地森林更新及其影响因子   总被引:8,自引:0,他引:8  
林火干扰是大兴安岭森林更新的影响因子之一,研究火烧迹地森林更新的影响因子(立地条件、火前植被、火干扰特征)对理解生态系统的结构、功能和火后演替轨迹具有重要意义。选取呼中及新林林业局55个代表性火烧样地,利用增强回归树分析法分析了火烧迹地森林更新的影响因素。结果表明:(1)立地条件是影响针、阔叶树更新苗密度的主要因素;海拔对针叶树更新苗密度的影响最大;坡度对阔叶树更新苗密度影响最大;(2)距上次火烧时间对针叶树更新苗比重影响最大,其次是林型;(3)中度林火干扰后森林更新状况好于轻度和重度火烧迹地。根据火烧迹地森林更新调查分析可知:林型影响火后演替模式,火前为针叶树或阔叶树纯林,火后易发生自我更新(火后树种更新组成与火前林型相同),而针阔混交林在火干扰影响下易于发生序列演替(火后初期以早期演替树种更新为主)。  相似文献   

4.
Goubitz  S.  Nathan  R.  Roitemberg  R.  Shmida  A.  Ne’eman  G. 《Plant Ecology》2004,173(2):191-201
To assess the canopy seed bank structure of Pinus halepensis, we measured the level of serotiny and the seed bank size and density of trees in unburned stands and post-fire regenerated stands in Israel. We analysed the effects of tree size, tree density and fire history on the level of serotiny. The level of serotiny decreased with an increase in tree height. The high level of serotiny in short trees could be explained by selection to increase regeneration chances after burning at pre-mature age. Also, limitation of long-distance seed dispersal opportunities in short trees may favour high serotiny levels. The level of serotiny was higher in post-fire stands than in unburned stands, suggesting a fast selection for serotiny by fire. Unburned stands had a higher total stand seed density than post-fire regenerated stands, but the proportion of seeds in serotinous cones of the total stand seed density was higher in post-fire regenerated stands. The fact that P. halepensis bears simultaneously serotinous and non-serotinous cones reflects its dual strategy as both a post-fire obligate seeder, mainly from serotinous cones and an early coloniser during fire-free periods, mainly from non-serotinous cones. The relative investment in these strategies is dependent on fire history and varies with tree height. Furthermore, mature brown cones can contribute to post-fire regeneration in case of spring fires, and serotinous cones are known to open partially also in dry spell events. Thus, post-fire regeneration and invasion are strategies, which seem to complement each other.  相似文献   

5.
Ne'eman  Gidi  Goubitz  Shirrinka  Nathan  Ran 《Plant Ecology》2004,171(1-2):69-79

Fire is known to be a major factor in shaping plants and vegetation worldwide. Many plant traits have been described as adaptations for surviving fire, or regenerating after it. However, many of the traits are also advantageous for overcoming other disturbances. The fact that fire in the Mediterranean Basin has been almost exclusively of anthropogenic origin, and thus is of short duration in an evolutionary time scale, cast doubt on the possibility that fire can act as a selective force in the Mediterranean Basin. Our aim here is to review the ecological advantages of Pinus halepensis traits and their possibility to be selected by fire. The non-self pruning of cones and branches, and the high resin content increase the probability of canopy fires and consequent death of P. halepensis trees. Post-fire regeneration of P. halepensis depends totally upon its canopy-stored seed bank. The seedlings grow quickly and they first reproduce at an early age. Young reproductive trees function first as females with a high percentage of serotinous cones. Thus, young P. halepensistrees allocate many resources to seed production, reducing their `immaturity risk' in a case of an early successive fire. The proportion of serotinous cones is higher in post-fire naturally regenerating stands than in unburned stands, and seeds from serotinous cones germinate better under simulated post-fire conditions. The extremely high pH of the ash-bed under the burned canopies creates the post-fire regeneration niche of P. halepensis exactly under their parent trees. All these traits are advantageous for post-fire regeneration, but could they also be selected during the time scale of anthropogenic fires in the Mediterranean Basin? Pinus halepensis is a relatively short living tree with almost no recruitment under forest canopy. The longest estimated fire-return interval and generation length are about 125 years. The earliest solid evidence for the first hominid-controlled fire in the Mediterranean basin is 780,000 years ago, and thus the estimated number of post-fire generations is 6240. We suggest that such a number of generations is sufficient for the selection and radiation of fire adaptive traits in P. halepensis.

