首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 611 毫秒
1.
Halimium halimifolium (L.)Willk. is a woodyCistaceae species occurring locally in the Western Mediterranean. At the Doñana National Park (S Atlantic coast of Spain),Halimium halimifolium is the main component of stable sand vegetation. It grows in a range of environmental conditions from flood-prone depressions to mobile dunes, but it is most abundant, and dominates the scrub composition on the slopes of fixed dune ridges with a water table depth of 2 to 4 m. The species exhibits not only morphological modifications (hairy leaves and twigs), but also structural and ecophysiological adaptations. The response ofH. halimifolium to stress conditions (leaf water potential, leaf diffusion resistance, and plant growth) have been studied in the field, throughout an annual cycle in four populations growing in different environments, three dune types differing in soil moisture, and one dune slack. Results showed that plants from the hygrophytic area (MN) had the less negative water potentials, the lowest stomatal resistances and the biggest vegetative growth, together with the highest Leaf Area Index, canopy light extinction, the largest leaf area and the lowest sclerophyll index. Plants from the most xerophytic area (MB) had the lowest Leaf Area Index, the smallest leaf area and the highest sclerophyll index. Even though in dune slopes (MI) water table was shallower than in MB, plants in the latter had more negative water potentials and bigger vegetative growth. Water potential values only exhibited significant differences among the four populations at the end of the spring period and over the summer. These results are discussed in relation to the climatic conditions of the study period (3 years of a drought cycle). Plants from the mobile dune system showed features which were intermediate between MN and MI plants.  相似文献   

2.
3.
Vegetation changes in a wet dune slack complex have been studied over a period of 23 yr. The vegetation was recorded in 40 permanent plots: all plots in 1964, 1977, 1983 and 1987 and some also in five other years. There were large fluctuations in annual precipitation during this period, including some extremely dry (1976) and wet (1985) years. Many species of wet calcareous and pioneer habitats declined in cover between 1964 and 1977, when there were prolonged dry summer periods, though few species were lost from the sampled quadrats. Practically all calciphilous and pioneer species disappeared between 1977 and 1983, when there were relatively many wet summers. It is suggested that extremely dry conditions temporarily obscure the impacts of hydrological changes in local hydrological systems, by retarding the vegetation succession. After a period of excessive precipitation the (acidifying) effects of ground-water withdrawal rapidly became evident in the species composition of the dune slack.  相似文献   

4.
Wet dune slacks: decline and new opportunities   总被引:2,自引:2,他引:0  
For a number of infiltrated coastal dune areas it is discussed to what extent artificial infiltration for the public water supply affects the quality of soil, groundwater and vegetation around pools and ponds, and what its effect is on the vegetation. Further, the results of investigations into the quality of vegetation, soil and water of a number of non-infiltrated, less affected dune areas are presented. The emphasis is on changes in groundwater flow pattern and on changes in the chemical composition of groundwater on the vegetation of wet dune slacks. Finally, recommendations for the management of wet dune slacks are presented. It can be concluded that the introduction of nutrients through infiltration causes an abundance of nitrophilous herbaceous vegetation along the banks of all infiltration ponds and most dune pools. Of the three investigated macro-nutrients, nitrate, potassium and phosphate, the latter shows the most significant correlation with the composition, cover and biomass of the vegetation. The moist biotopes of non-infiltrated dunes have largely disappeared because of desiccation, mainly as a consequence of water withdrawal, afforestation and coastal erosion. Relatively unaffected dune slacks can be found in the dunes on the Dutch Wadden Sea islands and a small number of dune areas on the mainland. In most areas, however, a serious decline in many rare species has been observed during the past twenty years because of eutrophic and acid precipitation, often in combination with disturbances of the groundwater regime.  相似文献   

