首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J R Miller  D E Edmondson 《Biochemistry》1999,38(41):13670-13683
Monoamine oxidase A (MAO A) plays a central role in the oxidation of amine neurotransmitters. To investigate the structure and mechanism of this enzyme, recombinant human liver MAO A was expressed and purified from Saccharomyces cerevisiae. Anaerobic titrations of the enzyme require only 1 mol of substrate per mole of enzyme-bound flavin for complete reduction. This demonstrates that only one redox-active group (i.e., the covalent FAD cofactor) is involved in catalysis. The reaction rates and binding affinities of 17 para-substituted benzylamine analogues with purified MAO A were determined by steady state and stopped flow kinetic experiments. For each substrate analogue that was tested, the rates of steady state turnover (k(cat)) and anaerobic flavin reduction (k(red)) are similar in value. Deuterium kinetic isotope effects on k(cat), k(red), k(cat)/K(m), and k(red)/K(s) with alpha, alpha-[(2)H]benzylamines are similar for each substrate analogue that was tested and range in value from 6 to 13, indicating that alpha-C-H bond cleavage is rate-limiting in catalysis. Substrate analogue dissociation constants determined from reductive half-reaction experiments as well as from steady state kinetic isotope effect data [Klinman, J. P., and Matthews, R. G. (1985) J. Am. Chem. Soc. 107, 1058-1060] are in excellent agreement. Quantitative structure-activity relationship (QSAR) analysis of dissociation constants shows that the binding of para-substituted benzylamine analogues to MAO A is best correlated with the van der Waals volume of the substituent, with larger substituents binding most tightly. The rate of para-substituted benzylamine analogue oxidation and/or substrate analogue-dependent flavin reduction is best correlated with substituent electronic effects (sigma). Separation of the electronic substituent parameter (sigma) into field-inductive and resonance effects provides a more comprehensive treatment of the electronic correlations. The positive correlation of rate with sigma (rho approximately 2.0) suggests negative charge development at the benzyl carbon position occurs and supports proton abstraction as the mode of alpha-C-H bond cleavage. These results are discussed in terms of several mechanisms proposed for MAO catalysis and with previous structure-activity studies published with bovine liver MAO B [Walker, M. C., and Edmondson, D. E. (1994) Biochemistry 33, 7088-7098].  相似文献   

2.
The functional role of the highly conserved active site Arg 59 in the prototype of the gamma-class carbonic anhydrase Cam (carbonic anhydrase from Methanosarcina thermophila) was investigated. Variants (R59A, -C, -E, -H, -K, -M, and -Q) were prepared by site-directed mutagenesis and characterized by size exclusion chromatography (SEC), circular dichroism (CD) spectroscopy, and stopped-flow kinetic analyses. CD spectra indicated similar secondary structures for the wild type and the R59A and -K variants, independent of nondenaturing concentrations of guanidine hydrochloride (GdnHCl). SEC indicated that all variants purified as homotrimers like the wild type. SEC also revealed that the R59A and -K variants unfolded at > or = 1.5 M GdnHCl, compared to 3.0 M GdnHCl for the wild type. These results indicate that Arg 59 contributes to the thermodynamic stability of the Cam trimer. The R59K variant had k(cat) and k(cat)/K(m) values that were 8 and 5% of the wild-type values, respectively, while all other variants had k(cat) and k(cat)/K(m) values 10-100-fold lower than those of the wild type. The R59A, -C, -E, -M, and -Q variants exhibited 4-63-fold increases in k(cat) and 9-120-fold increases in k(cat)/K(m) upon addition of 100 mM GdnHCl, with the largest increases observed for the R59A variant, which was comparable to the R59K variant. The kinetic results indicate that a positive charge at position 59 is essential for the CO(2) hydration step of the overall catalytic mechanism.  相似文献   

3.
4.
A W229H mutant of 4-alpha-glucanotransferase (4-alpha-GTase) from Pyrococcus furiosus was constructed and its catalytic properties were studied to investigate the role of W229 in the catalytic specificities of the enzyme. Various activities and kinetic parameters were determined for the wild-type and W229H mutant enzymes. The transglycosylation factor and transglycosylation activity of the mutant enzyme markedly decreased, but its hydrolysis activity was scarcely affected. It was discovered that the k(cat)/K(m) value of transglycosylation activity significantly decreased to about 15% of that of the wild type, while k(cat)/K(m) value of hydrolysis activity changed little for the mutant enzyme. The hydrophobicity of W229 was thought to be critical to the transglycosylation activity of the enzyme based on the enzyme's modeled tertiary structures.  相似文献   