  相似文献   

6.
In environments with high fire frequency the impoverishment of abiotic resources may favour male sexual expression in plants as it is less costly than female expression. Also, fire can modify pollinator communities and thus affect plant reproduction. Here we evaluate the effect of frequent fires on sexual expression, pollination and reproductive success of Vachellia caven (Leguminosae), an andromonoecious tree that is highly dependent on animal pollination and is abundant in burned sites. We expect that increased fire frequency will favour maleness but it will decrease reproductive success due to abiotic resource depletion in repeated burned sites. To test this, we selected focal plants in three unburned sites and three frequently burned sites and measured their sexual expression, basal diameter, pollination and fruit set. The proportion of male inflorescences per plant was not affected by fire and it was negatively related with the diameter of the plant. The proportion of pollinated flowers was not affected by fire, and fruit set increased with maleness only in frequently burned sites. These results indicate that V. caven is adapted to regimes of high fire frequency: not only was there similar fruit set in both burned and unburned sites, but more male plants had higher fruit set in burned sites. Despite the soil impoverishment triggered by repeated fires, V. caven is able to maintain its sexual and reproductive functions, allowing it to persist and maintain viable populations in fire‐prone environments. Abstract in Spanish is available with online material.  相似文献   

7.
Fire is an important natural disturbance in the Okefenokee Swamp. From April–June 2007, wildfire burned 75% of the wetland area. With the existence of extensive pre-fire data sets on community structure and total mercury of invertebrates, the fire presented an opportunity to assess impacts of wildfire on invertebrates. Post-fire collection of samples occurred in September, December, and May, 2007–2009. Sample sites included 13 burned and 8 non-burned (reference) sites. Comparisons of data among pre-fire, post-fire reference, and post-fire burned sites revealed that the major difference between pre-fire communities and post-fire communities was a decrease in the number of water mites. We also found a decrease in mercury concentrations in amphipods, odonates, and crayfish post-fire. The differences between pre-fire and post-fire samples may be confounded by drought conditions during the baseline study. NMDS ordinations and ANOSIM tests suggested that habitat was an important factor; communities in burned cypress differed from reference cypress. Unexpectedly, burned sites had lower mercury concentrations in odonates and crayfish, with variation again being greatest in cypress stands. These findings and others suggest mercury levels do not follow a predictable pattern but can vary with pre-fire concentrations, variation in water levels, and burn intensity. We found that wildfire in the Okefenokee had little impact on invertebrates in prairies and scrub-shrub thickets, but can affect indicator organisms (Oecetis, Ischnura, and Sigara) in cypress stands. Our study suggests that vegetation type and burn intensity may have impacts on the invertebrate communities and mercury concentrations of organisms.  相似文献   

8.
Wildfires are a typical event in many Australian plant communities. Vesicular-arbuscular mycorrhizal (VAM) fungi are important for plant growth in many communities, especially on infertile soils, yet few studies have examined the impact of wildfire on the infectivity of VAM fungi. This study took the opportunity offered by a wildfire to compare the infectivity and abundance of spores of VAM fungi from: (i) pre-fire and post-fire sites, and (ii) post-fire burned and unburned sites. Pre-fire samples had been taken in May 1990 and mid-December 1990 as part of another study. A wildfire of moderate intensity burned the site in late December 1990. Post-fire samples were taken from burned and unburned areas immediately after the fire and 6 months after the fire. A bioassay was used to examine the infectivity of VAM fungi. The post-fire soil produced significantly less VAM infection than the pre-fire soil. However, no difference was observed between colonization of plant roots by VAM fungi in soil taken from post-fire burned and adjacent unburned plots. Soil samples taken 6 months after the fire produced significantly more VAM than corresponding soil samples taken one year earlier. Spore numbers were quantified be wet-sieving and decanting of 100-g, air-dried soil subsamples and microscopic examination. For the most abundant spore type, spore numbers were significantly lower immediately post-fire. However, no significant difference in spore numbers was observed between post-fire burned and unburned plots. Six months after the fire, spore numbers were the same as the corresponding samples taken 1 year earlier. All plants appearing in the burned site resprouted from underground organs. All post-fire plant species recorded to have mycorrhizal associations before the fire had the same associations after the fire, except for species of Conospermum (Proteaceae), which lacked internal vesicles in cortical cells in the post-fire samples.  相似文献   

