首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Cytochrome P-450j has been purified to electrophoretic homogeneity from isoniazid-treated adult male rats; and this enzyme appears to be a major protein induced in hepatic microsomes after administration of isoniazid, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The hemoprotein has a minimum molecular weight of approximately 51,500, and the ferrous-carbonyl complex of cytochrome P-450j has a Soret maximum at 451-452 nm. The oxidized heme iron appears to be predominately in the high spin state as deduced from the Soret maximum at 395 nm. Ethylisocyanide binds to ferrous cytochrome P-450j to yield spectral maxima at approximately 458 and 430 nm with a resultant 458/430 ratio of 0.7 at pH 7.4. Cytochrome P-450j has no measurable catalytic activity for the metabolism of benzo[a]pyrene (3- and 9-hydroxylation), hexobarbital, testosterone, and 5 alpha-androstane-3 alpha,17 beta-diol-3,17-disulfate. Low, but detectable, catalytic activity is obtained for the metabolism of 7-ethoxycoumarin, benzphetamine, p-nitroanisole, zoxazolamine, and 2-hydroxylation of 17 beta-estradiol. In contrast, cytochrome P-450j effectively catalyzes p-hydroxylation of aniline with a turnover of 12.7 nmol/min/nmol cytochrome P-450j. Hydroxyl radical scavengers, Fe-EDTA, superoxide dismutase, and catalase have no effect on aniline p-hydroxylation catalyzed by cytochrome P-450j. Cytochrome P-450j is distinct from nine other rat hepatic microsomal cytochromes P-450 (P-450a-P-450i) previously purified in this laboratory, as well as different isozymes described by other investigators, based on several parameters including minimum molecular weight, spectral properties, and catalytic activity. In Ouchterlony double diffusion plates, antibodies against cytochromes P-450a-P-450f show no cross-reaction with cytochrome P-450j. Structural differences among cytochromes P-450a-P-450j are apparent from the NH2-terminal sequence of cytochrome P-450j, as well as the electrophoretic profiles of proteolytic digests of the hemoproteins.  相似文献   

2.
Cytochrome P-448 from 3-methylcholanthrene-treated rats has been purified to a specific content of greater than 20 nmoles/mg protein, and cytochrome P-450 from phenobarbital-treated rats to greater than 17 nmoles/mg protein. Both cytochromes are catalytically active when reconstituted with lipid and NADPH-cytochrome c reductase and exhibit differential substrate specificities for benzphetamine and benzo[a]pyrene. Cytochrome P-448 has a minimum molecular weight of approximately 53,000, and cytochrome P-450, 48,000 by SDS polyacrylamide gel electrophoresis.  相似文献   

3.
Cytochrome P-450d was isolated from isosafrol-induced rat liver microsomes by affinity chromatography on 1.8-diaminooctyl-Sepharose 4B and chromatography on hydroxylapatite using a linear potassium phosphate gradient (45-250 mM). The enzyme has a molecular mass of 54 kDa, CO-maximum 448 nm is characterized by a high spin state; the rate of 4-aminobiphenyl hydroxylation is 54 nmol/min/nmol of cytochrome P-450d (37 degrees C), those, of 7-ethoxyresorufin O-deethylation and benz (a) pyrene oxidation are 1 nmol/min/nmol of cytochrome P-450d (22 degrees C) and 2 nmol/min/nmol of cytochrome P-450d (37 degrees C), respectively. The properties of cytochrome P-450d were compared to those of cytochrome P-450c isolated from 3-methylcholanthrene-induced rats. The yield of these cytochromes under the conditions used (10% P-450d from isosafrol-induced microsomes and 15% P-450c from 3-methylcholanthrene-induced microsomes) was relatively high. Antibodies to cytochromes P-450d and P-450c were obtained. Using rocket immunoelectrophoresis the percentage of these hemoprotein forms in 3-methylcholanthrene-induced (P-450d-20%, P-450c-70%) and isosafrol-induced rat liver microsomes (P-450d-50%, P-450c-15%) was determined.  相似文献   

