首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low.

Results

Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases.

Conclusions

Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol concentration, resulting in a reduction in the cost of the distillation step, thus improving the process economics.  相似文献   

2.
A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.  相似文献   

3.
The pentose phosphate pathway (PPP) plays an important role in the efficiency of xylose fermentation during cellulosic ethanol production. In simultaneous saccharification and co-fermentation (SSCF), the optimal temperature for cellulase hydrolysis of lignocellulose is much higher than that of fermentation. Successful use of SSCF requires optimization of the expression of PPP genes at elevated temperatures. This study examined the combinatorial expression of PPP genes at high temperature. The results revealed that over-expression of TAL1 and TKL1 in Saccharomyces cerevisiae (S. cerevisiae) at 30 °C and over-expression of all PPP genes at 36 °C resulted in the highest ethanol productivities. Furthermore, combinatorial over-expression of PPP genes derived from S. cerevisiae and a thermostable yeast Kluyveromyces marxianus allowed the strain to ferment xylose with ethanol productivity of 0.51 g/L/h, even at 38 °C. These results clearly demonstrate that xylose metabolism can be improved by the utilization of appropriate combinations of thermostable PPP genes in high-temperature production of ethanol.  相似文献   

4.

Background

Corn stover, as one important lignocellulosic material, has characteristics of low price, abundant output and easy availability. Using corn stover as carbon source in the fermentation of valuable organic chemicals contributes to reducing the negative environmental problems and the cost of production. In ethanol fermentation based on the hydrolysate of corn stover, the conversion rate of fermentable sugars is at a low level because the native S. cerevisiae does not utilize xylose. In order to increase the conversion rate of fermentable sugars deriving from corn stover, an effective and energy saving biochemical process was developed in this study and the residual xylose after ethanol fermentation was further converted to l-lactic acid.

Results

In the hybrid process based on the hydrolysate of corn stover, the ethanol concentration and productivity reached 50.50 g L?1 and 1.84 g L?1 h?1, respectively, and the yield of ethanol was 0.46 g g?1. The following fermentation of l-lactic acid provided a product titer of 21.50 g L?1 with a productivity of 2.08 g L?1 h?1, and the yield of l-lactic acid was 0.76 g g?1. By adopting a blank aeration before the inoculation of B. coagulans LA1507 and reducing the final cell density, the l-lactic acid titer and yield reached 24.25 g L?1 and 0.86 g g?1, respectively, with a productivity of 1.96 g L?1 h?1.

Conclusions

In this work, the air pumped into the fermentor was used as both the carrier gas for single-pass gas stripping of ethanol and the oxygen provider for the aerobic growth of B. coagulans LA1507. Ethanol was effectively separated from the fermentation broth, while the residual medium containing xylose was reused for l-lactic acid production. As an energy-saving and environmental-friendly process, it introduced a potential way to produce bioproducts under the concept of biorefinery, while making full use of the hydrolysate of corn stover.
  相似文献   

5.
For efficient bioconversion of lignocellulosic materials to bioethanol, the study screened 19 white-rot fungal strains for their endocellulolytic activity and saccharification potential. Preliminary qualitative and quantitative screening revealed Cotylidia pannosa to be the most efficient endocellulase producing fungal strain when compared to the standard strain of Trichoderma reesei MTCC 164. Ensuing initial screening, the production of endocellulase was further optimized using submerged fermentation to recognize process parameters such as temperature, time, agitation pH, and supplementation of salts in media required for achieving maximum production of endocellulase. The strain C. pannosa produced the maximum amount of endocellulase (8.48 U/mL) under submerged fermentation with wheat bran (2%) supplemented yeast extract peptone dextrose (YEPD) medium after an incubation time of 56 h at 30 °C and pH 5.0 at an agitation rate of 120 rpm with a saccharification value of 50.5%. The fermentation of wheat bran hydrolysate with Saccharomyces cerevisiae MTCC 174 produced 4.12 g/L of bioethanol after 56 h of incubation at 30 °C. The results obtained from the present investigation establish the potential of white-rot fungus C. pannosa for hydrolysis and saccharification of wheat bran to yield fermentable sugars for their subsequent conversion to bioethanol, suggesting its application in efficient bioprocessing of lignocellulosic wastes.  相似文献   

6.