5.
An effective means of relieving the toxicity of furan aldehydes, furfural (FFA) and 5-hydroxymethylfurfural (HMF), on fermenting organisms is essential for achieving efficient fermentation of lignocellulosic biomass to ethanol and other products. Ari1p, an aldehyde reductase from Saccharomyces cerevisiae, has been shown to mitigate the toxicity of FFA and HMF by catalyzing the NADPH-dependent conversion to corresponding alcohols, furfuryl alcohol (FFOH) and 5-hydroxymethylfurfuryl alcohol (HMFOH). At pH 7.0 and 25°C, purified Ari1p catalyzes the NADPH-dependent reduction of substrates with the following values (k(cat) (s(-1)), k(cat)/K(m) (s(-1)mM(-1)), K(m) (mM)): FFA (23.3, 1.82, 12.8), HMF (4.08, 0.173, 23.6), and dl-glyceraldehyde (2.40, 0.0650, 37.0). When acting on HMF and dl-glyceraldehyde, the enzyme operates through an equilibrium ordered kinetic mechanism. In the physiological direction of the reaction, NADPH binds first and NADP(+) dissociates from the enzyme last, demonstrated by k(cat) of HMF and dl-glyceraldehyde that are independent of [NADPH] and (K(ia)(NADPH)/k(cat)) that extrapolate to zero at saturating HMF or dl-glyceraldehyde concentration. Microscopic kinetic parameters were determined for the HMF reaction (HMF+NADPH?HMFOH+NADP(+)), by applying steady-state, presteady-state, kinetic isotope effects, and dynamic modeling methods. Release of products, HMFOH and NADP(+), is 84% rate limiting to k(cat) in the forward direction. Equilibrium constants, [NADP(+)][FFOH]/[NADPH][FFA][H(+)]=5600×10(7)M(-1) and [NADP(+)][HMFOH]/[NADPH][HMF][H(+)]=4200×10(7)M(-1), favor the physiological direction mirrored by the slowness of hydride transfer in the non-physiological direction, NADP(+)-dependent oxidation of alcohols (k(cat) (s(-1)), k(cat)/K(m) (s(-1)mM(-1)), K(m) (mM)): FFOH (0.221, 0.00158, 140) and HMFOH (0.0105, 0.000104, 101).  相似文献   

6.
Nidetzky B  Klimacek M  Mayr P 《Biochemistry》2001,40(34):10371-10381
Microbial xylose reductase, a representative aldo-keto reductase of primary sugar metabolism, catalyzes the NAD(P)H-dependent reduction of D-xylose with a turnover number approximately 100 times that of human aldose reductase for the same reaction. To determine the mechanistic basis for that physiologically relevant difference and pinpoint features that are unique to the microbial enzyme among other aldo/keto reductases, we carried out stopped-flow studies with wild-type xylose reductase from the yeast Candida tenuis. Analysis of transient kinetic data for binding of NAD(+) and NADH, and reduction of D-xylose and oxidation of xylitol at pH 7.0 and 25 degrees C provided estimates of rate constants for the following mechanism: E + NADH right arrow over left arrow E.NADH right arrow over left arrow E.NADH + D-xylose right arrow over left arrow E.NADH.D-xylose right arrow over left arrow E.NAD(+).xylitol right arrow over left arrow E.NAD(+) right arrow over left arrow E.NAD(+) right arrow over left arrow E + NAD(+). The net rate constant of dissociation of NAD(+) is approximately 90% rate limiting for k(cat) of D-xylose reduction. It is controlled by the conformational change which precedes nucleotide release and whose rate constant of 40 s(-)(1) is 200 times that of completely rate-limiting E.NADP(+) --> E.NADP(+) step in aldehyde reduction catalyzed by human aldose reductase [Grimshaw, C. E., et al. (1995) Biochemistry 34, 14356-14365]. Hydride transfer from NADH occurs with a rate constant of approximately 170 s(-1). In reverse reaction, the E.NADH --> E.NADH step takes place with a rate constant of 15 s(-1), and the rate constant of ternary-complex interconversion (3.8 s(-1)) largely determines xylitol turnover (0.9 s(-1)). The bound-state equilibrium constant for C. tenuis xylose reductase is estimated to be approximately 45 (=170/3.8), thus greatly favoring aldehyde reduction. Formation of productive complexes, E.NAD(+) and E.NADH, leads to a 7- and 9-fold decrease of dissociation constants of initial binary complexes, respectively, demonstrating that 12-fold differential binding of NADH (K(i) = 16 microM) vs NAD(+) (K(i) = 195 microM) chiefly reflects difference in stabilities of E.NADH and E.NAD(+). Primary deuterium isotope effects on k(cat) and k(cat)/K(xylose) were, respectively, 1.55 +/- 0.09 and 2.09 +/- 0.31 in H(2)O, and 1.26 +/- 0.06 and 1.58 +/- 0.17 in D(2)O. No deuterium solvent isotope effect on k(cat)/K(xylose) was observed. When deuteration of coenzyme selectively slowed the hydride transfer step, (D)()2(O)(k(cat)/K(xylose)) was inverse (0.89 +/- 0.14). The isotope effect data suggest a chemical mechanism of carbonyl reduction by xylose reductase in which transfer of hydride ion is a partially rate-limiting step and precedes the proton-transfer step.  相似文献   

