首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raes H  Verbeke M 《Tissue & cell》1994,26(2):223-230
The occurrence, development and ultrastructure of two types of gut endocrine cell have been studied in the midgut of adult honeybees. These cells, one of a basal granular type and one of a vesicular type, are evenly distributed throughout the posterior three-quarters of the midgut. Each crypt complex contains one of each cell type, both of which may be derived from the same stem cells as the enterocytes. They already contain their respective secretory product while still in the nidus. Both reach the midgut lumen by a narrow apex and are therefore of the open type. The granular cells release their secretory granules at the cell base in a typical endocrine way. In young vesicular cells the secretory vesicles are released at the cell base and in the intercellular spaces. Old cells are still filled with vesicles when they are shed in the midgut lumen. This seems to indicate that these cells have both an endocrine (or paracrine) and an exocrine function, the latter apparently by holocrinc release.  相似文献   

2.
Lithobius forficatus (Myriapoda, Chilopoda, Lithobiidae) is a widespread species of centipede that is common across Europe. Its midgut epithelial cells are an important line of defense against toxic substances that originate in food, such as pathogens and metals. Despite this important role, the biology of the midgut epithelium is not well known. Here we describe the ultrastructure of the midgut epithelium, as well as the replacement of degenerated midgut epithelial cells. The midgut epithelium of L. forficatus is composed of digestive, secretory, and regenerative cells. The cytoplasm of digestive cells shows regionalization in organelle distribution, which is consistent with the role of these cells in secretion of enzymes, absorption of nutrients, and accumulation of lipids and glycogen. Secretory cells, which do not reach the luminal surface of the midgut epithelium, possess numerous electron‐dense and electron‐lucent granules and may have an endocrine function. Hemidesmosomes anchor secretory cells to the basal lamina. Regenerative cells play the role of midgut stem cells, as they are able to proliferate and differentiate. Their proliferation occurs in a continuous manner, and their progeny differentiate only into digestive cells. The regeneration of secretory cells was not observed. Mitotic divisions of regenerative cells were confirmed using immunolabeling against BrdU and phosphohistone H3. Hemocytes associate with the midgut epithelium, accumulating between the visceral muscles and beneath the basal lamina of the midgut epithelium. Hemocytes also occur among the digestive cells of the midgut epithelium in animals infected with Rickettsia‐like microorganisms. These hemocytes presumably have an immunoprotective function in the midgut.  相似文献   

3.
Summary During the premetamorphic development of coleopteran telotrophic ovaries the culsters of sister oogonial cells, in which the differentiation of nurse cells and oocytes occurs, are arranged in linear chains. This results from a series of mitoses with the consistent orientation of the spindle parallel to the long axis of the ovariole. As a result of incomplete cytokinesis, the oogonial cells in each sibling cluster are linked to each other by intercellular bridges occupied by fusomes. As a rule, at each cluster division the basal cell (i.e. the oocyte progenitor) starts to divide first. From this cell a wave of mitoses spreads toward the anterior end of the cluster, resulting in a mitotic gradient. It is suggested that the failure of the fusomes in adjacent cells to fuse into one continuous fusome (i.e. polyfusome) allows the spindles to orientate with their long axes parallel to the long axis of the sibling cluster. This would explain why the oogonial divisions in coleopteran telotrophic ovaries generate linear chains of cells rather than the cyst-like arrangement which is typical for polytrophic sibling clusters. Dividing sibling clusters within ovarioles are arranged in bundles. The presence of intercellular bridges between sibling clusters seems to be the underlying cause of this nonrandom distribution of the mitotically active clusters. The transverse bridges have been found to occur between the basal cells as well as between the cells located more anteriorly in adjacent sibling clusters. The transverse bridges are filled with typical fusomes, which in more anterior parts of sibling clusters may fuse with the fusomes of adjacent sister oogonial cells into polyfusomes. The transverse bridges between the basal cells are incorporated in the oocytes. The pattern of sibling cluster formation described in this paper apparently occurs widespread in polyphagous Coleoptera, since it has been found in three relatively distantly related families.  相似文献   