Background

Reducing the cost of producing cellulosic ethanol is essential for the industrialization of biorefinery. Several processes are currently under investigation, but few of these techniques are entirely satisfactory in terms of competitive cost or environmental impact. In this study, a new ethanol and lactic acid (LA) coproduction is proposed. The technique involved addition of waste alkaline peroxide pretreated hydrolysate (mainly LA and hemicelluloses) to the reaction mixture after ethanol fermentation (mainly LA and xylose) to reduce the ethanol production cost.

Results

The following processes were investigated to optimize LA production: no addition of hemicelluloses or hydrolysate, addition of recycled hemicelluloses, and addition of concentrated hydrolysate. The addition of concentrated hydrolysate at 48 hours, which resulted in a maximum LA concentration of 22.3 g/L, was the most environment-friendly and cost-effective process. After the improved fermentation, 361 mg LA and 132 mg ethanol were produced from 1 g of raw poplar wood. That is, the production of one gallon of ethanol produced $9 worth of LA.

Conclusions

The amount of LA produced from the pretreated hydrolysate and reaction mixture after ethanol fermentation cannot be underestimated. The recovery of hydrolysate rich in LA and hemicelluloses (or xylose) significantly improved LA yield and further reduced the ethanol production cost.
  相似文献   

7.

Background

Isoprene as the feedstock can be used to produce renewable energy fuels, providing an alternative to replace the rapidly depleting fossil fuels. However, traditional method for isoprene production could not meet the demands for low-energy consumption and environment-friendliness. Moreover, most of the previous studies focused on biofuel production out of lignocellulosic materials such as wood, rice straw, corn cob, while few studies concentrated on biofuel production using peanut hull (PH). As is known, China is the largest peanut producer in the globe with an extremely considerable amount of PH to be produced each year. Therefore, a novel, renewable, and environment-friendly pretreatment strategy to increase the enzymatic hydrolysis efficiency of cellulose and reduce the inhibitors generation was developed to convert PH into isoprene.

Results

The optimal pretreatment conditions were 100 °C, 60 min, 10% (w/v) solid loading with a 2:8 volume ratio of phosphoric acid and of hydrogen peroxide. In comparison with the raw PH, the hemicellulose and lignin were reduced to 85.0 and 98.0%, respectively. The cellulose–glucose conversion of pretreated PH reached up to 95.0% in contrast to that of the raw PH (19.1%). Only three kinds of inhibitors including formic acid, levulinic acid, and a little furfural were formed during the pretreatment process, whose concentrations were too low to inhibit the isoprene yield for Escherichia coli fermentation. Moreover, compared with the isoprene yield of pure glucose fermentation (298 ± 9 mg/L), 249 ± 6.7 and 294 ± 8.3 mg/L of isoprene were produced using the pretreated PH as the carbon source by the engineered strain via separate hydrolysis and fermentation and simultaneous saccharification and fermentation (SSF) methods, respectively. The isoprene production via SSF had a 9.8% glucose–isoprene conversion which was equivalent to 98.8% of isoprene production via the pure glucose fermentation.

Conclusions

The optimized phosphoric acid/hydrogen peroxide combination pretreatment approach was proved effective to remove lignin and hemicellulose from lignocellulosic materials. Meanwhile, the pretreated PH could be converted into isoprene efficiently in the engineered Escherichia coli. It is concluded that this novel strategy of isoprene production using lignocellulosic materials pretreated by phosphoric acid/hydrogen peroxide is a promising alternative to isoprene production using traditional way which can fully utilize non-renewable fossil sources.
  相似文献   

8.

Background

Robust yeasts with high inhibitor, temperature, and osmotic tolerance remain a crucial requirement for the sustainable production of lignocellulosic bioethanol. These stress factors are known to severely hinder culture growth and fermentation performance.

Results

Grape marc was selected as an extreme environment to search for innately robust yeasts because of its limited nutrients, exposure to solar radiation, temperature fluctuations, weak acid and ethanol content. Forty newly isolated Saccharomyces cerevisiae strains gave high ethanol yields at 40°C when inoculated in minimal media at high sugar concentrations of up to 200 g/l glucose. In addition, the isolates displayed distinct inhibitor tolerance in defined broth supplemented with increasing levels of single inhibitors or with a cocktail containing several inhibitory compounds. Both the fermentation ability and inhibitor resistance of these strains were greater than those of established industrial and commercial S. cerevisiae yeasts used as control strains in this study. Liquor from steam-pretreated sugarcane bagasse was used as a key selective condition during the isolation of robust yeasts for industrial ethanol production, thus simulating the industrial environment. The isolate Fm17 produced the highest ethanol concentration (43.4 g/l) from the hydrolysate, despite relatively high concentrations of weak acids, furans, and phenolics. This strain also exhibited a significantly greater conversion rate of inhibitory furaldehydes compared with the reference strain S. cerevisiae 27P. To our knowledge, this is the first report describing a strain of S. cerevisiae able to produce an ethanol yield equal to 89% of theoretical maximum yield in the presence of high concentrations of inhibitors from sugarcane bagasse.