7.
Bacterial phosphotriesterase (PTE) catalyzes the hydrolysis of a wide variety of organophosphate nerve agents and insecticides. Previous kinetic studies with a series of enantiomeric organophosphate triesters have shown that the wild type PTE generally prefers the S(P)-enantiomer over the corresponding R(P)-enantiomers by factors ranging from 1 to 90. The three-dimensional crystal structure of PTE with a bound substrate analogue has led to the identification of three hydrophobic binding pockets. To delineate the factors that govern the reactivity and stereoselectivity of PTE, the dimensions of these three subsites have been systematically altered by site-directed mutagenesis of Cys-59, Gly-60, Ser-61, Ile-106, Trp-131, Phe-132, His-254, His-257, Leu-271, Leu-303, Phe-306, Ser-308, Tyr-309, and Met-317. These studies have shown that substitution of Gly-60 with an alanine within the small subsite dramatically decreased k(cat) and k(cat)/K(a) for the R(P)-enantiomers, but had little influence on the kinetic constants for the S(P)-enantiomers of the chiral substrates. As a result, the chiral preference for the S(P)-enantiomers was greatly enhanced. For example, the value of k(cat)/K(a) with the mutant G60A for the S(P)-enantiomer of methyl phenyl p-nitrophenyl phosphate was 13000-fold greater than that for the corresponding R(P)-enantiomer. The mutation of I106, F132, or S308 to an alanine residue, which enlarges the small or leaving group subsites, caused a significant reduction in the enantiomeric preference for the S(P)-enantiomers, due to selective increases in the reaction rates for the R(P)-enantiomers. Enlargement of the large subsite by the construction of an H254A, H257A, L271A, or M317A mutant had a relatively small effect on k(cat)/K(a) for either the R(P)- or S(P)-enantiomers and thus had little effect on the overall stereoselectivity. These studies demonstrate that by modifying specific residues located within the active site of PTE, it is possible to dramatically alter the stereoselectivity and overall reactivity of the native enzyme toward chiral substrates.  相似文献   

8.
The roles of an aspartate and an arginine, which are completely conserved in the active sites of beta-class carbonic anhydrases, were investigated by steady-state kinetic analyses of replacement variants of the beta-class enzyme (Cab) from the archaeon Methanobacterium thermoautotrophicum. Previous kinetic analyses of wild-type Cab indicated a two-step zinc-hydroxide mechanism of catalysis in which the k(cat)/K(m) value depends only on the rate constants for the CO(2) hydration step, whereas k(cat) also depends on rate constants from the proton transfer step (K. S. Smith, N. J. Cosper, C. Stalhandske, R. A. Scott, and J. G. Ferry, J. Bacteriol. 182:6605-6613, 2000). The recently solved crystal structure of Cab shows the presence of a buffer molecule within hydrogen bonding distance of Asp-34, implying a role for this residue in the proton transport step (P. Strop, K. S. Smith, T. M. Iverson, J. G. Ferry, and D. C. Rees, J. Biol. Chem. 276:10299-10305, 2001). The k(cat)/K(m) values of Asp-34 variants were decreased relative to those of the wild type, although not to an extent which supports an essential role for this residue in the CO(2) hydration step. Parallel decreases in k(cat) and k(cat)/K(m) values for the variants precluded any conclusions regarding a role for Asp-34 in the proton transfer step; however, the k(cat) of the D34A variant was chemically rescued by replacement of 2-(N-morpholino)propanesulfonic acid buffer with imidazole at pH 7.2, supporting a role for the conserved aspartate in the proton transfer step. The crystal structure of Cab also shows Arg-36 with two hydrogen bonds to Asp-34. Arg-36 variants had both k(cat) and k(cat)/K(m) values that were decreased at least 250-fold relative to those of the wild type, establishing an essential function for this residue. Imidazole was unable to rescue the k(cat) of the R36A variant; however, partial rescue of the kinetic parameter was obtained with guanidine-HCl indicating that the guanido group of this residue is important.  相似文献   