4.
Cytochrome P450a was purified to electrophoretic homogeneity from liver microsomes from immature male Long-Evans rats treated with Aroclor 1254. Rabbit polyclonal antibody raised against cytochrome P450a cross-reacted with cytochromes P450b, P450e, and P450f (which are structurally related to cytochrome P450a). The cross-reacting antibodies were removed by passing anti-P450a over an N-octylamino-Sepharose column containing these heterologous antigens. The immunoabsorbed antibody recognized only a single protein (i.e., cytochrome P450a) in liver microsomes from immature male rats treated with Aroclor 1254 (i.e., the microsomes from which cytochrome P450a was purified). However, the immunoabsorbed antibody recognized three proteins in liver microsomes from mature male rats, as determined by Western immunoblot. As expected, one of these proteins (Mr 48,000) corresponded to cytochrome P450a. The other two proteins did not correspond to cytochromes P450b, P450e, or P450f (as might be expected if the antibody were incompletely immunoabsorbed), nor did they correspond to cytochromes P450c, P450d, P450g, P450h, P450i, P450j, P450k, or P450p. One of these proteins was designated cytochrome P450m (Mr approximately 49,000), the other cytochrome P450n (Mr approximately 50,000). Like cytochrome P450a, cytochrome P450n was present in liver microsomes from both male and female rats. However, whereas cytochrome P450a was detectable in liver microsomes from 1-week-old rats, cytochrome P450n was barely detectable until the rats were at least 3 weeks old. Furthermore, in contrast to cytochrome P450a, the levels of cytochrome P450n did not decline appreciably with age in postpubertal male rats. Cytochrome P450m was detectable only in liver microsomes from postpubertal (greater than 4 week-old) male rats. Cytochromes P450m and P450n were isolated from liver microsomes from mature male rats and purified to remove cytochrome P450a. When reconstituted with NADPH-cytochrome P450 reductase and lipid, cytochrome P450n exhibited little testosterone hydroxylase activity, whereas cytochrome P450m catalyzed the 15 alpha-, 18-, 6 beta-, and 7 alpha-hydroxylations of testosterone at 10.8, 4.6, 2.0, and 1.9 nmol/nmol P450/min, respectively. The ability of cytochrome P450m to catalyze the 7 alpha-hydroxylation of testosterone was not due to contamination with cytochrome P450a, which catalyzed this reaction at approximately 25 nmol/nmol P450a/min. Cytochrome P450m also converted testosterone to several minor metabolites, including androstenedione and 15 beta-, 14 alpha-, and 16 alpha-hydroxytestosterone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Cytochrome P450 has been implicated in the process of biotransformation of polycyclic aromatic hydrocarbons and of other organic pollutants by white-rot fungi. We have purified and reconstituted a benzo[a]pyrene hydroxylating cytochrome P450 (P450) from microsomal fractions of the white rot fungus Pleurotus pulmonarius. The microsomal P450 was recovered using a combination of n-aminooctyl agarose and hydroxyapatite chromatography and had an apparent molecular mass of 55 kDa. The purified protein exhibited moderate affinity for benzo[a]pyrene with a K(s) of 66 microM calculated from the Type I substrate binding spectra produced. Reconstitution of activity was achieved and a turnover of 0.75 nmol 3-hydroxybenzo[a]pyrene product/min/nmol P450 was observed, comparable to levels of metabolism observed by animal cytochromes P450 involved in xenobiotic detoxification.  相似文献   