Conclusions

This study showed that yeasts with high tolerance to multiple stress factors can be obtained from unconventional ecological niches. Grape marc appeared to be an unexplored and promising substrate for the isolation of S. cerevisiae strains showing enhanced inhibitor, temperature, and osmotic tolerance compared with established industrial strains. This integrated approach of selecting multiple resistant yeasts from a single source demonstrates the potential of obtaining yeasts that are able to withstand a number of fermentation-related stresses. The yeast strains isolated and selected in this study represent strong candidates for bioethanol production from lignocellulosic hydrolysates.
  相似文献   

9.

Background

Integration of second-generation (2G) bioethanol production with existing first-generation (1G) production may facilitate commercial production of ethanol from cellulosic material. Since 2G hydrolysates have a low sugar concentration and 1G streams often have to be diluted prior to fermentation, mixing of streams is beneficial. Improved ethanol concentrations in the 2G production process lowers energy demand in distillation, improves overall energy efficiency and thus lower production cost. There is also a potential to reach higher ethanol yields, which is required in economically feasible ethanol production. Integrated process scenarios with addition of saccharified wheat meal (SWM) or fermented wheat meal (FWM) were investigated in simultaneous saccharification and (co-)fermentation (SSF or SSCF) of steam-pretreated wheat straw, while the possibility of recovering the valuable protein-rich fibre residue from the wheat was also studied.

Results

The addition of SWM to SSF of steam-pretreated wheat straw, using commercially used dried baker’s yeast, S. cerevisiae, resulted in ethanol concentrations of about 60 g/L, equivalent to ethanol yields of about 90% of the theoretical. The addition of FWM in batch mode SSF was toxic to baker’s yeast, due to the ethanol content of FWM, resulting in a very low yield and high accumulation of glucose. The addition of FWM in fed-batch mode still caused a slight accumulation of glucose, but the ethanol concentration was fairly high, 51.2 g/L, corresponding to an ethanol yield of 90%, based on the amount of glucose added.In batch mode of SSCF using the xylose-fermenting, genetically modified S. cerevisiae strain KE6-12, no improvement was observed in ethanol yield or concentration, compared with baker’s yeast, despite the increased xylose utilization, probably due to the considerable increase in glycerol production. A slight increase in xylose consumption was seen when glucose from SWM was fed at a low feed rate, after 48 hours, compared with batch SSCF. However, the ethanol yield and concentration remained in the same range as in batch mode.

Conclusion

Ethanol concentrations of about 6% (w/v) were obtained, which will result in a significant reduction in the cost of downstream processing, compared with SSF of the lignocellulosic substrate alone. As an additional benefit, it is also possible to recover the protein-rich residue from the SWM in the process configurations presented, providing a valuable co-product.
  相似文献   

10.
The focus of this study was to produce isopropanol and butanol (IB) from dilute sulfuric acid treated cassava bagasse hydrolysate (SACBH), and improve IB production by co-culturing Clostridium beijerinckii (C. beijerinckii) with Clostridium tyrobutyricum (C. tyrobutyricum) in an immobilized-cell fermentation system. Concentrated SACBH could be converted to solvents efficiently by immobilized pure culture of C. beijerinckii. Considerable solvent concentrations of 6.19 g/L isopropanol and 12.32 g/L butanol were obtained from batch fermentation, and the total solvent yield and volumetric productivity were 0.42 g/g and 0.30 g/L/h, respectively. Furthermore, the concentrations of isopropanol and butanol increased to 7.63 and 13.26 g/L, respectively, under the immobilized co-culture conditions when concentrated SACBH was used as the carbon source. The concentrations of isopropanol and butanol from the immobilized co-culture fermentation were, respectively, 42.62 and 25.45 % higher than the production resulting from pure culture fermentation. The total solvent yield and volumetric productivity increased to 0.51 g/g and 0.44 g/L/h when co-culture conditions were utilized. Our results indicated that SACBH could be used as an economically favorable carbon source or substrate for IB production using immobilized fermentation. Additionally, IB production could be significantly improved by co-culture immobilization, which provides extracellular acetic acid to C. beijerinckii from C. tyrobutyricum. This study provided a technically feasible and cost-efficient way for IB production using cassava bagasse, which may be suitable for industrial solvent production.  相似文献   