9.
Catalytic reaction pathway for the mitogen-activated protein kinase ERK2   总被引:2,自引:0,他引:2  
Prowse CN  Hagopian JC  Cobb MH  Ahn NG  Lew J 《Biochemistry》2000,39(20):6258-6266
The structural, functional, and regulatory properties of the mitogen-activated protein kinases (MAP kinases) have long attracted considerable attention owing to the critical role that these enzymes play in signal transduction. While several MAP kinase X-ray crystal structures currently exist, there is by comparison little mechanistic information available to correlate the structural data with the known biochemical properties of these molecules. We have employed steady-state kinetic and solvent viscosometric techniques to characterize the catalytic reaction pathway of the MAP kinase ERK2 with respect to the phosphorylation of a protein substrate, myelin basic protein (MBP), and a synthetic peptide substrate, ERKtide. A minor viscosity effect on k(cat) with respect to the phosphorylation of MBP was observed (k(cat) = 10 +/- 2 s(-1), k(cat)(eta) = 0.18 +/- 0.05), indicating that substrate processing occurs via slow phosphoryl group transfer (12 +/- 4 s(-1)) followed by the faster release of products (56 +/- 4 s(-1)). At an MBP concentration extrapolated to infinity, no significant viscosity effect on k(cat)/K(m(ATP)) was observed (k(cat)/K(m(ATP)) = 0.2 +/- 0.1 microM(-1) s(-1), k(cat)/K(m(ATP))(eta) = -0.08 +/- 0.04), consistent with rapid-equilibrium binding of the nucleotide. In contrast, at saturating ATP, a full viscosity effect on k(cat)/K(m) for MBP was apparent (k(cat)/K(m(MBP)) = 2.4 +/- 1 microM(-1) s(-1), k(cat)/K(m(MBP))(eta) = 1.0 +/- 0.1), while no viscosity effect was observed on k(cat)/K(m) for the phosphorylation of ERKtide (k(cat)/K(m(ERKtide)) = (4 +/- 2) x 10(-3) microM(-1) s(-1), k(cat)/K(m(ERKtide))(eta) = -0.02 +/- 0.02). This is consistent with the diffusion-limited binding of MBP, in contrast to the rapid-equilibrium binding of ERKtide, to form the ternary Michaelis complex. Calculated values for binding constants show that the estimated value for K(d(MBP)) (/= 1.5 mM). The dramatically higher catalytic efficiency of MBP in comparison to that of ERKtide ( approximately 600-fold difference) is largely attributable to the slow dissociation rate of MBP (/=56 s(-1)), from the ERK2 active site.  相似文献   

10.
The Michaelis constant (K(m)) and V(mas) (E0k(cat)) values for two mutant sets of enzymes were studied from the viewpoint of their definition in a rapid equilibrium reaction model and in a steady state reaction model. The "AMP set enzyme" had a mutation at the AMP-binding site (Y95F, V67I, and V67I/L76V), and the "ATP set enzyme" had a mutation at a possible ATP-binding region (Y32F, Y34F, and Y32A/Y34A). Reaction rate constants obtained using steady state model analysis explained discrepancies found by the rapid equilibrium model analysis. (i) The unchanged number of bound AMPs for Y95F and the wild type despite the markedly increased K(m) values for AMP of the AMP set of enzymes was explained by alteration of the rate constants of the AMP step (k(+2), k(-2)) to retain the ratio k(+2)/k(-2). (ii) A 100 times weakened selectivity of ATP for Y34F in contrast to no marked changes in K(m) values for both ATP and AMP for the ATP set of enzymes was explained by the alteration of the rate constants of the ATP steps. A similar alteration of the K(m) and k(cat) values of these enzymes resulted from distinctive alterations of their rate constants. The pattern of alteration was highly suggestive. The most interesting finding was that the rate constants that decided the K(m) and k(cat) values were replaced by the mutation, and the simple relationships between K(m), k(cat), and the rate constants of K(m)1 = k(+1)/k(-1) and k(cat) = k(f) were not valid. The nature of the K(m) and k(cat) alterations was discussed.  相似文献   