6.
Cytochrome P-450-dependent prostaglandin omega-hydroxylation is induced over 100-fold during late gestation in rabbit pulmonary microsomes (Powell, W.S. (1978) J. Biol. Chem. 253, 6711-6716). Purification of cytochromes P-450 from lung microsomes of pregnant rabbits yielded three fractions. Two of these fractions correspond to rabbit lung P-450I (LM2) and P-450II (LM5), which together constitute 70-97% of total cytochrome P-450 in lung microsomes from nonpregnant rabbits. The third form, which we designate rabbit cytochrome P-450PG-omega, regioselectively hydroxylates prostaglandins at the omega-position in reconstituted systems with a turnover of 1-5 min-1. Titration with purified pig liver cytochrome b5, demonstrated a 4-fold maximum stimulation at a cytochrome b5 to a P-450 molar ratio of 1-2. Rabbit lung P-450PG-omega formed a typical type I binding spectrum upon the addition of prostaglandin E1 with a calculated K8 of 1 microM, which agreed reasonably well with the kinetically calculated Km of 3 microM. Cytochrome P-450PG-omega was isolated as a low-spin isozyme with a lambda max (450 nm) in the CO-difference spectrum distinguishable from P-450I (451 nm) and P-450II (449 nm). Sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis demonstrated that although purified P-450PG-omega had a relatively low specific content (12.1 nmol mg-1), it appeared homogeneous with a calculated minimum Mr of 56,000, intermediate between rabbit LM4 and LM6. When lung microsomes from pregnant and nonpregnant rabbit were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a protein band, with a Mr identical to P-450PG-omega, was observed in the pregnant rabbit, whereas this band appeared to be very faint or absent in microsomes from the nonpregnant rabbit. Purification of cytochromes P-450 from nonpregnant rabbit lung yielded only P-450I and P-450II. P-450PG-omega appears to be a novel rabbit P-450, possessing high activity towards omega-hydroxylation of prostaglandins, and is greatly induced during pregnancy in rabbit lung.  相似文献   

7.
Three cytochrome P-450 preparations, designated as cytochrome P-450ca, cytochrome P-450cb, and cytochrome P-448c fraction, were separated and purified about 23-, 50-, and 29-fold, respectively, from the cholate extracts of rabbit colon mucosa microsomes. Their specific contents were 1.2, 2.6, and 1.5 nmol of cytochrome P-450 per mg of protein, respectively. Cytochrome P-450ca and cytochrome P-450cb migrated as heme-containing polypeptide bands with molecular weights of about 53,000 and 57,000, respectively, on SDS-polyacrylamide gel electrophoresis. The CO-reduced difference spectra of cytochrome P-450ca, cytochrome P-450cb, and cytochrome P-448c fraction showed maxima at 451, 450, and 449 nm, respectively. Cytochrome P-450ca efficiently catalyzed the omega-hydroxylation of prostaglandin A1 (PGA1) and the omega- and (omega-1)-hydroxylation of caprate, laurate, and myristate in the reconstituted system containing cytochrome P-450ca, NADPH-cytochrome P-450 reductase, cytochrome b5, and phosphatidylcholine. In contrast, cytochrome P-450cb and cytochrome P-448c fraction had no detectable activity toward PGA1 and fatty acids. Both catalyzed aminopyrine and benzphetamine N-demethylation. Cytochrome P-448c fraction also hydroxylated benzo(a)pyrene, and phosphatidylinositol or phosphatidylserine exhibited a stimulatory effect on this activity. The results show that rabbit colon microsomes contain catalytically different cytochrome P-450, one of which is specialized for the omega-oxidation prostaglandins, the others being involved in the metabolism of exogenous compounds such as drugs and polycyclic hydrocarbons.  相似文献   