11.
Bio-based succinic acid production from lignocellulosic biomass is one of the attractive and prominent alternative technologies to overcome issues associated with the utilization of fossil sources. In this context, it is necessary to find new microorganisms that are able to efficiently ferment this recalcitrant feedstock. The ecological approach developed in this study enabled the isolation of Basfia succiniciproducens BPP7 from a complex rumen ecosystem. This new wild-type strain was able to synthesize up to 6.06 ± 0.05 g/L of succinate (corresponding to 0.84 ± 0.017 g of succinate per gram of consumed glucose + xylose and to 0.14 ± 0.001 g of succinate per gram of glucans + xylans present in the biomass before hydrolysis) from Arundo donax hydrolysate in separate hydrolysis and fermentation (SHF) experiments. Higher titers of succinic acid were obtained through the optimization of growth conditions. The optimal medium composition identified on the smaller scale was then used for 2.5-L batch experiments, which used A. donax hydrolysate and yeast extract as the main C and N sources, respectively. A maximal titer of 9.4 ± 0.4 g/L of succinic acid was obtained after 24 h. The overall results clearly demonstrate the potential of B. succiniciproducens BPP7 for succinate production.  相似文献   

12.
This paper evaluates the fermentative potential of Kluyveromyces marxianus grown in sugarcane bagasse cellulosic and hemicellulosic hydrolysates obtained by acid hydrolysis. Ethanol was obtained from a single glucose fermentation product, whereas xylose assimilation resulted in xylitol as the main product and ethanol as a by-product derived from the metabolism of this pentose. Fermentation performed in a simulated hydrolysate medium with a glucose concentration similar to that of the hydrolysate resulted in ethanol productivity (Qp?=?0.86 g L?1 h?1) that was tenfold higher than the one observed in the cellulosic hydrolysate. However, the use of hemicellulosic hydrolysate favored xylose assimilation in comparison with simulated medium with xylose and glucose concentrations similar to those found in this hydrolysate, without toxic compounds such as acetic acid and phenols. Under this condition, xylitol yield was 53.8 % higher in relation to simulated medium. Thus, the total removal of toxic compounds from the hydrolysate is not necessary to obtain bioproducts from lignocellulosic hydrolysates.  相似文献   

13.
By-products resulting from thermo-chemical pretreatment of lignocellulose can inhibit fermentation of lignocellulosic sugars to lactic acid. Furfural is such a by-product, which is formed during acid pretreatment of lignocellulose. pH-controlled fermentations with 1 L starting volume, containing YP medium and a mixture of lignocellulosic by-products, were inoculated with precultures of Bacillus coagulans DSM2314 to which 1 g/L furfural was added. The addition of furfural to precultures resulted in an increase in l(+)-lactic acid productivity by a factor 2 to 1.39 g/L/h, an increase in lactic acid production from 54 to 71 g and an increase in conversion yields of sugar to lactic acid from 68 to 88 % W/W in subsequent fermentations. The improved performance was not caused by furfural consumption or conversion, indicating that the cells acquired a higher tolerance towards this by-product. The improvement coincided with a significant elongation of B. coagulans cells. Via RNA-Seq analysis, an upregulation of pathways involved in the synthesis of cell wall components such as bacillosamine, peptidoglycan and spermidine was observed in elongated cells. Furthermore, the gene SigB and genes promoted by SigB, such as NhaX and YsnF, were upregulated in the presence of furfural. These genes are involved in stress responses in bacilli.  相似文献   

14.

Background

Bioethanol can be produced from sugar-rich, starch-rich (first generation; 1G) or lignocellulosic (second generation; 2G) raw materials. Integration of 2G ethanol with 1G could facilitate the introduction of the 2G technology. The capital cost per ton of fuel produced would be diminished and better utilization of the biomass can be achieved. It would, furthermore, decrease the energy demand of 2G ethanol production and also provide both 1G and 2G plants with heat and electricity. In the current study, steam-pretreated wheat straw (SPWS) was mixed with presaccharified wheat meal (PWM) and converted to ethanol in simultaneous saccharification and fermentation (SSF).