9.
The objective of this study was to characterize the effects of soil burn severity and initial tree composition on long-term forest floor dynamics and ecosystem biomass partitioning within the Picea mariana [Mill.] BSP-feathermoss bioclimatic domain of northwestern Quebec. Changes in forest floor organic matter and ecosystem biomass partitioning were evaluated along a 2,355-year chronosequence of extant stands. Dendroecological and paleoecological methods were used to determine the time since the last fire, the soil burn severity of the last fire (high vs. low severity), and the post-fire tree composition of each stand (P. mariana vs. Pinus banksiana Lamb). In this paper, soil burn severity refers to the thickness of the organic matter layer accumulated above the mineral soil that was not burned by the last fire. In stands originating from high severity fires, the post-fire dominance by Pinus banksiana or P. mariana had little effect on the change in forest floor thickness and tree biomass. In contrast, stands established after low severity fires accumulated during the first century after fire 73% thicker forest floors and produced 50% less tree biomass than stands established after high severity fires. Standing tree biomass increased until approximately 100 years after high severity fires, and then decreased at a logarithmic rate in the millennial absence of fire. Forest floor thickness also showed a rapid initial accumulation rate, and continued to increase in the millennial absence of fire at a much slower rate. However, because forest floor density increased through time, the overall rate of increase in forest floor biomass (58 g m−2 y−1) remained constant for numerous centuries after fire (700 years). Although young stands (< 200 years) have more than 60% of ecosystem biomass locked-up in living biomass, older stands (> 200 years) sequester the majority (> 80%) of it in their forest floor. The results from this study illustrate that, under similar edaphic conditions, a single gradient related to time since disturbance is insufficient to account for the full spectrum of ecosystem biomass dynamics occurring in eastern boreal forests and highlights the importance of considering soil burn severity. Although fire severity induces diverging ecosystem biomass dynamics in the short term, the extended absence of fire brings about a convergence in terms of ecosystem biomass accumulation and partitioning.  相似文献   

10.
The importance of fire to the maintenance of herbaceous plant communities in Florida wetland ecosystems is widely acknowledged. However, despite the acceptance of fire as a natural and necessary disturbance, ecosystem responses to fire in these systems are still poorly understood. Of particular concern is the effect of fire on the dynamics of plant communities dominated by Cladium jamaicense Crantz and Typha domingensis Pers. High nutrient levels, primarily phosphorus, and prolonged hydroperiods have been associated with Typha expansion into Cladium dominated communities. Recent studies suggest that fire is a disturbance that may play a facilitative role in this process. The objective of this study was to monitor the long-term effects of a single prescribed fire on Cladium and Typha densities in a freshwater marsh in Florida. Transects located at two burned sites and one unburned site were sampled prior to and annually for four years following a prescribed, lightning-season fire. There was a significant increase (P < 0.01) in Typha at both burn sites for two years after the fire. However, this increase was temporary since Typha density declined to pre-burn levels in the third and fourth years post-burn. Cladium density at the burned sites either increased or remained unchanged throughout the study period. When the control site unexpectedly burned in the fourth year of the study, density changes of Typha were similar to those observed at the original burn sites. Overall, we did not see any lasting changes in Cladium and Typha as a result of the fires, even though soil nutrient levels and hydroperiods were within levels documented to enhance Typha expansion.  相似文献   