8.
Two forms of cytochrome P-450 (P-450) from liver microsomes of hamsters treated with 2,3,4,7,8-pentachlorodibenzofuran (PenCDF), which possesses the potent acute toxicity and 3-methylcholanthrene (MC)-type inducing ability of liver microsomal monooxygenases in animals, were purified and characterized. These P-450 forms, designated as hamster P-450H and hamster P-450L, had the molecular masses of 52 and 50 kDa, respectively, and showed the absorption maximum of CO-reduced difference spectra at 446 nm. The absolute spectra of their oxidized forms indicated that hamster P-450H was in high-spin state and hamster P-450L was in low-spin state. A part of PenCDF injected into hamster was tightly bound to purified hamster P-450H at a ratio of 0.107 nmol PenCDF/nmol P-450. In a reconstituted system, both hamster P-450H and hamster P-450L showed relatively low catalytic activities for 3-hydroxylation of benzo[a]pyrene and O-deethylations of both 7-ethoxyresorufin and 7-ethoxycoumarin, while they both catalyzed 7 alpha- and 2 alpha-hydroxylations of testosterone effectively to a similar extent. Addition of cytochrome b5-to a reconstituted system accelerated the formation of 7 alpha-hydroxytestosterone 5.3-fold with hamster P-450L and 2.2-fold with hamster P-450H. In addition, hamster P-450H catalyzed estradiol 2-hydroxylation at a high rate but hamster P-450L did not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Two forms of cytochrome P-450 (hepatoma P-450MCI and P-450MCII) were purified from hepatoma 5123D microsomes of tumor-bearing rats treated with 3-methylcholanthrene. Hepatoma P-450MCI had a specific content of 18.4 nmol/mg protein and showed a main protein band with a minimum molecular weight of 56,000 on sodium dodecyl sulfate-polyacrylamide gel. Hepatoma P-450MCII had a specific content of 7.38 nmol/mg protein and a minimum molecular weight of 50,000. The carbon monoxide-reduced difference spectral peak of hepatoma P-450MCI was at 446.5 nm, whereas the peak of hepatoma P-450MCII was at 451 nm. In the reconstituted system, hepatoma P-450MCI catalyzed 3-hydroxylation of benzo[a]pyrene and O-deethylation of 7-ethoxycoumarin, but showed low activities for N-demethylation of benzphetamine and aminopyrine, O-demethylation of p-nitroanisole, and p-hydroxylation of aniline. On the other hand, hepatoma P-450MCII did not catalyze hydroxylation of any of the substrates tested. By Ouchterlony double-diffusion analysis, hepatoma P-450MCI was immunologically indistinguishable from rat liver cytochrome P-450c, but hepatoma P-450MCII was distinct from hepatoma P-450MCI and rat liver cytochrome P-450c. Peptide maps of hepatoma P-450MCI and rat liver cytochrome P-450c after proteolysis with Staphylococcus aureus V8 protease demonstrated the similarity of the two cytochromes P-450.  相似文献   

10.
Sodium cholate, Emulgen 911, and (3-[(-cholamidopropyl)-dimethyl- ammonio]-1-propanesulfonate) (CHAPS) were selected to examine the effects of ionic, nonionic, and zwitterionic detergents on testosterone hydroxylation catalyzed by four purified isozymes of rat liver microsomal cytochrome P-450, namely P-450a, P-450b, P-450c, and P-450h, in reconstituted systems containing optimal amounts of dilauroylphosphatidylcholine and saturating amounts of NADPH- cytochrome P-450 reductase (reductase). The major phenobarbital-inducible form of rat liver microsomal cytochrome P-450, designated P-450b, was extremely sensitive to the inhibitory effects of Emulgen 911, which is used in several procedures to purify this and other forms of cytochrome P-450. In contrast, sodium cholate and CHAPS had little effect on the catalytic activity of cytochrome P-450b, even at ten times the concentration of Emulgen 911 effecting 50% inhibition (IC-50). By substituting the zwitterionic detergent CHAPS for Emulgen 911, we purified cytochrome P-450b without the use of nonionic detergent. The protein is designated cytochrome P-450b* to distinguish it from cytochrome P-450b purified with the use of Emulgen 911. NADPH-cytochrome P-450 reductase was also purified both with and without the use of nonionic detergent. The absolute spectra of cytochrome P-450b and P-450b* were indistinguishable, as were the carbon monoxide (CO)- and metyrapone-difference spectra of the dithionite-reduced hemoproteins. When reconstituted with NADPH-cytochrome P-450 reductase and dilauroylphosphatidylcholine, cytochromes P-450b and P-450b* catalyzed the N-demethylation of benzphetamine and aminopyrine, the 4-hydroxylation of aniline, the O-dealkylation of 7-ethoxycoumarin, the 3-hydroxylation of hexobarbital, and the 6-hydroxylation of zoxazolamine. Both hemo-proteins catalyzed the 16α- and 16β-hydroxylation of testosterone, as well as the 17-oxidation of testosterone to androstenedione. Both hemoproteins were poor catalysts of erythromycin demethylation and benzo[a]pyrene 3-/9-hydroxylation. The rate of biotransformation catalyzed by cytochrome P-450b* was up to 50% greater than the rate catalyzed by cytochrome P-450b when reconstituted with either reductase or reductase*. The activity of cytochrome P-450b and P-450b* increased up to 50% when reconstituted with reductase* instead of reductase. In addition to establishing the feasibility of purifying an isozyme of rat liver microsomal cytochrome P-450 without the use of nonionic detergent, these results indicate that the catalytic activity of cytochrome P-450 is not unduly compromised by residual contamination with the nonionic detergent Emulgen 911.  相似文献   