4.
肠道是最复杂的器官之一,负责营养的吸收和消化。肠道具有多层结构保护整个肠道免受病原体的侵害。肠道上皮是由单层柱状上皮细胞组成,是抵抗病原体的第一道屏障。因此,肠上皮必须保持完整性以保护肠免受感染和毒性剂的侵害。上皮细胞分为两个谱系(吸收型与分泌型),并且每隔3~4天脱落至肠腔中。细胞的快速更替是由于肠道干细胞的存在,肠道干细胞排列在隐窝底部终极分化的潘氏细胞之间并沿隐窝绒毛轴分化成不同的上皮细胞。一旦肠道干细胞受到损伤,潘氏细胞将通过提供WNT配体和Notch刺激来补充肠道干细胞。因此,潘氏细胞充当辅助细胞以维持干细胞微环境,即生态位。该综述探讨了干细胞和潘氏细胞之间的相互作用,进一步探讨了维持肠道稳态的信号通路。  相似文献   

5.
The 2 ovaries of Nemoura sp. (Plecoptera : Nemouridae) are comb-like and house about 60–70 ovarioles each. By ultrathin serial sections through a whole ovariole of a last-larval instar, we gathered information on its ultrastructure and 3-dimensional architecture. The germarial region contains several clusters of interconnected oogonia or oocytes. The intercellular bridges (ring canals) are filled with fusomes. Most of the fusomes assemble to polyfusomes and some of the intercellular bridges move together and their cells assemble to rosettes. Results indicate that existence of polyfusomes is not sufficient for rosette formation. The oogonia or oocytes of each cluster develop synchronously. Oocytes detach from clusters next to intercellular bridges. A transdetermination of oogonia to nurse cells does not occur. Thus, the stone flies remain true panoists.  相似文献   

6.
The midgut of millipedes is composed of a simple epithelium that rests on a basal lamina, which is surrounded by visceral muscles and hepatic cells. As the material for our studies, we chose Telodeinopus aoutii (Demange, 1971) (Kenyan millipede) (Diplopoda, Spirostreptida), which lives in the rain forests of Central Africa. This commonly reared species is easy to obtain from local breeders and easy to culture in the laboratory. During our studies, we used transmission and scanning electron microscopes and light and fluorescent microscopes. The midgut epithelium of the species examined here shares similarities to the structure of the millipedes analyzed to date. The midgut epithelium is composed of three types of cells—digestive, secretory, and regenerative cells. Evidence of three types of secretion have been observed in the midgut epithelium: merocrine, apocrine, and microapocrine secretion. The regenerative cells of the midgut epithelium in millipedes fulfill the role of midgut stem cells because of their main functions: self-renewal (the ability to divide mitotically and to maintain in an undifferentiated state) and potency (ability to differentiate into digestive cells). We also confirmed that spot desmosomes are common intercellular junctions between the regenerative and digestive cells in millipedes.  相似文献   

7.
The epithelium of anterior midgut of adult Cenocorixa bifida was examined with light and electron microscopy. The folded epithelium is composed of tall columnar cells extending to the lumen, differentiating dark and light cells with interdigitating apices and regenerative basal cells in the nidi surrounded by villiform ridges that penetrate deeply into the epithelium. The columnar cells display microvilli at their luminal surface. Microvilli lined intercellular spaces and basal plasma membrane infoldings are associated with mitochondria. These ultrastructural features suggest their role in absorption of electrolytes and nutrients from the midgut lumen. The columnar cells contain large oval nuclei with prominent nucleoli. Their cytoplasm is rich in rough endoplasmic reticulum, Golgi complexes and electron-dense secretory granules indicating that they are also engaged in synthesis of digestive enzymes. The presence of secretory granules in close proximity of the apical plasma membrane suggests the release of secretion is by exocytosis. The presence of degenerating cells containing secretory granules at the luminal surface and the occurance of empty vesicles and cell fragments in the lumen are consistent with the holocrine secretion of digestive enzymes. Apical extrusions of columnar cells filled with fine granular material are most likely formed in response to the lack of food in the midgut. The presence of laminated concretions in the cytoplasm is indicative of storageexcretion of surplus minerals. The peritrophic membrane is absent from the midgut of C. bifida.  相似文献   

8.
A small number of epithelial cells which combine features of two cell types were observed in the descending colon and pyloric stomach of the mouse. In the descending colon, where the base of the crypts is mainly composed of poorly differentiated "vacuolated" cells, a few of these cells contain, besides the characteristic "vacuoles," mucous globules identical to those in mucous cells or, less frequently, dense granules such as are found in entero-endocrine cells. Because there is evidence that the poorly differentiated vacuolated cells give rise to the other cells of the epithelium, those which also contain mucous globules or dense granules are likely to be differentiating into mucous cells or entero-endocrine cells respectively. In the pyloric stomach, where the glands are mainly composed of mucous cells, some of which are poorly differentiated, a few of the latter exhibit, besides the mucous globules, entero-endocrine type granules or features of caveolated cells. It is likely that the poorly differentiated mucous cells give rise to the other gland cells; and, therefore, those mucous-containing cells which also display dense granules or caveolated cell features are taken to be differentiating into entero-endocrine or caveolated cells respectively. Most of the cells containing two kinds of secretory materials are believed to be stem cells which initially contain a few vacuoles (colon) or mucous globules (pylorus) but are differentiating into a cell containing a different type of secretion. Rare observations of two kinds of secretory materials in a mature cell suggest that the transitional period may be prolonged, perhaps indefinitely.  相似文献   