5.
Invertebrate communities and turnover in wetland ponds affected by drought   总被引:6,自引:0,他引:6  
1. Changes to the macroinvertebrate fauna found in small ponds on a freshwater marsh (Aberlady Bay, Scotland) in 1986, 1987 and 1992 were used to assess the impact of the 1988–92 drought on taxon turnover in pond communities. 2. Permanent ponds accumulated taxa over the study period. Ponds that were wet throughout 1986–87 but dried in 1992 lost some of the many taxa associated with permanent water but acquired a reduced fauna typical of temporary ponds. Ponds that were temporary in 1986–87 were dry during most of 1992 and lost almost all aquatic taxa. 3. Faunal turnover was considerable even in permanent ponds. Extinction rates were high for taxa typical of permanent or temporary ponds. Colonization rates were poor for the taxa from permanent water, but high for the taxa from temporary ponds. 4. The importance of colonization and extinction rates as main predictors of the distribution of species between the ponds was looked at using metapopulation incidence functions, where observed incidence of a taxon can be used to predict colonization and extinction rates. Predicted rates were then compared with observed rates. Incidence functions gave reasonable predictions of observed colonization rates but were poor predictors of extinction, even for taxa that appeared likely to be true metapopulations. 5. For the pond fauna, including fugitive species adapted to temporary ponds, whilst colonization may well depend on environmental stochasricity (how long a pond holds water), subsequent survival depends on other, demographic, processes (e.g. finding a mate, predation) rather than the pond drying out.  相似文献   

6.
1. Stormwater management ponds (SWMPs) are taking the place of natural ponds and wetlands in urban areas. SWMPs have the potential to serve as hotspots for nutrient cycling, yet little is known about how urban catchments affect nutrient chemistry and stoichiometry within these ponds. 2. We sampled 50 SWMPs in Southern Ontario, Canada, to characterise their seston stoichiometry and make comparisons with published lake and pond data and models of seston stoichiometry. We tested (i) whether C : N : P ratios were similar to natural ponds and small lakes, (ii) whether seston stoichiometry was scale dependent and (iii) whether variability in seston chemistry could be explained by landscape and pond characteristics, such as catchment imperviousness and hydrological condition (based on recently received rainfall). 3. Seston C : N and C : P ratios were significantly lower in SWMPs than published ratios for small lakes, likely because of high nitrogen and phosphorus concentrations in SWMPs. Our results also showed no dependency of stoichiometric ratios on pond size. Analyses of ratios versus landscape and pond characteristics revealed significant relationships only when ponds were grouped based on the hydrological condition of the catchments. 4. It is likely that SWMPs function very differently during wet and dry periods. When SWMPs are disconnected from the landscape after a lengthy dry period, internal processes become increasingly important for seston stoichiometry.  相似文献   

7.
The alteration of fresh and marine water cycling is likely to occur in coastal ecosystems as climate change causes the global redistribution of precipitation while simultaneously driving sea‐level rise at a rate of 2–3 mm yr?1. Here, we examined how precipitation alters the ecological effects of ocean water intrusion to coastal dunes on two oceanic carbonate islands in the Bahamas. The approach was to compare sites that receive high and low annual rainfall and are also characterized by seasonal distribution (wet and dry season) of precipitation. The spatial and temporal variations in precipitation serve as a proxy for conditions of altered precipitation which may occur via climate change. We used the natural abundances of stable isotopes to identify water sources (e.g., precipitation, groundwater and ocean water) in the soil–plant continuum and modeled the depth of plant water uptake. Results indicated that decreased rainfall caused the shallow freshwater table on the dune ecosystem to sink and contract towards the inland, the lower freshwater head allowed ocean water to penetrate into the deeper soils, while shallow soils became exceedingly dry. Plants at the drier site that lived nearest to the ocean responded by taking up water from the deeper and consistently moist soil layers where ocean water intruded. Towards the inland, decreased rainfall caused the water table to sink to a depth that precluded both recharge to the upper soil layers and access by plants. Consequently, plants captured water in more shallow soils recharged by infrequent rainfall events. The results demonstrate dune ecosystems on oceanic islands are more susceptible to ocean water intrusion when annual precipitation decreases. Periods of diminished precipitation caused drought conditions, increased exposure to saline marine water and altered water‐harvesting strategies. Quantifying species tolerances to ocean water intrusion and drought are necessary to determine a threshold of community sustainability.  相似文献   

8.
An investigation was carried out during the rainy period in six semi-intensive production fish ponds in which water flowed from one pond to another without undergoing any treatment. Eight sampling sites were assigned at pond outlets during the rainy period (December-February). Lowest and highest physical and chemical parameters of water occurred in pond P1 (a site near the springs) and in pond P4 (a critical site that received allochthonous material from the other ponds and also from frog culture ponds), respectively. Pond sequential layout caused concentration of nutrients, chlorophyll-a and conductivity. Seasonal rains increased the water flow in the ponds and, consequently, silted more particles and other dissolved material from one fish pond to another. Silting increased limnological variables from P3 to P6. Although results suggest that during the period under analysis, rainfall affected positively the ponds' water quality and since the analyzed systems have been aligned in a sequential layout with constant water flow from fish ponds and parallel tanks without any previous treatment, care has to be taken so that an increase in rain-induced water flow does not have a contrary effect in the fish ponds investigated.  相似文献   