11.
Hepatic microsomal cytochrome P-450 from the untreated coastal marine fish scup, Stenotomus chrysops, was solubilized and resolved into five fractions by ion-exchange chromatography. The major fraction, cytochrome P-450E (Mr = 54,300), was further purified to a specific content of 11.7 nmol heme/mg protein and contained a chromophore absorbing at 447 nm in the CO-ligated, reduced difference spectrum. NH2-terminal sequence analysis of cytochrome P-450E by Edman degradation revealed no homology with any known cytochrome P-450 isozyme in the first nine residues. S. chrysops liver NADPH-cytochrome P-450 reductase, purified 225-fold (Mr = 82,600), had a specific activity of 45–60 U/mg with cytochrome c, contained both FAD and FMN, and was isolated as the one-electron reduced semiquinone.Purified cytochrome P-450E metabolized several substrates including 7-ethoxycoumarin, acetanilide, and benzo[a]pyrene when reconstituted with lipid and hepatic NADPH-cytochrome P-450 reductase from either S. chrysops or rat. The purified, reconstituted monooxygenase system was sensitive to inhibition by 100 μM 7,8-benzoflavone, and analysis of products in reconstitutions with purified rat epoxide hydrolase indicated a preference for oxidation on the benzo-ring of benzo[a]pyrene consistent with the primary features of benzo[a]pyrene metabolism in microsomes. Cytochrome P-450E is identical to the major microsomal aromatic hydrocarbon-inducible cytochrome P-450 by the criteria of molecular weight, optical properties, and catalytic profile. It is suggested that substantial quantities of this aromatic hydrocarbon-inducible isozyme exist in the hepatic microsomes of some untreated S. chrysops. The characterization of this aryl hydrocarbon hydroxylase extends our understanding of the metabolism patterns observed in hepatic microsomes isolated from untreated fish.  相似文献   

12.
Hepatic microsomal cytochrome P-450 and P-448 have been purified from phenobarbital (PB)- and 3-methylcholanthrene (MC)-treated rats, by modifications of Imai and Sato's procedures )1974). The purified preparations of cytochrome P-450 and P-448 were homogeneous judging from their specific contents (17 and 16 nmol per mg protein, respectively) and the results of SDS-polyacrylamide gel electrophoresis and Ouchterlony immunodiffusion analyses. These two cytochromes are different in their physico-chemical and immunological properties, and their substrate specificities. In reconstituted systems containing the purified cytochrome and NADPH-cytochrome P-450 reductase, ethoxycoumarin deethylation and benzo(a)pyrene hydroxylation catalyzed by cytochrome P-450 and P-448 were completely inhibited by the homologous antibody, while essentially no effect was observed with heterologous conbinations of antigen and antibody. In contrast, the benzphetamine demethylation activities of cytochrome P-450 and P-448 were markedly inhibited by the heterologous antibody as well as by the homologous one. These results suggest that the two cytochromes are immunologically different but have some antigenic determinants in common. Drug metabolizing activities of microsomes from PB- and MC-treated rats were inhibited by the antibodies, essentially as expected from the results with the reconstituted systems. The remaining activities in the presence of excess concentrations of the antibody, however, were higher in MC-microsomes treated with anti P-448 antibody than in PB microsomes treated with anti P-450 antibody. These results suggest that cytochrome P-448 molecules may be so localized in the microsomal membrane that the membrane structure may hinder the access of the antibody to the antigenic determinant.  相似文献   

13.
9-Hydroxyellipticine (9-OHE), a potent inhibitor of rat liver monooxygenase activities, binds to the various forms of partially purified lung cytochromes P-450 from untreated and 3-methylcholanthrene (3-MC)-treated rabbits. The spectral data (lambda max: 428 nm (ox.), 447 nm (red.), Ks: 10 microM and 5 muM for cytochrome I and cytochrome II from 3-MC-treated rabbits respectively) resemble those obtained with cytochrome P-450 purified from liver of Aroclor 1254-pretreated rats (lambda max: 428 nm (ox.), 445 nm (red.), Ks: 8 microM). 9-OHE has been shown to inhibit the benzo[a]pyrene hydroxylase activity of rat and rabbit lung microsomes. The inhibitory effect was higher towards the 3-MC-induced lung microsomes than with the control microsomes. However, the lung microsomes, as well as the liver microsomes of rabbits were less sensitive to inhibition by 9-OHE than the corresponding microsomes from rats. These results suggest that rabbit and rat cytochromes P-450 have subtle structural differences.  相似文献   