11.
The first committed step of lipid A biosynthesis in Gram-negative bacteria is catalyzed by the zinc-dependent hydrolase LpxC that removes an acetate from the nitrogen at the 2' '-position of UDP-3-O-acyl-N-acetylglucosamine. Recent structural characterization by both NMR and X-ray crystallography provides many important details about the active site environment of LpxC from Aquifex aeolicus, a heat-stable orthologue that displays 32% sequence identity to LpxC from Escherichia coli. The detailed reaction mechanism and specific roles of active site residues for LpxC from A. aeolicus are further analyzed here. The pH dependencies of k(cat)/K(M) and k(cat) for the deacetylation of the substrate UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc are both bell-shaped. The ascending acidic limb (pK(1)) was fitted to 6.1 +/- 0.2 for k(cat) and 5.7 +/- 0.2 for k(cat)/K(M). The descending basic limb (pK(2)) was fitted to 8.0 +/- 0.2 for k(cat) and 8.4 +/- 0.2 for k(cat)/K(M). The pH dependence of the E73A mutant exhibits loss of the acidic limb, and the mutant retains only 0.15% activity versus the wild type. The pH dependencies of the other active site mutants H253A, K227A, H253A/K227A, and D234N remain bell-shaped, although their significantly lower activities (0.25%, 0.05%, 0.007%, and 0.57%, respectively) suggest that they contribute significantly to catalysis. Our cumulative data support a mechanism for LpxC wherein Glu73 serves as the general base for deprotonation and activation of the zinc-bound water.  相似文献   

12.
The factors that govern the substrate reactivity and stereoselectivity of phosphotriesterase (PTE) toward organophosphotriesters containing various combinations of methyl, ethyl, isopropyl, and phenyl substituents at the phosphorus center were determined by systematic alterations in the dimensions of the active site. The wild type PTE prefers the S(P)-enantiomers over the corresponding R(P)-enantiomers by factors ranging from 10 to 90. Enlargement of the small subsite of PTE with the substitution of glycine and alanine residues for Ile-106, Phe-132, and/or Ser-308 resulted in significant improvements in k(cat)/K(a) for the R(P)-enantiomers of up to 2700-fold but had little effect on k(cat)/K(a) for the corresponding S(P)-enantiomers. The kinetic preferences for the S(P)-enantiomers were thus relaxed without sacrificing the inherent catalytic activity of the wild type enzyme. A reduction in the size of the large subsite with the mutant H257Y resulted in a reduction in k(cat)/K(a) for the S(P)-enantiomers, while the values of k(cat)/K(a) for the R(P)-enantiomers were essentially unchanged. The initial stereoselectivity observed with the wild type enzyme toward the chiral substrate library was significantly reduced with the H257Y mutant. Simultaneous alternations in the sizes of the large and small subsites resulted in the complete reversal of the chiral specificity. With this series of mutants, the R(P)-enantiomers were preferred as substrates over the corresponding S(P)-enantiomers by up to 500-fold. These results have demonstrated that the stereochemical determinants for substrate hydrolysis by PTE can be systematically altered through a rational reconstruction of the dimensions of the active site.  相似文献   

13.
Pichia stipitis NAD(+)-dependent xylitol dehydrogenase (XDH), a medium-chain dehydrogenase/reductase, is one of the key enzymes in ethanol fermentation from xylose. For the construction of an efficient biomass-ethanol conversion system, we focused on the two areas of XDH, 1) change of coenzyme specificity from NAD(+) to NADP(+) and 2) thermostabilization by introducing an additional zinc atom. Site-directed mutagenesis was used to examine the roles of Asp(207), Ile(208), Phe(209), and Asn(211) in the discrimination between NAD(+) and NADP(+). Single mutants (D207A, I208R, F209S, and N211R) improved 5 approximately 48-fold in catalytic efficiency (k(cat)/K(m)) with NADP(+) compared with the wild type but retained substantial activity with NAD(+). The double mutants (D207A/I208R and D207A/F209S) improved by 3 orders of magnitude in k(cat)/K(m) with NADP(+), but they still preferred NAD(+) to NADP(+). The triple mutant (D207A/I208R/F209S) and quadruple mutant (D207A/I208R/F209S/N211R) showed more than 4500-fold higher values in k(cat)/K(m) with NADP(+) than the wild-type enzyme, reaching values comparable with k(cat)/K(m) with NAD(+) of the wild-type enzyme. Because most NADP(+)-dependent XDH mutants constructed in this study decreased the thermostability compared with the wild-type enzyme, we attempted to improve the thermostability of XDH mutants by the introduction of an additional zinc atom. The introduction of three cysteine residues in wild-type XDH gave an additional zinc-binding site and improved the thermostability. The introduction of this mutation in D207A/I208R/F209S and D207A/I208R/F209S/N211R mutants increased the thermostability and further increased the catalytic activity with NADP(+).  相似文献   