9.
Scolopendra cingulata has a tube-shaped digestive system that is divided into three distinct regions: fore-, mid- and hindgut. The midgut is lined with a pseudostratified columnar epithelium which is composed of digestive, secretory and regenerative cells. Hemocytes also appear between the digestive cells of the midgut epithelium. The ultrastructure of three types of epithelial cells and hemocytes of the midgut has been described with the special emphasis on the role of regenerative cells in the protection of midgut epithelium. The process of midgut epithelium regeneration proceeds due to the ability of regenerative cells to proliferate and differentiate according to a circadian rhythm. The regenerative cells serve as unipotent stem cells that divide in an asymmetric manner.Additionally, two types of hemocytes have been distinguished among midgut epithelial cells. They enter the midgut epithelium from the body cavity. Because of the fact that numerous microorganisms occur in the cytoplasm of midgut epithelial cells, we discuss the role of hemocytes in elimination of pathogens from the midgut epithelium. The studies were conducted with the use of transmission electron microscope and immunofluorescent methods.  相似文献   

10.
Summary Oogenesis is known to be important for embryonic pattern formation. For this reason we have studied the early differentiation of the honeybee ovariole histologically, ultrastructurally, and by staining F-actin with rhodaminyl-phalloidin. At the anterior tip of the ovariole, stem cells are lined up in a single file; they are organelle-poor but contain characteristic electrondense bodies with lysosomal properties. The presence of these bodies in cystocytes as well as prefollicle cells indicates that both cell types may be derived from the apical stem cells. During later stages of oogenesis, the follicle cells differentiate cytologically in different regions of the follicle. The organization of the intercellular bridges between cystocytes derived from a single cystoblast has been studied in detail. The polyfusomes in the intercellular bridges of cystocyte clusters stain with rhodaminyl-phalloidin and hence contain F-actin. Later, when the polyfusomes begin to desintegrate, F-actin rings form which line the rims of the intercellular bridges. Actin might be recruited from conspicuous F-actin stores which were detected in the germ-line cells. The F-actin rings are dissembled some time before the onset of vitellogenesis when the nurse chamber has grown to a length of about 200 m. At the basal side of the follicle cells (close to the basement membrane facing the haemocdele) parallel microfilament bundles encircle the ovariole. The microfilament bundles which are oriented mostly perpendicular to the long axis of the ovariole were first observed around the zone where the cystocyte divisions occur; after this phase the micro-filament bundles become organized differently in the follicle cells associated with the nurse cells and in the follicular epithelium of the oocyte. Correspondence to: H.O. Gutzeit  相似文献   

11.
The mouse intestinal epithelium represents a unique mammalian system for examining the relationship between cell division, commitment, and differentiation. Proliferation and differentiation are rapid, perpetual, and spatially well-organized processes that occur along the crypt-to-villus axis and involve clearly defined cell lineages derived from a common multipotent stem cell located near the base of each crypt. Nucleotides -1178 to +28 of the rat intestinal fatty acid binding protein gene were used to establish three pedigrees of transgenic mice that expressed SV-40 large T antigen (TAg) in epithelial cells situated in the uppermost portion of small intestinal crypts and in already committed, differentiating enterocytes as they exited these crypts and migrated up the villus. T antigen production was associated with increases in crypt cell proliferation but had no apparent effect on commitment to differentiate along enterocytic, enteroendocrine, or Paneth cell lineages. Single- and multilabel-immunocytochemical studies plus RNA blot hybridization analyses suggested that the differentiation programs of these lineages were similar in transgenic mice and their normal littermates. This included enterocytes which, based on the pattern of [3H]thymidine and 5-bromo-2'-deoxyuridine labeling and proliferating nuclear antigen expression, had reentered the cell cycle during their migration up the villus. The state of cellular differentiation and/or TAg production appeared to affect the nature of the cell cycle; analysis of the ratio of S-phase to M-phase cells (collected by metaphase arrest with vincristine) and of the intensities of labeling of nuclei by [3H]thymidine indicated that the duration of S phase was longer in differentiating, villus-associated enterocytes than in the less well-differentiated crypt epithelial cell population and that there may be a block at the G2/M boundary. Sustained increases in crypt and villus epithelial cell proliferation over a 9-mo period were not associated with the development of gut neoplasms--suggesting that tumorigenesis in the intestine may require that the initiated cell have many of the properties of the gut stem cell including functional anchorage.  相似文献   

