首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
We studied the role of the nitric oxide (NO) system in the realization of cardiogenic depressor reflexes evoked by stimulation of cardiac receptors by veratrine (reproduction of the Bezold–Jarish reflex). Acute experiments were performed on anesthetized dogs and rats: we tested the effects of inhibition of dissimilar isoforms of NO synthase (NOS) and paid special attention to possible species-related differences in realization of the reflex responses. We found that systemic inhibition of NOS by L-nitro-N-arginine (L-NNA, 30 mg/kg, i.v.) significantly decreased the depressor reflex reaction in dogs. Vasomotor dilatatory reactions of the peripheral vessels underwent considerable modifications and in some cases were converted into vasoconstrictory responses. Selective inhibition of neuronal NOS (nNOS) by 7-nitroindazole (7-NI, 25 mg/kg, i.p.) exerted no effect on the development of cardiogenic depressor reflexes in dogs. At the same time, systemic inhibition of NOS in the course of reproduction of cardiogenic depressor reflexes in rats resulted in intensification of depressor responses, while inhibition of nNOS decreased these reactions. Thus, we first demonstrated the role of NO in the realization of cardiogenic depressor reflexes under in vivo conditions and described species-related peculiarities of the involvement of the NO system in the development of these reflexes. We also demonstrated the dependence of formation of cardiogenic depressor reflexes on the predominant involvement of one NOS type or another.  相似文献   

2.
This review focuses on modem data concerning the role of nitric oxide (NO) in the mechanisms of vasomotor regulation. On the background of the literature data and own experimental results, we have discussed some questions of NO integration into transmission of impulses in central and autonomic nervous system under condition of realization of cardiogenic and sinocarotid pressor and depressor reflexes, reflectory vasomotor responses formation under acute myocardial ischemia. According to literature and own functional and morphological data we suggest species differences in NO participations in mechanisms of reflex self--regulation of circulation.  相似文献   

3.
Sensitivity of cardiac receptors to several substances after local immune heart damage and the nature of cardiogenic influences on the circulation were studied in acute experiments o anesthetized dogs. The depressor reflexes from the heart were shown to disappear during 30 min. after immune heart damage, and vagal afferent impulse activity decreased. After immune heart damage, cardiac sympathetic afferent fibres were more sensitive to endogenous biological substances than to vagal ones. The sympathetic cardiac afferent system is found to be more sensitive to chemical agents, which is a decisive factor in formation of cardiogenic influences on the circulation during pathological processes in the heart.  相似文献   

4.
In acute experiments on anesthetized cats, afferent spike activity from the parasympathetic (vagal) and sympathetic cardiac nerves, ECG, and cardiodynamic indices were recorded. The effects of indomethacin-induced blockade of cyclo-oxygenase pathway in metabolism of arachidonic acid on the development of cardiogenic reflex responses after intracoronary injections of veratrine, bradykinin, or prostacyclin were tested. It was found that after indomethacin injection depressor cardiogenic vagal reflexes, evoked by veratrine or bradykinin administrations, became significantly suppressed or practically disappeared. This was accompanied by a drop in the frequency of afferent vagal activity in the cardiac nerves. This effect could be observed throughout the entire period of influence of indomethacin (about 2 h after its injection). Veratrine or bradykinin, being injected simultaneously with prostacyclin, provided faster partial recovery of depressor responses (at 1 h) and promoted some activation of vagal cardiac nerves, despite the effect of indomethacin. Injection of indomethacin did not change the pattern of sympathetic afferent activity. It is suggested that the main derivative of cyclo-oxygenase pathway of arachidonic acid metabolism, prostacyclin, is able to modulate vagal nervous activity at the level of afferent structures in the heart. Prostacyclin may appear a humoral component of cardiogenic depressor reflexes of a vagal nature.Neirofiziologiya/Neurophysiology, Vol. 28, No. 1, pp. 53–61, January–February, 1996.  相似文献   

5.
Afferent and efferent spike activity from the parasympathetic (vagus) and sympathetic cardiac nerves were recorded simultaneously with ECG, and indices of heart function were measured in acute experiments on anesthetized dogs, which allowed us to study the modifications of cardio-cardiac reflex influences after a local immune heart injury. After an injury nidus has been formed in the heart, cardiogenic depressor reflexes evoked by an intracoronary application of veratrine or bradykinin were considerably suppressed or even abolished, and afferent spike activity in the vagus cardiac nerves noticeably decreased. At the same time, both the facilitation of activity in sympathetic afferent fibers and pressor reflex effects were preserved after the heart injury. Different localization of vagus and sympathetic afferent structures in the heart and their specialized sensitivity to the biologically active substances are suggested as the factors determining the pattern of cardiogenic reflex influences after a heart injury.Neirofiziologiya/Neurophysiology, Vol. 27, No. 1, pp. 18–25, January–February, 1995.  相似文献   