11.
Plants of Banksia ericifolia and Petrophile pulchella are sensitive to fire. Changes in population size under different fire regimes were estimated, based on measurements of post-fire seedling emergence, seedling survival, survival and seed production in established plants of differing ages, survival of seeds held in serotinous cones and seed-release in the periods between fire. Seeds were first available at 5 years in P. pulchella and 6 years in B. ericifolia. Exact replacement would be possible when burnt at these ages, if seedling establishment were very high. Low establishment would delay replacement to 13 years of age in both species. Late summer/autumn fires of high intensity favour high establishment. Such fires at 8–10 year intervals would be tolerated without any sustained decline in numbers. Fires at 10–15 year intervals could occur regardless of season or intensity with little risk of a population decline. Large increases in numbers and density would follow fires spaced at 15–30 years. Enough seeds would be available for replacement up to about 50 years in both species. Viable seed-release in unburnt conditions was sufficient to compensate for deaths in stands over 20 years old, even with very low levels of establishment. Two variables accounted for the biggest changes in numbers and density between generations interspersed by fires; namely the age at which a stand is burned and the proportion of seeds which emerge as seedlings. A comparison with other similar species showed similarities in controls on emergence and establishment, lengths of primary juvenile periods and life spans.  相似文献   

12.
Abstract. This study deals with a quantification of pre- and post-fire seedling establishment and microsite characteristics in two Florida sand pine scrub sites burned in May 1993. In addition, life history characteristics related to seedling establishment are described for five perennial species –Calamintha ashei, Chapmannia floridana, Eriogonum floridanum, Garberia heterophylla and Palafoxia feayi. Post-fire seedling establishment in sand pine scrub was sparse (median = 1, 12 seedling/m2), with 17 of 35 species establishing seedlings. Chapmannia, Eriogonum, Garberia and Palafoxia resprouted and flowered after fire; Eriogonum and Garberia had strong post-fire seedling establishment responses within 19 months post-fire. Calamintha individuals were killed by fire, but this species had a strong post-fire seedling establishment response, presumably from seeds in a soil seed bank. Eriogonum and Calamintha seedlings established preferentially in plots centered on conspecific adults. For these species with poor seed dispersal, spatial patterns of seedling establishment may be influenced more by pre-fire adult plant location than by post-fire microsite conditions. Post-fire seedling density in sand pine scrub was much lower than in California chaparral and South African sand plain lowland fynbos.  相似文献   

13.
Questions: How does the time interval between subsequent stand‐replacing fire events affect post‐fire understorey cover and composition following the recent event? How important is fire interval relative to broad‐ or local‐scale environmental variability in structuring post‐fire understorey communities? Location: Subalpine plateaus of Yellowstone National Park (USA) that burned in 1988. Methods: In 2000, we sampled understorey cover and Pinus contorta density in pairs of 12–yr old stands at 25 locations. In each pair, the previous fire interval was either short (7–100 yr) or long (100–395 yr). We analysed variation in understorey species richness, total cover, and cover of functional groups both between site pairs (using paired t‐tests) and across sites that experienced the short fire intervals (using regression and ordination). We regressed three principal components to assess the relative importance of disturbance and broad or local environmental variability on post‐fire understorey cover and richness. Results: Between paired plots, annuals were less abundant and fire‐intolerant species (mostly slow‐growing shrubs) were more abundant following long intervals between prior fires. However, mean total cover and richness did not vary between paired interval classes. Across a gradient of fire intervals ranging from 7–100 yr, total cover, species richness, and the cover of annuals and nitrogen‐fixing species all declined while the abundance of shrubs and fire‐intolerant species increased. The few exotics showed no response to fire interval. Across all sites, broad‐scale variability related to elevation influenced total cover and richness more than fire interval. Conclusions: Significant variation in fire intervals had only minor effects on post‐fire understorey communities following the 1988 fires in Yellowstone National Park.  相似文献   