14.
Cholesterol 7 alpha-hydroxylase (cholesterol, NADPH: oxygen oxidoreductase, 7 alpha-hydroxylating, EC 1.14.13.17) was purified from liver microsomes of cholestryramine-fed male rats by using high-performance ion-exchange chromatography. The purified enzyme showed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr = 52,000), and its dithionite-reduced CO complex exhibited an absorption maximum at 450 nm. The specific content of the enzyme was 9 nmol of cytochrome P-450/mg of protein. Upon reconstitution with NADPH-cytochrome P-450 reductase, the enzyme showed a high activity of cholesterol 7 alpha-hydroxylation with the turnover number of 50 min-1 at 37 degrees C. The reaction was inhibited neither by aminoglutethimide nor by metyrapone, but inhibited markedly by iodoacetamide and disulfiram. The reaction was also inhibited significantly by CO. The enzyme catalyzed hydroxylation of cholesterol with strict regio- and stereoselectivity and was inert toward other sterols which are intermediates in the conversion of cholesterol to bile acids, i.e. 7 alpha-hydroxy-4-cholesten-3-one (12 alpha-hydroxylation), 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol (25-hydroxylation), and taurodeoxycholate (7 alpha-hydroxylation). Unlike other cytochromes P-450 isolated from rat liver microsomes, the enzyme showed no activity toward testosterone and xenobiotics such as 7-ethoxycoumarin and benzo[a] pyrene. The NH2-terminal amino acid sequence of the enzyme was Met-Phe-Glu-Val(Ile)-Ser-Leu-, which was distinct from those of any other cytochromes P-450 of rat liver microsomes hitherto reported. These results indicate that the enzyme is a novel species of cytochrome P-450 so far not isolated from liver microsomes.  相似文献   

15.
The effect of flavone and 7,8-benzoflavone on the metabolism of benzo[a]pyrene to fluorescent phenols by five cytochrome P-450 isozymes obtained from rabbit liver microsomes was determined. Benzo[a]pyrene metabolism was stimulated more than 5-fold by the addition of 600 microM flavone to a reconstituted monooxygenase system consisting of NADPH, cytochrome P-450 reductase, dilauroylphosphatidylcholine, and cytochrome P-450LM3c or cytochrome P-450LM4. In contrast, an inhibitory effect of flavone on benzo[a]pyrene metabolism was observed when cytochrome P-450LM2, cytochrome P-450LM3b, or cytochrome P-450LM6 was used in the reconstituted system. 7,8-Benzoflavone (50-100 microM) stimulated benzo[a]pyrene metabolism by the reconstituted monooxygenase system about 10-fold when cytochrome P-450LM3c was used, but benzo[a]pyrene hydroxylation was strongly inhibited when 7,8-benzoflavone was added to the cytochrome P-450LM6-dependent system. Smaller effects of 7,8-benzoflavone were observed on the metabolism of benzo[a]pyrene by the cytochrome P-450LM2-, cytochrome P-450LM3b-, and cytochrome P-450LM4-dependent monooxygenase systems. These results demonstrate that the activating and inhibiting effects of flavone and 7,8-benzoflavone on benzo[a]pyrene metabolism depend on the type of cytochrome P-450 used in the reconstituted monooxygenase system.  相似文献   

16.
Using hydrophobic and ion-exchange chromatography, cytochromes P-450 and P-448 from liver microsomes of C 57 BL mice induced by phenobarbital and 3-methylcholantrene were isolated. The cytochromes purified to homogeneity as evidenced from SDS polyacrylamide gel electrophoresis were characterized in terms of molecular weight and catalytic and spectral properties and by peptide mapping. Cytochrome P-450, in contrast to cytochrome P-448, was not bound to the ion-exchanger and was eluted in a void volume. Cytochrome P-450 (Mr = 51 000) elicits a low spin signal and reveals a high catalytic activity toward aminopyrine and a low catalytic activity toward benz(a)pyrene. Cytochrome P-448 (Mr = 55 000) elicits both high an low spin signals and reveals a high catalytic activity toward benz(a)pyrene and a low catalytic activity toward aminopyrine. Limited proteolysis with papain demonstrated the differences in the proteins primary structure.  相似文献   