6.
The experiments on dogs under chloralose and urethan anesthesia have shown that intracoronary injection of anticardiac immune serum caused inversion of coronary vascular reaction to adrenaline and isoprenaline and elimination of cardiogenic depressor hemodynamic reflex, without decreasing adrenomimetic inotropic effect. The administration of immune complexes (horse serum antigens--specific rabbit antibodies) produced biphasic coronary vascular reaction to adrenaline and decreased by half reflex hypotension, without changing chrono- and inotropic adrenaline effects.  相似文献   

7.
In acute experiments on anesthetized dogs under closed-chest conditions, we used the technique of double lumen catheterization of coronary vessels and peripheral vessel bed. We studied the role of endothelium-dependent relaxing factor/nitric oxide (EDRF/NO) in the development of parasympathetic coronary vasodilation after excitation of cardiac receptors. Under conditions of pharmacological stimulation of cardiac receptors of the left ventricle and short-lasting episodes of local myocardial ischemia, we also examined the effects of inhibition of NO synthesis on the development of cardiogenic depressor reflexes (hypotension and peripheral vasodilation). It was found that the reflex coronary dilatation following excitation of the cardiac (left ventricular) receptors significantly decreased after systemic NO synthase inhibition. Thus, NO production is one of the effector mechanisms of the development of coronary vessel dilatation; this conclusion is confirmed by changes in the dilatation level after blockade of this process with L-NNA (nitro-ω-L-arginine). We pioneered in demonstrating that after the blockade of NO synthesis peripheral vessel vasodilation decreases or disappeas altogether when cardiogenic reflexes are realized following pharmacological excitation of cardiac receptors with veratrine or catecholamine injections, and vasoconstrictor responses evoked by myocardial ischemia are significantly intensified. It is suggested that the influences of NO-dependent mechanisms exert a dual effect on sympathic control-mediated peripheral vasodilation during cardiogenic reflexes. Such mechanisms reduce central sympathetic tone and/or concurrently provide peripheral inhibition of neural sympathetic influences; in the latter case, NO-dependent cardiogenic reflexes play a crucial role in compensatory reactions after an injury to the heart.  相似文献   

8.
M A Petty  W de Jong  D de Wied 《Life sciences》1982,30(21):1835-1840
The cardiovascular effects of beta-endorphin after administration directly into the nucleus tractus solitarii (NTS) of urethane anaesthetised rats were investigated. Unilateral injection resulted in a dose related fall in mean arterial pressure and heart rate. No change in respiratory frequency was prevented and the bradycardia reduced by pretreatment with locally applied naloxone (10 ng). This dose of the opiate antagonist had no effect on mean arterial pressure or heart rate when administered alone. Antiserum to beta-endorphin (1:50 dilution) caused a rise in pressure and a tendency towards tachycardia on injection into the NTS, while it completely blocked the depressor response and bradycardia induced by beta-endorphin. These results are consistent with the view that a beta-endorphin-like peptide has a depressor role in the central nervous system. The hypotension may result from an effect within the central connections of the baroreceptor reflex arc, probably at the level of the NTS.  相似文献   

9.
Activation of baroreceptors causes efferent sympathetic nerve activity (SNA) to fall. Two mechanisms could account for this sympathoinhibition: disfacilitation of sympathetic preganglionic neurons (SPN) and/or direct inhibition of SPN. The roles that spinal GABA and glycine receptors play in the baroreceptor reflex were examined in anesthetized, paralyzed, and artificially ventilated rats. Spinal GABA(A) receptors were blocked by an intrathecal injection of bicuculline methiodide, whereas glycine receptors were blocked with strychnine. Baroreceptors were activated by stimulation of the aortic depressor nerve (ADN), and a somatosympathetic reflex was used as control. After an intrathecal injection of vehicle, there was no effect on any measured variable or evoked reflex. In contrast, bicuculline caused a dose-dependent increase in arterial pressure, SNA, phrenic nerve discharge, and it significantly facilitated the somatosympathetic reflex. However, bicuculline did not attenuate either the depressor response or sympathoinhibition evoked after ADN stimulation. Similarly, strychnine did not affect the baroreceptor-induced depressor response. Thus GABA(A) and glycine receptors in the spinal cord have no significant role in baroreceptor-mediated sympathoinhibition.  相似文献   