9.
Through the rainy season the savannah at Lamto (Ivory Coast) is dotted with numerous temporary ponds. The size of these ponds and their variation through the season is explained by the theoretical water surplus, calculated as a function of temperature and rainfall. Physico-chemical measurements taken from five pond types show three common features: low conductivity, slight acidity and high iron concentration. Four depth-correlated vegetation zones are apparent and the overall structural complexity of the ponds is dependent on the water depth and the species composition of these vegetation zones. The effects of pond structural complexity on the diversity and stability of the system is discussed.
  相似文献   

10.
The dry climate that prevailed during the Triassic period in the eastern part of the Central European Basin was interrupted by several humid episodes of varying durations. One of them was the Carnian Pluvial Episode (CPE), which took place in the late Julian (early Carnian age) and is confined to Camerosporites secatus and Aulisporites astigmosus palynological zones. CPE is marked by a significant change in the qualitative and quantitative composition of spore-pollen assemblages from mostly xerophytic species preserved in the upper part of the Grabfeld Formation (“Lower Gipskeuper”) to hygrophytic forms, which dominate in the Stuttgart Formation (“Schilfsandstein”). Changes in climate towards more humid conditions have been documented palynologically and sedimentologically, and analyzed utilizing quantitative spore-pollen analysis and Principal Component Analysis (PCA) of miospores occurring in core material from Poland. In all the studied boreholes, a shift from dry to wet climate is observed at the boundary between the Grabfeld Formation and the Stuttgart Formation, which matches the data from other European regions.  相似文献   

11.
Tree species distribution in lowland tropical forests is strongly associated with rainfall amount and distribution. Not only plant water availability, but also irradiance, soil fertility, and pest pressure covary along rainfall gradients. To assess the role of water availability in shaping species distribution, we carried out a reciprocal transplanting experiment in gaps in a dry and a wet forest site in Ghana, using 2,670 seedlings of 23 tree species belonging to three contrasting rainfall distributions groups (dry species, ubiquitous species, and wet species). We evaluated seasonal patterns in climatic conditions, seedling physiology and performance (survival and growth) over a 2‐year period and related seedling performance to species distribution along Ghana's rainfall gradient. The dry forest site had, compared to the wet forest, higher irradiance, and soil nutrient availability and experienced stronger atmospheric drought (2.0 vs. 0.6 kPa vapor pressure deficit) and reduced soil water potential (?5.0 vs. ?0.6 MPa soil water potential) during the dry season. In both forests, dry species showed significantly higher stomatal conductance and lower leaf water potential, than wet species, and in the dry forest, dry species also realized higher drought survival and growth rate than wet species. Dry species are therefore more drought tolerant, and unlike the wet forest species, they achieve a home advantage. Species drought performance in the dry forest relative to the wet forest significantly predicted species position on the rainfall gradient in Ghana, indicating that the ability to grow and survive better in dry forests and during dry seasons may allow species to occur in low rainfall areas. Drought is therefore an important environmental filter that influences forest composition and dynamics. Currently, many tropical forests experience increase in frequency and intensity of droughts, and our results suggest that this may lead to reduction in tree productivity and shifts in species distribution.  相似文献   