14.
The response of an ecosystem to disturbance reflects its stability, which is determined by two components: resistance and resilience. We addressed both components in a study of early post-fire response of natural broadleaved forest (Quercus robur, Ilex aquifolium) and pine plantation (Pinus pinaster, Pinus sylvestris) to a wildfire that burned over 6000 ha in NW Portugal. Fire resistance was assessed from fire severity, tree mortality and sapling persistence. Understory fire resistance was similar between forests: fire severity at the surface level was moderate to low, and sapling persistence was low. At the canopy level, fire severity was generally low in broadleaved forest but heterogeneous in pine forest, and mean tree mortality was significantly higher in pine forest. Forest resilience was assessed by the comparison of the understory composition, species diversity and seedling abundance in unburned and burned plots in each forest type. Unburned broadleaved communities were dominated by perennial herbs (e.g., Arrhenatherum elatius) and woody species (e.g., Hedera hibernica, Erica arborea), all able to regenerate vegetatively. Unburned pine communities presented a higher abundance of shrubs, and most dominant species relied on post-fire seeding, with some species also being able to regenerate vegetatively (e.g., Ulex minor, Daboecia cantabrica). There were no differences in diversity measures in broadleaved forest, but burned communities in pine forest shared less species and were less rich and diverse than unburned communities. Seedling abundance was similar in burned and unburned plots in both forests. The slower reestablishment of understory pine communities is probably explained by the slower recovery rate of dominant species. These findings are ecologically relevant: the higher resistance and resilience of native broadleaved forest implies a higher stability in the maintenance of forest processes and the delivery of ecosystem services.  相似文献   

15.
  • Several Cerrado tree species have traits and structures that protect from fires. The effectiveness of a trait depends on the fire regime, especially the frequency. We used Vochysia elliptica, a common Cerrado tree, as a model to test whether different fire frequencies alter crown architecture and flower, fruit and seed production.
  • We analysed the effect of fire on the production of inflorescences, fruits and seeds, as well as seed germination and tree architecture of 20 trees in each of three plots of a long‐term ecological experiment managed with different fire regimes: burned every 2 years (B), burned every 4 years (Q) in mid‐dry season and an area protected from fire (C).
  • We found a large negative effect of fire frequency on crown architecture and on flower and fruit production. Trees in C and Q had significantly more main branches and a larger crown area than trees in B. At its peak, a tree in C was expected to produce 2.4 times more inflorescences than Q, and 15.5 times more than B, with similar magnitudes for fruits. Sixty per cent of trees in B and 10% in Q produced no fruits.
  • The differences in architecture might explain the reduction in sexual reproduction due to a smaller physical space to produce flowers at the branch apices. Resource limitation due to plant investment to replace burned vegetative parts may also decrease sexual reproduction. Our results indicate potentially severe consequences of high fire frequencies for population dynamics and species persistence in Cerrado communities.
  相似文献   

16.
Expansion of woody species into herbaceous wetlands is a serious concern in wetland management. Prescribed fire is often used as a tool to manage woody species, although many species resprout after fire making control problematic. In this study, we assessed the usefulness of repeated dormant season fires for controlling Salix caroliniana (Michx.) in a floodplain marsh in Florida. Salix is a common shrub in southeastern marshes that resprouts prolifically after fire. We compared stem basal area, stem density, and cover of Salix in three adjacent sites in a floodplain marsh in east central Florida. One site was burned once in February 1997, another site was burned in February 1997 and then again in March 1999 and one site was left unburned. At the unburned site, Salix stem basal area, stem density, and cover increased over the course of the study. In the two burned sites, the first fire destroyed large diameter stems and stimulated production of sprouts. As a result, stem basal area and cover decreased but stem density remained unchanged. The second fire caused a decline in stem density and a further decline in cover. Changes in understory species composition and cover could not be attributed to the fires. Our results suggest that dormant season fires are effective in reducing Salix cover and basal area, and that repeated fires have greater effects than a single fire.  相似文献   

17.
In Rocky Mountain forests, fire can act as a mechanism of change in plant community composition if postfire conditions favor establishment of species other than those that dominated prefire tree communities. We sampled pre and postfire overstory and postfire understory species following recent (1988–2006) stand-replacing fires in Glacier National Park (GNP), Montana. We identified changes in relative density of tree species and groups of species (xerophytes vs. mesophytes and reseeders vs. resprouters) in early succession. Postfire tree seedling densities were adequate to maintain prefire forest structure, but relative densities among species were variously changed. Changes were directly related to individual species’ response to severe fires. Most notably, relative density of the mesophytic resprouter quaking aspen (Populus tremuloides) and the xerophytic reseeder lodgepole pine (Pinus contorta) increased substantially following fire, with a concomitant decline in proportional abundance of other tree species that, in some cases, dominated stands before fire. Trends identified in our study suggest that forest community shifts toward those dominated by lodgepole pine and quaking aspen are occurring in GNP. Cover of understory species was not affected by tree species composition or density. These forest communities will likely change throughout succession with the addition of shade-intolerant species in early seral stages and shade-tolerant species later in succession. However, with increased fire frequency, the lodgepole pine-dominated postfire communities observed in our study may become more common throughout time.  相似文献   