10.
Vascular endothelium plays a key role in the local regulation of vascular tone and vascular architecture by release of vasodilator and vasoconstrictor substances, as well as factors with pro-coagulant, anticoagulant, fibrinolytic, antibacterial properties, growth factors, chemokines, free radicals, etc. Release of endothelium-derived relaxing factors such as nitric oxide (NO), prostaglandins and endothelium-derived hyperpolarizing factor, as well as vasoconstricting factors such as endothelin, superoxide and thromboxanes play an influential role in the maintenance and regulation of vascular tone and the corresponding peripheral vascular resistance. Under physiological conditions, the release of anticoagulant and smooth muscle relaxing factors exceeds the release of other substances. The first part of this review presents the functions of the endothelium itself, the nature of the endothelium-derived relaxing factor, its production by NO synthases, mechanisms of its action via activation of soluble guanylyl cyclase and production of cyclic 3'-5'-guanosine monophosphate. The resulting biological effects include vasodilatation, regulation of vessel wall structure, increased regional blood perfusion, lowering of systemic blood pressure, antithrombosis and antiatherosclerosis effects, which counteract the vascular actions of endogenous vasoconstrictor substances. Impaired endothelial function, either as a consequence of reduced production/release or increased inactivation of endothelium-derived vasodilators, as well as interactions of NO with angiotensin, reactive oxygen species and oxidized lipoproteins, has detrimental functional consequences and is one of the most important cardiovascular risk factors. Therefore the second part of this review assesses the pathophysiologic impact of the endothelium in examples of cardiovascular pathologies, e.g. endotheliopathies caused by increased angiotensin production, lipid peroxidation, ischemia/reperfusion or diabetes.  相似文献   

11.
Effects of phosphocreatine on the neurohumoral mechanisms controlling the heart under conditions of a local immune injury were studied in acute experiments on anesthetized dogs using electrophysiological, biochemical, and electron microscopy techniques. After the development of heart injury, cardiogenic depressor reflexes evoked by an intracoronary injection of veratrine and mediated by vagus mechanisms disappeared, while pressor reflexes became dominating. This phenomenon correlated with an increase in concentration of a vasoconstrictor agent, leucotriene LTC4, in the blood and with a considerable ultrastructural impairment of nerve terminals in the myocardium. Preliminary injection of phosphocreatine prevented the development of structural impairments, favored the preservation of vagosympathetic depressor reflex, and not only prevented the increase in LTC4 concentration, but even dramatically decreased its level (by 82%, as compared with the initial level). We concluded that complex protective effect of phosphocreatine provides structural and functional preservation of the receptor apparatus in the heart and can play a considerable role in normalization of neurohumoral mechanisms controlling the heart under conditions of pathological impairment.Neirofiziologiya/Neurophysiology, Vol. 27, No. 2, pp. 140–146, March–April, 1995.  相似文献   

12.
In acute experiments on dogs, we demonstrated that local immunogenic injury to the heart resulting from injection of anticardial cytotoxic serum is accompanied by suppression of a vagus-mediated depressor reflex evoked by intracoronary injection of 5 μg veratrine. Preliminary i.v. injection of 250 mg/kg phosphocreatine to a significant extent prevented the development of immunogenic heart injury and served to normalize the cardiogenic depressor reflex (we measured the heart rate, systemic arterial pressure, pressure in the left ventricle, and its first derivative, and also recorded the afferent activity in the cardial branches of the vagus nerve). These data are indicative of a protective effect of phosphocreatine on the receptor and afferent structures in the heart. At the same time, a parallel study of the effects of application of phosphocreatine on the spike activity of single neurons and on evoked potentials in the neocortex of rats showed that phosphocreatine increases the excitability of cortical neurons by facilitating the processes of synaptic transmission. This was manifested in an increase in the frequency of background spike activity of the neurons and in facilitation of the development of epileptiform reactions evoked by surface application of penicillin after preliminary applications of phosphocreatine.  相似文献   

13.
基于质谱技术的神经肽研究进展   总被引:1,自引:0,他引:1  
神经肽是一类重要的内源活性物质,在神经系统中发挥重要的作用,并连接大脑和其他神经器官。基于质谱技术的神经肽组学研究旨在对神经肽进行大规模研究,在分子水平上得到重要信息,进一步加深对神经系统调控机制以及神经疾病致病机理的理解。文中综述了利用质谱技术进行神经肽研究的基本策略,包括样品处理、定性定量方法以及质谱成像等研究进展。  相似文献   