12.
Although nitrogen (N) is prevalent in urban stormwater, regulation of this pollutant has occurred only more recently. This paper reviews the concerns over N in urban stormwater, mechanisms and design enhancements for N uptake and denitrification through various stormwater control measures (SCMs), and presents opportunities to integrate this current knowledge into the regulatory framework. A survey of personnel directly involved in various aspects of US state and territory NPDES programs revealed that the top three pollutants of concern were total suspended solids (TSS), pathogens and bacteria, and total phosphorus (TP). Surprisingly, nitrate (NO3?) was of little concern among the survey respondents, with 3.9% giving it the highest level of concern, 2.0% ranking it second, and 6.0% ranking it third. When asked which strategies were currently used in their geographic area for stormwater management, the most common results were wet ponds and dry ponds. At the same time, wet ponds and dry ponds were recognized as less effective practices to manage stormwater.A review of current literature reveals that several alternative SCMs, such as bioretention, filters, and wetlands, show greater promise in their ability to remove N from stormwater than more conventional practices such as dry ponds and wet ponds. Enhanced N removal via denitrification and plant uptake is often observed under the combination of aerobic followed by sustained anoxic conditions, the presence of a carbon source (organic material), and the presence of mature, dense vegetation.Given the lack of concern or awareness of local officials related to N loading from urban stormwater, and variation in the efficacy of various SCMs, it is not surprising that regulators remain focused on conventional dry pond and wet pond control measures. More needs to be done to quantify the impact of urban sources of N on water quality and aquatic ecosystems. In addition, greater focus needs to be placed on the development of design criteria for SCMs, such as bioretention, filters, and constructed wetlands, which show more promise for N removal.  相似文献   

13.
We examined the anuran diversity of 31 ponds (30 located on the border of soybean cropland and one within a protected forest) in mid-western Entre Ríos Province (Argentina). Moreover, each species found was characterised with respect to its vertical location. Using principal component (PCA) and canonical correspondence analyses (CCA) we quantified associations between species diversity and habitat and spatial variables. A total of 21 anuran species belonging to four families (Microhylidae, Bufonidae, Leptodactylidae and Hylidae) were detected in ponds surrounded by soybean croplands. PCA generated three principal components, which together explained variation in anuran diversity across the agricultural ponds and control site. Negative values of PC-1 described the smaller ponds with narrower hedgerow and monospecific shore vegetation. PC-2 had high loading on pond depth, and PC-3 had negative loading on air temperature. CCA showed a very strong association between the two data sets. We found all guilds related with pond area. Indeed, we found that arboreal species were recorded in large ponds with higher values of shore vegetation index and presence of wider hedgerow. Moreover, a higher number of terrestrial species was found to relate to large pond areas and greater shore vegetation diversity. Finally, aquatic species were related to pond area, shore vegetation index and depth. Anuran diversity across agricultural ponds of mid-western Entre Ríos Province can be affected by local habitat factors such as reduction in pond size and depth, shore vegetation richness, width of hedgerow and air temperatures. Management of anurans to reverse recent declines will require defining high-quality habitat for individual species or group of species, followed by efforts to retain or restore these aquatic habitat. The maintenance of shore vegetation of ponds and hedgerows may increases the number of species and diversity of anurans within agricultural landscapes.  相似文献   

14.
  1. The loss of connectivity is among the main threats for species occupying freshwater pond networks. Landscape connectivity can impact the persistence of patchy populations by reducing movement rates among ponds, thereby increasing the likelihood of local extinctions in source–sink systems, and reducing the probability of colonisation following extinctions. In addition, loss of connectivity may also reduce survival rates if individuals have to cross a hostile matrix, though this hypothesis has been rarely tested. Here, we address these issues by evaluating how individual survival and inter-patch movement probabilities of the European pond turtle (Emys orbicularis) are influenced by patch connectivity.
  2. The study was carried out in a network of temporary ponds embedded in a heterogeneous agricultural matrix in southwestern Portugal, encompassing a period associated with a severe drought (2003–2005) and another with wetter climatic conditions (2010–2014). We mapped the location of ponds and land uses around each pond, and quantified connectivity among ponds using least-cost distances based on patch location and resistance to movement of different land uses. We then used multistate capture-recapture modelling to quantify how survival and movement of this freshwater turtle were related to different metrics of landscape connectivity, in the wet and dry periods.
  3. We captured 221 pond turtles, including 89 juveniles, 58 females, and 74 males. Survival was higher in ponds more connected with other ponds, especially for juvenile turtles. The probability of movement between ponds decreased with increasing least-cost distances. Movement probabilities tended to be higher in the dry than in the wet period.
  4. Our results support the idea that landscape connectivity affects both movement and survival rates in a patchy population inhabiting a temporary pond network. These effects are likely to be particularly marked in unstable freshwater systems like ours, where individuals may have to move widely to escape drying ponds during particularly dry years.
  5. Overall, our findings suggest that focusing conservation efforts solely on protecting discrete freshwater habitats such as temporary ponds may be insufficient, requiring also due consideration of landscape connectivity offered by the surrounding agricultural matrix to assure long-term persistence of patchy populations inhabiting such habitats.
  相似文献   

