共查询到8条相似文献,搜索用时 0 毫秒
1.
June Kan-Mitchell Xiu Qing Huang Lawrence Steinman Jorge R. Oksenberg William Harel John W. Parker Peter S. Goedegebuure Timothy L. Darrow Malcolm S. Mitchell 《Cancer immunology, immunotherapy : CII》1993,37(1):15-25
To study in vivo activated cytolytic T cells, CD8+ T cells clones were isolated from a melanoma patient (HLA A2, A11) treated with active specific immunotherapy for 5 years. CD8+ T lymphocytes, purified by fluorescence-activated cell sorting, were cloned directly from the peripheral blood without antigen-presenting cells in the presence of irradiated autologous melanoma cells and recombinant interleukin-2 (IL-2) and IL-4. These conditions were inhibitory to de novo in vitro immunization. Of the 28 cytolytic CD8+ T cell clones, 21 lysed the autologous melanoma cell line (M7) but not the autologous lymphoblastoid cell line (LCL-7) nor the two melanoma cell lines, M1 (HLA A28) and M2 (HLA A28, A31), used to immunize the patient. The remaining 7 clones were also melanoma-specific, although their reactivities were broader, lysing several melanoma cell lines but not HLA-matched lymphoblastoid cells. Eight clones from the first group, ostensibly self-MHC-restricted, were expanded for further analysis. All expressed cluster determinants characteristic of mature, activated T cells, but not those of thymocytes, naive T cells, B cells or natural killer (NK) cells. They also expressed CD13, a myeloid marker. Of the 8 clones, 3 expressed both CD4 and CD8, but dual expression was not correlated with specificity of lysis. Two CD8+ and 2 CD4+ CD8+ clones were specific for the autologous melanoma cells, the other 4 were also reactive against other HLA-A2-positive melanomas. Cytotoxicity for both singly and doubly positive clones was restricted by HLA class I but not class II antigens. Analysis of the RNA expression of the T cell receptor (TCR) V and V gene segments revealed heterogeneous usage by the A2-restricted clones and, perhaps, also by the broadly melanoma-specific clones. Apparent TCR-restricted usage was noted for the self-MHC-restricted clones; 2 of the 4 expressed the V17/V7 dimer. Since the T cell clones were derived from separate precursors of circulating cytotoxic T lymphocytes (CTL), the V17/V7 TCR was well represented in the peripheral blood lymphocytes of this patient. In summary, we show that melanoma cells presented their own antigens to stimulate the proliferation of melanoma-reactive CD8+ CTL. CTL with a range of melanoma specificities and different TCR dimers were encountered in this patient, perhaps as a result of hyperimmunization. Restricted TCR gene usage was noted only for classical self-MHC-restricted CD8+ T cell clones, although lysis of the autologous melanoma cells was effected by a variety of TCR structures. Molecular definition of the TCR repertoire of well-characterized T cell clones in this and other patients should provide new insight into the human antitumor immune response.Supported by National Institutes of Health research grants CA 36233 and EY 9031, the Lucy Adams Memorial Fund and a grant from the Concern Foundation 相似文献
2.
Juanjuan Yuan Ting Cai Xiaojun Zheng Yangzi Ren Jingwen Qi Xiaofei Lu Huihui Chen Huizhen Lin Zijie Chen Mengnan Liu Shangwen He Qijun Chen Siyang Feng Yingjun Wu Zhenhai Zhang Yanqing Ding Wei Yang 《蛋白质与细胞》2021,12(4):240-260
Metabolic regulation has been proven to play a critical role in T cell antitumor immunity.However,cholesterol metabolism as a key component of this regulation remains largely unexplored.Herein,we found that the low-density lipoprotein receptor (LDLR),which has been previously identified as a transporter for cholesterol,plays a pivotal role in regulating CD8+ T cell antitumor activity.Besides the involvement of cholesterol uptake which is mediated by LDLR in T cell priming and clonal expansion,we also found a non-canonical function of LDLR in CD8+ T cells: LDLR interacts with the T-cell receptor (TCR) complex and regulates TCR recycling and signaling,thus facilitating the effector function of cytotoxic T-lymphocytes (CTLs).Furthermore,we found that the tumor microenvironment (TME) downregulates CD8+ T cell LDLR level and TCR signaling via tumor cell-derived proprotein convertase subtilisin/kexin type 9 (PCSK9) which binds to LDLR and prevents the recycling of LDLR and TCR to the plasma membrane thus inhibits the effector function of CTLs.Moreover,genetic deletion or pharmacological inhibition of PCSK9 in tumor cells can enhance the antitumor activity of CD8+ T cells by alleviating the suppressive effect on CD8+ T cells and consequently inhibit tumor progression.While previously established as a hypercholesterolemia target,this study highlights PCSK9/LDLR as a potential target for cancer immunotherapy as well. 相似文献
3.