14.
Endothelin-1 and nitric oxide are the most potent factors of the endothelium-derived substances. The factors play opposite roles in regulation of cardiovascular system, and their interaction underlies the balance of vasoconstrictor and vasodilator influences on vascular tone under normal conditions. In our experiments, changes in endothelin-1 blood concentration were associated with affected production of endogenous nitric oxide. The altered interrelationships between the endothelium-derived vasoactive substances may precede pathological shifts in the cardiovascular system.  相似文献   

15.
Perfusion of the endogenous neuropeptide, FMRFamide, through the isolated gill of Aplysia facilitated the amplitude of the gill withdrawal reflex (GWR) evoked by tactile stimulation of the gill. The GWR was facilitated in a dose-dependent manner. The facilitation of the GWR produced by FMRFamide perfusion was reversible. In addition to facilitating GWR amplitude, FMRFamide perfusion could also prevent habituation of the reflex. It is hypothesized that FMRFamide may play a role in the peripheral nervous system (PNS) in the gill in the mediation of behavioral state and modulation of adaptive gill behaviors.  相似文献   

16.
In acute experiments on anesthetized dogs under open chest conditions, we studied characteristics of the efferent sympathetic influences on the heart and vessels related to realization of cardiogenic depressor vagus-mediated reflexes. Catheterization of the heart cavities and parallel recording of the mass efferent spike activities in the cardiac and vertebral sympathetic nerves and of the pressure in the aortic ventricle of the heart were used. We found that reflex shifts in the spike activity in the cardiac and vertebral nerves elicited by pharmacological stimulation of the left heart (intracoronary injections of veratrine or adrenaline) and by its nidal immune impairment resulting from injection of a cytotoxic serum demonstrate similar direction (a drop in the frequency of the efferent sympathetic activity). Yet, the dynamics of such inhibitory responses to the influence of the same stimulus and their intensity in one nerve or another and those in one and the same nerve under the influence of different stimuli are considerably dissimilar. Thus, realization of vagus-mediated cardiogenic reflexes is characterized by clear heterogeneity of the efferent sympathetic control of different regions of the cardiovascular system. Such a specificity can provide differential regulation of the heart function and functions of the vascular bed related to different cardiogenic influences (both in the norm and under conditions of formation of an injury nidus in the heart).  相似文献   

17.
Diet-induced obesity (DIO) attenuates the arterial cardiac baroreceptor reflex, but the mechanisms and sites of action are unknown. This study tested the hypothesis that DIO impairs central aortic baroreceptor pathways. Normal chow control (CON) and high-fat-chow obesity-resistant (OR) and obesity-prone (OP) rats were anesthetized (inactin, 120 mg/kg) and underwent sinoaortic denervation. The central end of the aortic depressor nerve (ADN) was electrically stimulated to generate frequency-dependent baroreflex curves (5-100 Hz) during selective activation of myelinated (A-fiber) or combined (A- and C-fiber) ADN baroreceptors. A mild stimulus (1 V) that activates only A-fiber ADN baroreceptors induced robust, frequency-dependent depressor and bradycardic responses in CON and OR rats, but these responses were completely abolished in OP rats. Maximal activation of A fibers (3 V) elicited frequency-dependent reflexes in all groups, but a dramatic deficit was still present in OP rats. Activation of all ADN baroreceptors (20 V) evoked even larger reflex responses. Depressor responses were nearly identical among groups, but OP rats still exhibited attenuated bradycardia. In separate groups of rats, the reduced heart rate (HR) response to maximal activation of ADN A fibers (3 V) persisted in OP rats following pharmacological blockade of β(1)-adrenergic or muscarinic receptors, suggesting deficits in both parasympathetic nervous system (PNS) and sympathetic nervous system (SNS) reflex pathways. However, the bradycardic responses to direct efferent vagal stimulation were similar among groups. Taken together, our data suggest that DIO severely impairs the central processing of myelinated aortic baroreceptor control of HR, including both PNS and SNS components.  相似文献   