15.
Small headwater fens at high elevations exist in the dry climatic regime of western Colorado, despite increasing demands for water development since the 1800’s. Fens on Grand Mesa have accumulated plant material as peat for thousands of years due to cold temperatures and consistently saturated soils. The peatlands maintain unique plant communities, wildlife habitat, biodiversity, and carbon storage. We located and differentiated 88 fens from 15 wet meadows and 2 marshes on Grand Mesa. Field work included determining vegetation, soils, moisture regimes, and impacts from human activities. All fens were groundwater-supported systems that occurred in depressions and slopes within sedimentary landslide and volcanic glacial till landscapes. Fens occupied 400 ha or less than 1 % of the 46,845 ha research area and ranged in size from 1 to 46 ha. Peat water pH in undisturbed sites ranged from 4.3 to 7.1. Most fens had plant communities dominated by sedges (Carex) with an understory of brown mosses. Variation in vegetation was controlled by stand wetness, water table level, organic C, conductivity (EC), and temperature °C. Fen soils ranged from 13.6 to 44.1 % organic C with a mean of 30.3 %. Species diversity in fens was restricted by cold short growing seasons, stressful anaerobic conditions, and disturbance. Multivariate analysis was used to analyze relationships between vegetation, environmental, and impact variables. Stand wetness, water table level, OC, electrical conductivity (EC), and temperature were used to analyze vegetation variance in undisturbed fens, wet meadows, and marshes. Vegetation composition in impacted fens was influenced by flooding, sedimentation, stand wetness, water table level, OC, EC, and temperature. Hydrologically modified fens supported 58 plant species compared to 101 species in undisturbed fens. Analysis of historical 1936–2007 aerial photographs and condition scalars helped quantify impacts of human activities in fens as well as vegetation changes. Fourteen fens had evidence of peat subsidence, from organic soil collapse, blocks of peat in the margins, soil instability, and differences in surface peat height between the fen soil surface and the annually flooded soil surface. Of 374 ha of fens in the Grand Mesa study area, 294 ha (79 %) have been impacted by human activities such as ditching, drainage, flooding, or vehicular rutting. Many fens had little restoration potential due to severe hydrological and peat mass impacts, water rights, or the cost of restoration.  相似文献   

16.
The physicochemistry of some dune ponds on the Outer Banks,North Carolina   总被引:1,自引:1,他引:0  
A survey of the chemical composition of five coastal dune ponds on the Outer Banks, North Carolina, showed the ponds to be more similar to underlying groundwater than to dilute seawater or average river water. With a mean total ionic content of 3.14 mmol l–1 the ponds were decidedly fresh. Variations in chemistry between the ponds resulted from physiographic association with leached or unleached dunes, and from different soil types in the pond basins. Near isothermal conditions were found in all but one pond. Oxygen levels were reduced at depth in every pond (10 to 25% saturation). Comparative data show the influences on major ion chemistry in these ponds to be substantially different from those of some other coastal dune waters.  相似文献   

17.
Ponds support a rich biodiversity. This arises in part because of the number and heterogeneity of ponds spatially throughout the landscape. Studies of ponds suggest that distinct communities develop within individual ponds but most examples are based on short-term 1- or 2-year surveys which cannot identify the effects of historic events upon contemporary communities. This study reports the development and turnover of the early summer macroinvertebrate communities in thirty small temporary ponds from their creation in 1994 over 10 years to 2004. Distinct pioneer communities established in the first year of the ponds’ creation, the first 3 years dominated by a fauna associated with long summer dry phases. Then a sustained period of inundation lasting 27 months from summer 1997–1999 resulted in establishment of many taxa associated with permanent ponds and loss of some temporary pond species. The re-establishment of summer dry phases in 1999 was associated with the loss of some but not all of the permanent water taxa and re-colonisation by some temporary water species creating new communities combining these different elements. The communities were not a linear successional sequence; the communities that re-assembled following resumption of dry phases reflected the contingent history of each pond and the effects of historic events. The longer term nature of the study showed that the characteristic heterogeneity of pond invertebrate communities occurs through time as well as spatially and that the richness and variety of contemporary communities, which is often hard to explain from snap-shot studies, is partly the result of historic events.  相似文献   