14.
In a previous study, we constructed a three-dimensional (3D) structure of pentachlorophenol 4-monooxygenase (PcpB). In this study, further analyses are performed to examine the important amino acid residues in the catalytic reaction by identification of the proteins with mass spectrometry, circular dichroism (CD) and UV spectrometry, and determination of kinetic parameters. Recombinant histidine-tagged PcpB protein was produced and shown to have a similar activity to the native protein. Mutant proteins of PcpB were then produced (F85A, Y216A, Y216F, R235A, R235E, R235K, Y397A and Y397F) on the basis of the proposed 3D structure. The CD spectra of the proteins showed that there were no major changes in the structures of the mutant proteins, with the exception of R235E. Steady-state kinetics showed a 20-fold reduction in k(cat)/K(m) and a ninefold increase in K(m) for Y216F and a threefold reduction in k(cat)/K(m) and a sixfold increase in K(m) for Y397F compared to the wild type. On the other hand, the value of k(cat)/K(m) of R235K mutant was the same as that of wild type. As a result, it was confirmed that Y216 and Y397 play an important role with respect to the recognition of the substrate.  相似文献   

15.
To gain insight into the role of the strictly conserved histidine residue, H178, in the reaction mechanism of the methionyl aminopeptidase from Escherichia coli (EcMetAP-I), the H178A mutant enzyme was prepared. Metal-reconstituted H178A binds only one equivalent of Co(II) or Fe(II) tightly with affinities that are identical to the WT enzyme based on kinetic and isothermal titration calorimetry (ITC) data. Electronic absorption spectra of Co(II)-loaded H178A EcMetAP-I indicate that the active site divalent metal ion is pentacoordinate, identical to the WT enzyme. These data indicate that the metal binding site has not been affected by altering H178. The effect of altering H178 on activity is, in general, due to a decrease in k(cat). The k(cat) value for Co(II)-loaded H178A decreased 70-fold toward MGMM and 290-fold toward MP-p-NA compared to the WT enzyme, while k(cat) decreased 50-fold toward MGMM for the Fe(II)-loaded H178A enzyme and 140-fold toward MP-p-NA. The K(m) values for MGMM remained unaffected, while those for MP-p-NA increased approximately 2-fold for Co(II)- and Fe(II)-loaded H178A. The k(cat)/K(m) values for both Co(II)- and Fe(II)-loaded H178A toward both substrates ranged from approximately 50- to 580-fold reduction. The pH dependence of log K(m), log k(cat), and log(k(cat)/K(m)) of both WT and H178A EcMetAP-I were also obtained and are identical, within error, for H178A and WT EcMetAP-I. Therefore, H178A is catalytically important but is not required for catalysis. Assignment of one of the observed pK(a) values at 8.1 for WT EcMetAP-I was obtained from plots of molar absorptivity at lambda(max(640)) vs pH for both WT and H178A EcMetAP-I. Apparent pK(a) values of 8.1 and 7.6 were obtained for WT and H178A EcMetAP-I, respectively, and were assigned to the deprotonation of a metal-bound water molecule. The data reported herein provide support for the key elements of the previously proposed mechanism and suggest that a similar mechanism can apply to the enzyme with a single metal in the active site.  相似文献   

16.
Klimacek M  Nidetzky B 《Biochemistry》2002,41(31):10158-10165
Mannitol dehydrogenases (MDH) are a family of Zn(2+)-independent long-chain alcohol dehydrogenases that catalyze the regiospecific NAD(+)-dependent oxidation of a secondary alcohol group in polyol substrates. pH and primary deuterium kinetic isotope effects on kinetic parameters for reaction of recombinant MDH from Pseudomonas fluorescens with D-mannitol have been measured in H(2)O and D(2)O at 25 degrees C and used to determine the relative timing of C-H and O-H bond cleavage steps during alcohol conversion. The enzymatic rates decreased at low pH; apparent pK values for log(k(cat)/K(mannitol)) and log k(cat) were 9.2 and 7.7 in H(2)O, respectively, and both were shifted by +0.4 pH units in D(2)O. Proton inventory plots for k(cat) and k(cat)/K(mannitol) were determined at pL 10.0 using protio or deuterio alcohol and were linear at the 95% confidence level. They revealed the independence of primary deuterium isotope effects on the atom fraction of deuterium in a mixed H(2)O-D(2)O solvent and yielded single-site transition-state fractionation factors of 0.43 +/- 0.05 and 0.47 +/- 0.01 for k(cat)/K(mannitol) and k(cat), respectively. (D)(k(cat)/K(mannitol)) was constant (1.80 +/- 0.20) in the pH range 6.0-9.5 and decreased at high pH to a limiting value of approximately 1. Measurement of (D)(k(cat)/K(fructose)) at pH 10.0 and 10.5 using NADH deuterium-labeled in the 4-pro-S position gave a value of 0.83, the equilibrium isotope effect on carbonyl group reduction. A mechanism of D-mannitol oxidation by MDH is supported by the data in which the partly rate-limiting transition state of hydride transfer is stabilized by a single solvation catalytic proton bridge. The chemical reaction involves a pH-dependent internal equilibrium which takes place prior to C-H bond cleavage and in which proton transfer from the reactive OH to the enzyme catalytic base may occur. Loss of a proton from the enzyme at high pH irreversibly locks the ternary complex with either alcohol or alkoxide bound in a conformation committed of undergoing NAD(+) reduction at a rate about 2.3-fold slower than the corresponding reaction rate of the protonated complex. Transient kinetic studies for D-mannitol oxidation at pH(D) 10.0 showed that the solvent isotope effect on steady-state turnover originates from a net rate constant of NADH release that is approximately 85% rate-limiting for k(cat) and 2-fold smaller in D(2)O than in H(2)O.  相似文献   