12.
The Aedes aegypti midgut is restructured during metamorphosis; its epithelium is renewed by replacing the digestive and endocrine cells through stem or regenerative cell differentiation. Shortly after pupation (white pupae) begins, the larval digestive cells are histolized and show signs of degeneration, such as autophagic vacuoles and disintegrating microvilli. Simultaneously, differentiating cells derived from larval stem cells form an electron-dense layer that is visible 24 h after pupation begins. Forty-eight hours after pupation onset, the differentiating cells yield an electron-lucent cytoplasm rich in microvilli and organelles. Dividing stem cells were observed in the fourth instar larvae and during the first 24 h of pupation, which suggests that stem cells proliferate at the end of the larval period and during pupation. This study discusses various aspects of the changes during midgut remodeling for pupating A. aegypti.  相似文献   

13.
Differentiation of regenerative cells in the midgut epithelium of Epilachna cf nylanderi (Mulsant 1850) (Insecta, Coleoptera, Coccinellidae), a consumer of the Ni-hyperaccumulator Berkheya coddii (Asteracae) from South Africa, has been monitored and described. Adult specimens in various developmental phases were studied with the use of light microscopy and transmission electron microscopy. All degenerated epithelial cells are replaced by newly differentiated cells. They originate from regenerative cells which act as stem cells in the midgut epithelium. Just after pupal-adult transformation, the midgut epithelium of E. nylanderi is composed of columnar epithelial cells and isolated regenerative cells distributed among them. The regenerative cells proliferate intensively and form regenerative cell groups. In each regenerative cell group the majority of cells differentiate into new epithelial cells, while some of them still act as stem cells and persist as a reservoir of cells capable for proliferation and differentiation. Because this species is an obligate monophage of plants which accumulate nickel, proliferation and differentiation of midgut stem cells follow degeneration intensively and in a typical manner.  相似文献   

14.
Summary An electron microscopic study of aldehyde and osmium fixed normal guinea pig middle ear epithelium was made. Numerous branching microvilli occur between the cilia of the ciliated cells. The granules of the secretory cells are always surrounded by a membrane, and they vary in their content of electron dense substance. Half desmosomes are frequent in basal cells. The squamous epithelial cells of the bulla contain few microvilli and pinocytoric invaginations. In the basal part of the squamous epithelium dilations of the intercellular clefts often occur. The luminal part of the intercellular clefts are closed by multiple tight junctions.  相似文献   

15.
Summary The midgut of Blaberus craniifer is principally made up of columnar epithelial cells which are derived from small regenerative cells found grouped in nidi. Between them, small sparsely granulated cells with clear cytoplasm can be observed lying on the basal lamina. Mainly based on the size, shape and texture of their secretory granules, at least ten types of such endocrine cells have been identified. Five cell types contain a uniform population of dense granules: (1) medium-sized, round to oval granules; (2) small elongated granules; (3) large irregular granules; (4) oval granules with a highly osmiophilic core; (5) oval, haloed granules. Five others are characterized by a heterogeneous population of granules: (6) small, round to oval, variably electron-dense granules; (7) oval medium-sized granules of variable electron density; (8) large irregular granules of variable electron density; (9) small dense granules and large vesicles with filamentous material; (10) small dense granules and very large pale vesicles.In addition, near the regenerative cells, large cells characterized by very large, irregular, dense granules (up to 4 m), lack contact with the lumen, and reach the basal lamina only by slender cytoplasmic processes.Several antisera raised against mammalian peptides and amine were used to reveal axonal fibers and endocrine cells. Serotonin-like immunoreactivity is localized in a profuse innervation of the muscle layers that surround the epithelium, whereas cholecystokinin and methionine-enkephalin antisera stain a more moderate number of axonal fibers. Cholecystokinin-, methionine-enkephalin-, substance P-, vasoactive intestinal peptide-, somatoliberin-, and gonadoliberin-like immunoreactivities were detected in endocrine cells of the epithelium. While most of the cells appear pyramidal, oval, fusiform or bowl-shaped, and seem to lack contact with the lumen, cells reaching it have been detected reacting with antisera to cholecystokinin, substance P, vasoactive intestinal peptide, somatoliberin and gonadoliberin.  相似文献   