4.
Taimei Yang Michele L. Martin Julie S. Nielsen Katy Milne Erika M. Wall Wendy Lin Peter H. Watson Brad H. Nelson 《Cancer immunology, immunotherapy : CII》2009,58(11):1865-1875
We tested the efficacy of CD8+ T cells lacking the Cbl-b gene against a panel of mammary tumor lines with different intrinsic sensitivities to T cells. Mice bearing established tumors
expressing an ovalbumin-tagged version of HER-2/neu underwent adoptive transfer with Cbl-b-replete or -null CD8+ T cells from OT-I T cell receptor transgenic donor mice. In general, Cbl-b-null OT-I cells showed enhanced expansion, persistence, and capacity for tumor infiltration. This resulted in markedly enhanced
efficacy against two tumor lines that normally demonstrate complete (NOP21) or partial (NOP23) regression. Moreover, a third
tumor line (NOP6) that normally demonstrates progressive disease underwent complete regression in response to Cbl-b-null OT-I cells. However, a fourth tumor line (NOP18) was resistant to Cbl-b-null OT-I cells owing to a profound barrier to lymphocyte infiltration. Thus, Cbl-b-null CD8+ T cells are generally more efficacious but are nonetheless unable to mediate curative responses against all tumor
phenotypes.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
M. L. Martin and J. S. Nielsen have contributed equally to this study. 相似文献
5.
6.
Sabina Kaczanowska Daniel W. Beury Vishaka Gopalan Arielle K. Tycko Haiying Qin Miranda E. Clements Justin Drake Chiadika Nwanze Meera Murgai Zachary Rae Wei Ju Katherine A. Alexander Jessica Kline Cristina F. Contreras Kristin M. Wessel Shil Patel Sridhar Hannenhalli Michael C. Kelly Rosandra N. Kaplan 《Cell》2021,184(8):2033-2052.e21
- Download : Download high-res image (306KB)
- Download : Download full-size image
7.
Xiling Jiang Xi Chen Thomas J. Carpenter Jun Wang Rebecca Zhou Hugh M. Davis 《MABS-AUSTIN》2018,10(6):876-889
T-cell redirecting bispecific antibodies (bsAbs) or antibody-derived agents that combine tumor antigen recognition with CD3-mediated T cell recruitment are highly potent tumor-killing molecules. Despite the tremendous progress achieved in the last decade, development of such bsAbs still faces many challenges. This work aimed to develop a mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) modeling framework that can be used to assist the development of T-cell redirecting bsAbs. A Target cell-Biologics-Effector cell (TBE) complex-based cell killing model was developed using in vitro and in vivo data, which incorporates information on binding affinities of bsAbs to CD3 and target receptors, expression levels of CD3 and target receptors, concentrations of effector and target cells, as well as respective physiological parameters. This TBE model can simultaneously evaluate the effect of multiple system-specific and drug-specific factors on the T-cell redirecting bsAb exposure–response relationship on a physiological basis; it reasonably captured multiple reported in vitro cytotoxicity data, and successfully predicted the effect of some key factors on in vitro cytotoxicity assays and the efficacious dose of blinatumomab in humans. The mechanistic nature of this model uniquely positions it as a knowledge-based platform that can be readily expanded to guide target selection, drug design, candidate selection and clinical dosing regimen projection, and thus support the overall discovery and development of T-cell redirecting bsAbs. 相似文献