Results

Both the ethanol concentration and the ethanol yield increased with increasing amounts of PWM in mixtures with SPWS. The maximum ethanol yield (99% of the theoretical yield, based on the available C6 sugars) was obtained with a mixture of SPWS containing 2.5% water-insoluble solids (WIS) and PWM containing 2.5% WIS, resulting in an ethanol concentration of 56.5 g/L. This yield was higher than those obtained with SSF of either SPWS (68%) or PWM alone (91%).

Conclusions

Mixing wheat straw with wheat meal would be beneficial for both 1G and 2G ethanol production. However, increasing the proportion of WIS as wheat straw and the possibility of consuming the xylose fraction with a pentose-fermenting yeast should be further investigated.  相似文献   

15.
Utilization of renewable and low-cost lignocellulosic wastes has received major focus in industrial lactic acid production. The use of high solid loadings in biomass pretreatment potentially offers advantages over low solid loadings including higher lactic acid concentration with decreased production and capital costs. In this study, an isolated Enterococcus faecalis SI with optimal temperature 42 °C was used to produce optically pure l-lactic acid (>?99%) from enzyme-saccharified hydrolysates of acid-impregnated steam explosion (AISE)-treated plywood chips. The l-lactic acid production increased by 10% at 5 L scale compared to the similar fermentation scheme reported by Wee et al. The fermentation with a high solid loading of 20% and 35% (w/v) AISE-pretreated plywood chips had been successfully scaled up to process development unit scale (100 L) and pilot scale (9 m3), respectively. This is the first report of pilot-scale lignocellulosic lactic acid fermentation by E. faecalis with high lactic acid titer (nearly 92 g L?1) and yield (0.97 kg kg?1). Therefore, large-scale l-lactic acid production by E. faecalis SI shows the potential application for industries.  相似文献   

16.

Background

Through pretreatment and enzymatic saccharification lignocellulosic biomass has great potential as a low-cost feedstock for production of bacterial nanocellulose (BNC), a high value-added microbial product, but inhibitors formed during pretreatment remain challenging. In this study, the tolerance to lignocellulose-derived inhibitors of three new BNC-producing strains were compared to that of Komagataeibacter xylinus ATCC 23770. Inhibitors studied included furan aldehydes (furfural and 5-hydroxymethylfurfural) and phenolic compounds (coniferyl aldehyde and vanillin). The performance of the four strains in the presence and absence of the inhibitors was assessed using static cultures, and their capability to convert inhibitors by oxidation and reduction was analyzed.

Results

Although two of the new strains were more sensitive than ATCC 23770 to furan aldehydes, one of the new strains showed superior resistance to both furan aldehydes and phenols, and also displayed high volumetric BNC yield (up to 14.78 ± 0.43 g/L) and high BNC yield on consumed sugar (0.59 ± 0.02 g/g). The inhibitors were oxidized and/or reduced by the strains to be less toxic. The four strains exhibited strong similarities with regard to predominant bioconversion products from the inhibitors, but displayed different capacity to convert the inhibitors, which may be related to the differences in inhibitor tolerance.

Conclusions

This investigation provides information on different performance of four BNC-producing strains in the presence of lignocellulose-derived inhibitors. The results will be of benefit to the selection of more suitable strains for utilization of lignocellulosics in the process of BNC-production.
  相似文献   

17.

Objectives

To improve the production of 2,3-butanediol (2,3-BD) in Klebsiella pneumoniae, the genes related to the formation of lactic acid, ethanol, and acetic acid were eliminated.

Results

Although the cell growth and 2,3-BD production rates of the K. pneumoniae ΔldhA ΔadhE Δpta-ackA strain were lower than those of the wild-type strain, the mutant produced a higher titer of 2,3-BD and a higher yield in batch fermentation: 91 g 2,3-BD/l with a yield of 0.45 g per g glucose and a productivity of 1.62 g/l.h in fed-batch fermentation. The metabolic characteristics of the mutants were consistent with the results of in silico simulation.