18.
Barrier islands shrub thickets, the dominant woody community of many Atlantic coast barrier islands, are very sensitive to changes in the freshwater lens and thus, constitute a strong indicator of summer drought. NDVI was computed from airborne images and multispectral images on Hog Island (VA, USA) to evaluate summer growing season changes in woody communities for better predictions of climate change effects. Patterns of NDVI were compared year to year and monthly relative to precipitation and water table depth at the appropriate temporal scale. The highest absolute values of NDVI as well as the larger surface covered by woody vegetation (NDVI > 0.5) occurred in the wet year (2004) with a bimodal distribution of NDVI values (around 0.65 and 0.9) while both dry years (2007 and 2008) showed similar values in maximum, mean and standard deviation and unimodal distributions (around 0.75) of NDVI values. Positive linear adjustments were obtained between maximum (r2 > 0.9) and mean NDVI (r2 > 0.87) and the accumulated rainfall in the hydrological year and the mean water table depth from the last rainfall event till the date of the image acquisition. The spatial variations revealed that water table depth behaved different in wet and dry years. In dry years there was a remarkable increase in mean and maximum values linearly related to water table depth. The highest slope of the adjustment in 2007 indicated a sharp response of vegetation in the driest year. Monthly series of NDVI showed the major role of lack of precipitation through July and August in 2007 with missing classes of NDVI above 0.8 and unimodal distributions in mid-late summer. Best linear fits (r2 close to 1) were obtained with rainfall at different temporal scales: accumulated rainfall in the hydrological year 2004 and accumulated rainfall in the last month previous to the date of 2007 image. Thus, in dry years productivity is closely related to water available from recent past as opposed to over the year for wet years. Good fits (r2 values higher than 0.88) were obtained between monthly decrease in water table depth and NDVI variables just in the dry year. These results demonstrate the important feedback between woody vegetation response to changes in the freshwater lens using empirical data and could apply to other systems with strong directional gradients in resources.  相似文献   

19.
1. The effect of habitat structural features and physicochemical characteristics of the water on the composition and richness of fish assemblages in temporary ponds near streams were examined at three spatial scales: among ponds, among streams and between drainage basins, in a ‘terra‐firme’ (not subject to long‐term flooding) forest reserve in Central Amazonia. 2. The fish assemblage in temporary ponds was composed of subsets of 18 small‐bodied species widely distributed in the reserve. The assemblages had a nested subset structure, where smaller ponds contained subgroups of the species found in larger ponds. 3. Species composition and richness in temporary ponds were similar between drainage basins, although the fish assemblages in streams differed between basins. 4. Fish assemblage structure was influenced by local factors related to habitat structure, such as pond area and depth, canopy cover and hydroperiod. Physicochemical characteristics of the water in the ponds were similar between drainage basins and had little detectable effect on the structure of pond fish assemblages. 5. No correspondence was found between the composition, richness or abundance of fishes in the ponds and in stretches of the streams adjacent to the ponds. Therefore, it is not possible to predict the composition of these temporary pond fish assemblages from the fish assemblages found in adjacent streams.  相似文献   

20.
Questions: What is the contribution of the seed bank to restoration of species‐rich vegetation in oligotrophic wet dune slacks? Does the restoration management affect the seed bank? Location: Calcareous coastal dune slacks at the west coast of The Netherlands. Methods: Species composition of the seed bank and the above‐ground vegetation was sampled in dune slacks that had a variable extent of groundwater level rise in combination with either topsoil removal or mowing. Results: The seed bank had a high potential for restoration of species‐rich vegetation: 60 species were found in the seed bank of which 14 were characteristic of oligotrophic, wet dune vegetation. While topsoil removal almost completely removed the seed bank, groundwater level rise did not permanently submerge the seed bank of species of oligotrophic, wet conditions. Changes in abundance in the established vegetation were unrelated to species abundance in the seed bank. Of all new species establishments in the vegetation relevés, 76% occurred where the species was not found in the seed bank. The chance that presence of a species in the seed bank led to establishment the following year was only 11%. Conclusion: The seed bank was not the dominant source for newly establishing species following the large disturbance that was induced by restoration management. Changes in species abundance after the restoration impact were not related to species abundance in the seed bank, but to ongoing succession and current year dispersal. To attain a high number of new establishments, restoration projects should preferably be planned in the proximity of refuge populations, rather than relying on the seed bank alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号