17.
The Staphylococcus aureus transpeptidase SrtA catalyzes the covalent attachment of LPXTG-containing virulence and colonization-associated proteins to cell-wall peptidoglycan in Gram-positive bacteria. Recent structural characterizations of staphylococcal SrtA, and related transpeptidases SrtB from S. aureus and Bacillus anthracis, provide many details regarding the active site environment, yet raise questions with regard to the nature of catalysis and active site cysteine thiol activation. Here we re-evaluate the kinetic mechanism of SrtA and shed light on aspects of its catalytic mechanism. Using steady-state, pre-steady-state, bisubstrate kinetic studies, and high-resolution electrospray mass spectrometry, revised steady-state kinetic parameters and a ping-pong hydrolytic shunt kinetic mechanism were determined for recombinant SrtA. The pH dependencies of kinetic parameters k(cat)/K(m) and k(cat) for the substrate Abz-LPETG-Dap(Dnp)-NH(2) were bell-shaped with pK(a) values of 6.3 +/- 0.2 and 9.4 +/- 0.2 for k(cat) and 6.2 +/- 0.2 and 9.4 +/- 0.2 for k(cat)/K(m). Solvent isotope effect (SIE) measurements revealed inverse behavior, with a (D)2(O)k(cat) of 0.89 +/- 0.01 and a (D)2(O)(k(cat)/K(m)) of 0.57 +/- 0.03 reflecting an equilibrium SIE. In addition, SIE measurements strongly implicated Cys184 participation in the isotope-sensitive rate-determining chemical step when considered in conjunction with an inverse linear proton inventory for k(cat). Last, the pH dependence of SrtA inactivation by iodoacetamide revealed a single ionization for inactivation. These studies collectively provide compelling evidence for a reverse protonation mechanism where a small fraction (ca. 0.06%) of SrtA is competent for catalysis at physiological pH, yet is highly active with an estimated k(cat)/K(m) of >10(5) M(-)(1) s(-)(1).  相似文献   

18.
Kumar K  Walz FG 《Biochemistry》2001,40(12):3748-3757
Combinatorial random mutageneses involving either Asn43 with Asn44 (set 1) or Glu46 with an adjacent insertion (set 2) were undertaken to explore the functional perfection of the guanine recognition loop of ribonuclease T(1) (RNase T(1)). Four hundred unique recombinants were screened in each set for their ability to enhance enzyme catalysis of RNA cleavage. After a thorough selection procedure, only six variants were found that were either as active or more active than wild type which included substitutions of Asn43 by Gly, His, Leu, or Thr, an unplanned Tyr45Ser substitution and Glu46Pro with an adjacent Glu47 insertion. Asn43His-RNase T(1) has the same loop sequence as that for RNases Pb(1) and Fl(2). None of the most active mutants were single substitutions at Asn44 or double substitutions at Asn43 and Asn44. A total of 13 variants were purified, and these were subjected to kinetic analysis using RNA, GpC, and ApC as substrates. Modestly enhanced activities with GpC and RNA involved both k(cat) and K(M) effects. Mutants having low activity with GpC had proportionately even lower relative activity with RNA. Asn43Gly-RNase T(1) and all five of the purified mutants in set 2 exhibited similar values of k(cat)/K(M) for ApC which were the highest observed and about 10-fold that for wild type. The specificity ratio [(k(cat)/K(M))(GpC)/(k(cat)/K(M))(ApC)] varied over 30 000-fold including a 10-fold increase [Asn43His variant; mainly due to a low (k(cat)/K(M))(ApC)] and a 3000-fold decrease (Glu46Ser/(insert)Gly47 variant; mainly due to a low (k(cat)/K(M))(GpC)) as compared with wild type. It is interesting that k(cat) (GpC) for the Tyr45Ser variant was almost 4-fold greater than for wild type and that Pro46/(insert)Glu47 RNase T(1) is 70-fold more active than the permuted variant (insert)Pro47-RNase T(1) which has a conserved Glu46. In any event, the observation that only 6 out of 800 variants surveyed had wild-type activity supports the view that functional perfection of the guanine recognition loop of RNase T(1) has been achieved.  相似文献   