18.
Reflex cardiovascular responses to muscle contraction are mediated by mechanical and metabolic stimulation of thin muscle afferent fibers. Metabolic stimulants and receptors involved in responses are uncertain. Capsaicin depolarizes thin sensory afferent nerves that have vanilloid type 1 receptors (VR1). Among potential endogenous ligands of thin fibers, H+ has been suggested as a metabolite mediating the reflex muscle response as well as a potential stimulant of VR1. It has also been suggested that acid-sensing ion channels (ASIC) mediate H+, evoking afferent nerve excitation. We have examined the roles of VR1 and ASIC in mediating cardiovascular reflex responses to acid stimulation of muscle afferents in a rat model. In anesthetized rats, injections of capsaicin into the arterial blood supply of triceps surae muscles evoked a biphasic response (n = 6). An initial fall in mean arterial pressure (from baseline of 95.8 +/- 9.5 to 70.4 +/- 4.5 mmHg, P < 0.05 vs. baseline) was followed by an increase (to 131.6 +/- 11.3 mmHg, P < 0.05 vs. baseline). Anandamide (an endogenous substance that activates VR1) induced the same change in blood pressure as did capsaicin. The pressor (but not depressor) component of the response was blocked by capsazepine (a VR1 antagonist) and section of afferent nerves. In decerebrate rats (n = 8), H+ evoked a pressor response that was not blocked by capsazepine but was attenuated by amiloride (an ASIC blocker). In rats (n = 12) pretreated with resiniferatoxin to destroy muscle afferents containing VR1, capsaicin and H+ responses were blunted. We conclude that H+ stimulates ASIC, evoking the reflex response, and that ASIC are likely to be frequently found on afferents containing VR1. The data also suggest that VR1 and ASIC may play a role in processing of muscle afferent signals, evoking the muscle pressor reflex.  相似文献   

19.
The mechanism of extracellular ATP-triggered vagal depressor reflex was further studied in a closed-chest canine model. Adenosine and ATP were administered individually in equimolar doses (0.01-1.0 mumol/kg) into the right coronary artery (RCA) and left circumflex coronary artery (LCA). When administered into the RCA, adenosine and ATP exerted an identical and relatively small negative chronotropic effect on sinus node automaticity; the time to peak negative chronotropic effect was >/=7 s. When administered into the LCA, adenosine had no effect on sinus node automaticity, whereas ATP markedly suppressed sinus node automaticity. This effect of ATP 1) reached its peak in <2 s after its administration, 2) was short lasting, and 3) was completely abolished by either intravenous administration of the muscarinic cholinergic blocker atropine (0.2 mg/kg) or intra-LCA administration of 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP), a potent P2X(2/3) purinergic receptor (P2X(2/3)R) antagonist, but not by diinosine pentaphosphate (Ip(5)I), a potent inhibitor of P2X(1)R and P2X(3)R. Repetitive administrations of ATP were not associated with reduced effects, indicative of receptor desensitization, thereby excluding the involvement of the rapidly desensitized P2X(1)R in the action of ATP. It was concluded that ATP triggers a cardio-cardiac vagal depressor reflex by activating P2X(2/3)R located on vagal sensory nerve terminals localized in the left ventricle. Because these terminals mediate vasovagal syncope, these data could suggest a mechanistic role of extracellular ATP in this syndrome and, in addition, give further support to the hypothesis that endogenous ATP released from ischemic myocytes is a mediator of atropine-sensitive bradyarrhythmias associated with left ventricular myocardial infarction.  相似文献   

20.
Both acute unilateral nephrectomy (AUN) and unilateral ureteral obstruction (UUO) result in an acute increase in cation excretion from the contralateral kidney. AUN results in reflex changes in systemic hemodynamics owing to an acute and transient increase in arterial pressure that activates carotid sinus baroreceptors and constitutes an afferent limb in the reflex; hemodynamic adjustments and increased cation excretion result. The reflex involves participation of the endogenous opioid system, with receptors located primarily in the central nervous system, and requires intact pituitary function because both hypophysectomy and pretreatment with large doses of dexamethasone prevent the postnephrectomy natriuresis. The natriuresis is closely correlated with an increase in the plasma concentration of the NH2-terminal fragment of the pituitary peptide precursor molecule proopiomelanocortin, which suggests that such a peptide could participate directly or indirectly in the postnephrectomy natriuresis. Surgical denervation of either the ipsilateral or the contralateral kidney markedly alters the response to AUN, which prevents the natriuresis and blunts the kaliuresis, and indicates a role for renal neural reflexes. Renorenal reflex pathways also mediate the response of the contralateral kidney to UUO, because denervation of either the ipsilateral (obstructed) or the contralateral kidney abolishes both the natriuresis and kaliuresis usually seen after UUO. This reflex also involves the endogenous opioid system, for it does not occur in rats receiving an i.v. infusion of the opiate receptor antagonist naloxone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号