17.
Hybridomas were prepared from myeloma cells and spleen cells of BALB/c female mice immunized with hepatic cytochrome P-450E purified from the marine fish, Stenotomus chrysops (scup). Nine independent hybrid clones produced MAbs, either IgG1, IgG2b, or IgM, that bound to purified cytochrome P-450E in radioimmunoassay. Antibodies from one clone MAb (1-12-3), also strongly recognized rat cytochrome P-450MC-B (P-450BNF-B; P-450c). The nine antibodies inhibited reconstituted aryl hydrocarbon hydroxylase (AHH) and ethoxycoumarin O-deethylase of scup cytochrome P-450E to varying degrees, and inhibited AHH activity of beta-naphthoflavone-induced scup liver microsomes in a pattern similar to that in reconstitutions, indicating that cytochrome P-450E is identical to the AHH catalyst induced in this fish by beta-naphthoflavone. MAb 1-12-3 also inhibited the reconstituted AHH activity of the major BNF-induced rat isozyme. Conversely, MAb 1-7-1 to rat cytochrome P-450MC-B had little effect on AHH activity of scup cytochrome P-450E, and did not recognize cytochrome P-450E in radioimmunoassay nor in an immunoblot. Scup cytochrome P-450E and rat cytochrome P-450MC-B thus have at least one common epitope recognized by MAb 1-12-3, but the epitope recognized by Mab 1-7-1 is absent or recognized with low affinity in cytochrome P-450E. The various assays indicate that the nine MAbs against cytochrome P-450E are directed to different epitopes of the molecule. These MAbs should be useful in determining phylogenetic relationships of the BNF- or MC-inducible isozymes and their regulation by other environmental factors.  相似文献   

18.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

19.
Cytochrome P-450scc (cholesterol side-chain cleavage enzyme) was purified from porcine adrenocortical mitochondria. 2. The purified cytochrome P-450scc was found to be homogeneous on SDS-polyacrylamide gel electrophoresis. 3. The heme content of the purified enzyme was 20.6 nmol/mg protein. 4. The enzymatic activity of the reconstituted cytochrome P-450scc-linked monooxygenase system amounted to 7.8 nmol of pregnenolone formed per nmole of P-450 per minute, with cholesterol as a substrate. 5. The amino acid sequence of the amino-terminal region of the cytochrome P-450scc and the amino acid residue at the carboxyl terminal were determined and compared with those of other mammalian cytochromes P-450scc.  相似文献   

20.
Two forms of cytochrome P-450 (P-450 human-1 and P-450 human-2) have been purified from human liver microsomes to electrophoretic homogeneity. P-450 human-1 and P-450 human-2 differ in their apparent molecular weights (52,000 and 56,000, respectively) and Soret peak maxima in the CO-binding reduced difference spectrum (447.6 and 450.3 nm, respectively). In the reconstituted system using rat liver NADPH-cytochrome c (P-450) reductase, P-450 human-2 more effectively oxidized benzo(a)pyrene (80-fold), ethylmorphine (2-fold), and 7-ethoxycoumarin (2-fold) than did P-450 human-1. However, P-450 human-1 showed higher testosterone 6 beta-hydroxylase activity, and the activity was markedly increased by the inclusion of cytochrome b5 or spermine in the reconstituted system. Antibodies raised against P-450 human-1 inhibited more than 80% of microsomal testosterone 6 beta-hydroxylase activity in human liver. Immunoblotting analysis using anti-P-450 human-1 IgG revealed a single immuno-staining band near Mr 52,000 in all human liver samples examined. The amount of immunochemically determined P-450 human-1 varied in parallel with the testosterone 6 beta-hydroxylase activity in human liver. These results indicate that P-450 human-1 is a major form of cytochrome P-450 responsible for microsomal testosterone 6 beta-hydroxylation. Thus, this paper is the first report on human cytochrome P-450 responsible for testosterone 6 beta-hydroxylation, which is the major hydroxylation pathway in human liver microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号