16.
The endocrine epithelium cells of the frog duodenum mucosa were studied using light and electron microscopy. In the intestinal epithelium endocrine cells are distributed among enterocytes all over the surface of mucosa. The greatest quantity of them is observed in the intestinal part in the proximity of the stomach. Six types of endocrine cells are identified on the basis of their granular structure and size. Some differentiation in submicroscopic organization of endocrine cells depending on their functional condition is defined.  相似文献   

17.
18.
Stem cells have a potential of gene therapy for regenerative medicine. Among various stem cells, spermatogonial stem cells have a unique characteristic in which neighboring cells can be connected by intercellular bridges. However, the roles of intercellular bridges for stem cell self-renewal, differentiation, and proliferation remain to be elucidated. Here, we show not only the characteristics of testis-expressed gene 14 (TEX14) null spermatogonial stem cells lacking intercellular bridges but also a trial application of genetic correction of a mutation in spermatogonial stem cells as a model for future gene therapy. In TEX14 null testes, some genes important for undifferentiated spermatogonia as well as some differentiation-related genes were activated. TEX14 null spermatogonial stem cells, surprisingly, could form chain-like structures even though they do not form stable intercellular bridges. TEX14 null spermatogonial stem cells in culture possessed both characteristics of undifferentiated and differentiated spermatogonia. Long-term culture of TEX14 null spermatogonial stem cells could not be established likely secondary to up-regulation of CDK4 inhibitors and down-regulation of cyclin E. These results suggest that intercellular bridges are essential for both maintenance of spermatogonial stem cells and their proliferation. Lastly, a mutation in Tex14(+/-) spermatogonial stem cells was successfully replaced by homologous recombination in vitro. Our study provides a therapeutic potential of spermatogonial stem cells for reproductive medicine if they can be cultured long-term.  相似文献   

19.
Small intestinal crypt epithelium obtained from normal fasting humans by peroral biopsy of the mucosa was studied with the electron microscope. Paneth cells were identified at the base of the crypts by their elaborate highly organized endoplasmic reticulum, large secretory granules, and small lysosome-like dense bodies within the cytoplasm. Undifferentiated cells were characterized by smaller cytoplasmic membrane-bounded granules which were presumed to be secretory in nature, a less elaborate endoplasmic reticulum, many unattached ribosomes and, in some cells, the presence of glycogen. Some undifferentiated cells at the base of the crypts contained lobulated nuclei and striking paranuclear accumulations of mitochondria. Membrane-bounded cytoplasmic fragments, probably originating from undifferentiated and Paneth cells, were frequently apparent within crypt lumina. Of the goblet cells, some were seen actively secreting mucus. In these, apical mucus appeared to exude into the crypt lumen between gaps in the microvilli. The membrane formerly surrounding the apical mucus appeared to fuse with and become part of the plasma membrane of the cell, suggesting a merocrine secretory mechanism. Enterochromaffin cells were identified by their location between the basal regions of other crypt cells and by their unique intracytoplasmic granules.  相似文献   

20.
The small intestine consists of two histological compartments composed of the crypts and the villi. The function of the adult small intestinal epithelium is mediated by four different types of mature cells: enterocytes, goblet, enteroendocrine and Paneth. Undifferentiated cells reside in the crypts and produce these four types of mature cells. The niche-related Wnt and Bmp signaling pathways have been suggested to be involved in the regulation and maintenance of the stem cell microenvironment. In our laboratory, we isolated the first normal human intestinal epithelial crypt (HIEC) cell model from the human fetal intestine and in this study we investigated the expression of a panel of intestinal stem cell markers in HIEC cells under normal culture parameters as well as under conditions that mimic the stem cell microenvironment. The results showed that short term stimulation of HIEC cells with R-spondin 1 and Wnt-3a±SB-216763, a glycogen synthase kinase 3β (GSK3β) inhibitor, induced β-catenin/TCF activity and expression of the WNT target genes, cyclin D2 and LGR5. Treatment of HIEC cells with noggin, an antagonist of BMP signaling, abolished SMAD2/5/8 phosphorylation. Inducing a switch from inactive WNT/active BMP toward active WNT/inactive BMP pathways was sufficient to trigger a robust intestinal primordial stem-like cell signature with predominant LGR5, PHLDA1, PROM1, SMOC2 and OLFM4 expression. These findings demonstrate that even fully established cultures of intestinal cells can be prompted toward a CBC stem cell-like phenotype. This model should be useful for studying the regulation of human intestinal stem cell self-renewal and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号