19.
The effects of calcium ions on hydrolysis of low molecular weight substrates catalyzed by different forms of enteropeptidase were studied. A method for determining activity of truncated enteropeptidase preparations lacking a secondary trypsinogen binding site and displaying low activity towards trypsinogen was developed using N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester (Z-Lys-S-Bzl). The kinetic constants for hydrolysis of this substrate at pH 8.0 and 25 degrees C were determined for natural enteropeptidase (K(m) 59.6 microM, k(cat) 6660 min(-1), k(cat)/K(m) 111 microM(-1) x min(-1)), as well as for enteropeptidase preparation with deleted 118-783 fragment of the heavy chain (K(m) 176.9 microM, k(cat) 6694 min(-1), k(cat)/K(m) 37.84 microM(-1) x min(-1)) and trypsin (K(m) 56.0 microM, k(cat) 8280 min(-1), k(cat)/K(m) 147.86 microM(-1) x min(-1)). It was shown that the enzymes with trypsin-like primary active site display similar hydrolysis efficiency towards Z-Lys-S-Bzl. Calcium ions cause 3-fold activation of hydrolysis of the substrates of general type GD(4)K-X by the natural full-length enteropeptidase. In contrast, the hydrolysis of substrates with one or two Asp/Glu residues at P2-P3 positions is slightly inhibited by Ca2+. In the case of enteropeptidase light chain as well as the enzyme containing the truncated heavy chain (466-800 fragment), the activating effect of calcium ions was not detected for all the studied substrates. The results of hydrolysis experiments with synthetic enteropeptidase substrates GD(4)K-F(NO(2))G, G(5)DK-F(NO(2))G (where F(NO(2)) is p-nitrophenyl-L-phenylalanine residue), and GD(4)K-Nfa (where Nfa is beta-naphthylamide) demonstrate the possibility of regulation of undesired side hydrolysis using natural full-length enteropeptidase for processing chimeric proteins by means of calcium ions.  相似文献   

20.
The P450 2E1-catalyzed oxidation of ethanol to acetaldehyde is characterized by a kinetic deuterium isotope effect that increases K(m) with no effect on k(cat), and rate-limiting product release has been proposed to account for the lack of an isotope effect on k(cat) (Bell, L. C., and Guengerich, F. P. (1997) J. Biol. Chem. 272, 29643-29651). Acetaldehyde is also a substrate for P450 2E1 oxidation to acetic acid, and k(cat)/K(m) for this reaction is at least 1 order of magnitude greater than that for ethanol oxidation to acetaldehyde. Acetic acid accounts for 90% of the products generated from ethanol in a 10-min reaction, and the contribution of this second oxidation has been overlooked in many previous studies. The noncompetitive intermolecular kinetic hydrogen isotope effects on acetaldehyde oxidation to acetic acid ((H)(k(cat)/K(m))/(D)(k(cat)/K(m)) = 4.5, and (D)k(cat) = 1.5) are comparable with the isotope effects typically observed for ethanol oxidation to acetaldehyde, and k(cat) is similar for both reactions, suggesting a possible common catalytic mechanism. Rapid quench kinetic experiments indicate that acetic acid is formed rapidly from added acetaldehyde (approximately 450 min(-1)) with burst kinetics. Pulse-chase experiments reveal that, at a subsaturating concentration of ethanol, approximately 90% of the acetaldehyde intermediate is directly converted to acetic acid without dissociation from the enzyme active site. Competition experiments suggest that P450 2E1 binds acetic acid and acetaldehyde with relatively high K(d) values, which preclude simple tight binding as an explanation for rate-limiting product release. The existence of a rate-determining step between product formation and release is postulated. Also proposed is a conformational change in P450 2E1 occurring during the course of oxidation and the discrimination of P450 2E1 between acetaldehyde and its hydrated form, the gem-diol. This multistep P450 reaction is characterized by kinetic control of individual reaction steps and by loose binding of all ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号