Conclusions

K. pneumoniae knockout mutants developed with an aid of in silico investigation could produce higher amounts of 2,3-BD with increased titer, yield, and productivity.
  相似文献   

18.
The evolutionary adaptation was carried out on the thermotolerant yeast Kluyveromyces marxianus NIRE-K1 at 45 °C up to 60 batches to enhance its xylose utilization capability. The adapted strain showed higher specific growth rate and 3-fold xylose uptake rate and short lag phase as compared to the native strain. During aerobic growth adapted yeast showed 2.81-fold higher xylose utilization than that of native. In anaerobic batch fermentation, adapted yeast utilized about 91 % of xylose in 72 h and produced 2.88 and 18.75 g l?1 of ethanol and xylitol, respectively, which were 5.11 and 5.71-fold higher than that of native. Ethanol yield, xylitol yield and specific sugar consumption rate obtained by the adapted cells were found to be 1.57, 1.65 and 4.84-fold higher than that of native yeast, respectively. Aforesaid results suggested that the evolutionary adaptation will be a very effective strategy in the near future for economic lignocellulosic ethanol production.  相似文献   

19.

Background

Cellulases continue to be one of the major costs associated with the lignocellulose hydrolysis process. Clostridium thermocellum is an anaerobic, thermophilic, cellulolytic bacterium that produces cellulosomes capable of efficiently degrading plant cell walls. The end-product cellobiose, however, inhibits degradation. To maximize the cellulolytic ability of C. thermocellum, it is important to eliminate this end-product inhibition.

Results

This work describes a system for biological saccharification that leads to glucose production following hydrolysis of lignocellulosic biomass. C. thermocellum cultures supplemented with thermostable beta-glucosidases make up this system. This approach does not require any supplementation with cellulases and hemicellulases. When C. thermocellum strain S14 was cultured with a Thermoanaerobacter brockii beta-glucosidase (CglT with activity 30 U/g cellulose) in medium containing 100 g/L cellulose (617 mM initial glucose equivalents), we observed not only high degradation of cellulose, but also accumulation of 426 mM glucose in the culture broth. In contrast, cultures without CglT, or with less thermostable beta-glucosidases, did not efficiently hydrolyze cellulose and accumulated high levels of glucose. Glucose production required a cellulose load of over 10 g/L. When alkali-pretreated rice straw containing 100 g/L glucan was used as the lignocellulosic biomass, approximately 72% of the glucan was saccharified, and glucose accumulated to 446 mM in the culture broth. The hydrolysate slurry containing glucose was directly fermented to 694 mM ethanol by addition of Saccharomyces cerevisiae, giving an 85% theoretical yield without any inhibition.

Conclusions

Our process is the first instance of biological saccharification with exclusive production and accumulation of glucose from lignocellulosic biomass. The key to its success was the use of C. thermocellum supplemented with a thermostable beta-glucosidase and cultured under a high cellulose load. We named this approach biological simultaneous enzyme production and saccharification (BSES). BSES may resolve a significant barrier to economical production by providing a platform for production of fermentable sugars with reduced enzyme amounts.
  相似文献   

20.

Background

For economical bioethanol production from lignocellulosic materials, the major technical challenges to lower the production cost are as follows: (1) The microorganism should use efficiently all glucose and xylose in the lignocellulose hydrolysate. (2) The microorganism should have high tolerance to the inhibitors present in the lignocellulose hydrolysate. The aim of the present work was to combine inhibitor degradation, xylitol fermentation, and ethanol production using a single yeast strain.

Results

A new process of integrated aerobic xylitol production and anaerobic ethanol fermentation using non-detoxified acid pretreated corncob by Candida tropicalis W103 was proposed. C. tropicalis W103 is able to degrade acetate, furfural, and 5-hydromethylfurfural and metabolite xylose to xylitol under aerobic conditions, and the aerobic fermentation residue was used as the substrate for ethanol production by anaerobic simultaneous saccharification and fermentation. With 20% substrate loading, furfural and 5-hydroxymethylfurfural were degraded totally after 60 h aerobic incubation. A maximal xylitol concentration of 17.1 g l-1 was obtained with a yield of 0.32 g g-1 xylose. Then under anaerobic conditions with the addition of cellulase, 25.3 g l-1 ethanol was produced after 72 h anaerobic fermentation, corresponding to 82% of the theoretical yield.

Conclusions

Xylitol and ethanol were produced in Candida tropicalis W103 using dual-phase fermentations, which comprise a changing from aerobic conditions (inhibitor degradation and xylitol production) to anaerobic simultaneous saccharification and ethanol fermentation. This is the first report of integrated xylitol and ethanol production from non-detoxified acid pretreated corncob using a single microorganism.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号