18.
A. M. Persiani 《Plant biosystems》2013,147(4):1104-1106
Mediterranean ecosystems are among those most significantly modified by fires. Such fires lead to evident disturbance of the above- and below-ground ecosystem components, at various spatial and temporal scales, including soil microfungi. The ecological parameters used to measure the effects of disturbance on soil fungal communities include species-abundance distribution patterns, which reflect changes in the relationships between species numbers and their relative abundance, and serve as a critical measure of community organization. Species-abundance distribution patterns were used to assess the disturbance impact of experimental fires on soil fungal communities in Mediterranean maquis (southern Italy) in the short- to mid-term. The trend in the distribution patterns of heat-stimulated and xerotolerant soil fungi over time, their varying responses to low- and high-intensity fire, the efficiency of the soil germplasm bank, and the pivotal role of Neosartorya spp. in post-fire community structure in Mediterranean burned soils may all be used as tools to accurately assess the effects of fire on soil mycobiota.  相似文献   

19.
This study analyzes the variations in the structure and composition of ant communities in burned Pinus nigra forests in central Catalonia (NE Spain). Pinus nigra forests do not recover after fire, changing to shrublands and oak coppices. For this reason, we suggest that ant communities of burned P. nigra forests will change after fire, because the post‐fire scenario, in particular with the increase of open areas, is different to the unburned one, and more favourable for some species than for others. In four locations previously occupied by P. nigra forests where different fires occurred 1, 5, 13 and 19 yr before the sampling, we sampled the structure and composition of ant communities with pitfall traps, tree traps and net sweeping in unburned plots and in plots affected by canopy and understory fire. The results obtained suggest that canopy and understory fire had little effect on the structure of ant communities. Thus, many variables concerning ant communities were not modified either by fire type (understory or canopy fire) or by time since fire. However, a number of particular species were affected, either positively or negatively, by canopy fire: three species characteristic of forest habitats decreased after fire, while eight species characteristic of open habitats increased in areas affected by canopy fire, especially in the first few years after fire. These differences in ant community composition between burned and unburned plots imply that the maximum richness is achieved when there is a mixture of unburned forests and areas burned with canopy fire. Moreover, as canopy cover in P. nigra forests burned with canopy fire is not completed in the period of time studied, the presence of the species that are characteristic of burned areas remains along the chronosequence studied, while the species that disappear after fire do not recover in the period of time considered. Overall, the results obtained indicate that there is a persistent replacement of ant species in burned P. nigra forests, as is also the case with vegetation.  相似文献   

20.
Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities of long‐lived organisms to reorganize in alternative configurations. This study used landscape‐scale variations in environmental conditions, stand structure, and disturbance from an extreme fire year in Alaska to examine how these factors affected successional trajectories in boreal forests dominated by black spruce. Because fire intervals in interior Alaska are typically too short to allow relay succession, the initial cohorts of seedlings that recruit after fire largely determine future canopy composition. Consequently, in a dynamically stable landscape, postfire tree seedling composition should resemble that of the prefire forest stands, with little net change in tree composition after fire. Seedling recruitment data from 90 burned stands indicated that postfire establishment of black spruce was strongly linked to environmental conditions and was highest at sites that were moist and had high densities of prefire spruce. Although deciduous broadleaf trees were absent from most prefire stands, deciduous trees recruited from seed at many sites and were most abundant at sites where the fires burned severely, consuming much of the surface organic layer. Comparison of pre‐ and postfire tree composition in the burned stands indicated that the expected trajectory of black spruce self‐replacement was typical only at moist sites that burned with low fire severity. At severely burned sites, deciduous trees dominated the postfire tree seedling community, suggesting these sites will follow alternative, deciduous‐dominated trajectories of succession. Increases in the severity of boreal fires with climate warming may catalyze shifts to an increasingly deciduous‐dominated landscape, substantially altering landscape dynamics and ecosystem services in this part of the boreal forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号