首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Dominance may be an important source of non-additive genetic variance for many traits of dairy cattle. However, nearly all prediction models for dairy cattle have included only additive effects because of the limited number of cows with both genotypes and phenotypes. The role of dominance in the Holstein and Jersey breeds was investigated for eight traits: milk, fat, and protein yields; productive life; daughter pregnancy rate; somatic cell score; fat percent and protein percent. Additive and dominance variance components were estimated and then used to estimate additive and dominance effects of single nucleotide polymorphisms (SNPs). The predictive abilities of three models with both additive and dominance effects and a model with additive effects only were assessed using ten-fold cross-validation. One procedure estimated dominance values, and another estimated dominance deviations; calculation of the dominance relationship matrix was different for the two methods. The third approach enlarged the dataset by including cows with genotype probabilities derived using genotyped ancestors. For yield traits, dominance variance accounted for 5 and 7% of total variance for Holsteins and Jerseys, respectively; using dominance deviations resulted in smaller dominance and larger additive variance estimates. For non-yield traits, dominance variances were very small for both breeds. For yield traits, including additive and dominance effects fit the data better than including only additive effects; average correlations between estimated genetic effects and phenotypes showed that prediction accuracy increased when both effects rather than just additive effects were included. No corresponding gains in prediction ability were found for non-yield traits. Including cows with derived genotype probabilities from genotyped ancestors did not improve prediction accuracy. The largest additive effects were located on chromosome 14 near DGAT1 for yield traits for both breeds; those SNPs also showed the largest dominance effects for fat yield (both breeds) as well as for Holstein milk yield.  相似文献   

2.

Background

Today, genomic evaluations are an essential feature of dairy cattle breeding. Initially, genomic evaluation targeted young bulls but recently, a rapidly increasing number of females (both heifers and cows) are being genotyped. A rising issue is whether and how own performance of genotyped cows should be included in genomic evaluations. The purpose of this study was to assess the impact of including yield deviations, i.e. own performance of cows, in genomic evaluations.

Methods

Two different genomic evaluations were performed: one including only reliable daughter yield deviations of proven bulls based on their non-genotyped daughters, and one including both daughter yield deviations for males and own yield deviations for genotyped females. Milk yield, the trait most prone to preferential treatment, and somatic cell count, for which such a bias is very unlikely, were studied. Data consisted of two groups of animals from the three main dairy breeds in France: 11 884 elite females genotyped by breeding companies and 7032 cows genotyped for a research project (and considered as randomly selected from the commercial population).

Results

For several measures that could be related to preferential treatment bias, the elite group presented a different pattern of estimated breeding values for milk yield compared to the other combinations of trait and group: for instance, for milk yield, the average difference between estimated breeding values with or without own yield deviations was significantly different from 0 for this group. Correlations between estimated breeding values with or without yield deviations were lower for elite females than for randomly selected cows for milk yield but were very similar for somatic cell count.

Conclusions

This study demonstrated that including own milk performance of elite females leads to biased (over-estimated) genomic evaluations. Thus, milk production records of elite cows require specific treatment in genomic evaluation.  相似文献   

3.

Background

Dominance effect may play an important role in genetic variation of complex traits. Full featured and easy-to-use computing tools for genomic prediction and variance component estimation of additive and dominance effects using genome-wide single nucleotide polymorphism (SNP) markers are necessary to understand dominance contribution to a complex trait and to utilize dominance for selecting individuals with favorable genetic potential.

Results

The GVCBLUP package is a shared memory parallel computing tool for genomic prediction and variance component estimation of additive and dominance effects using genome-wide SNP markers. This package currently has three main programs (GREML_CE, GREML_QM, and GCORRMX) and a graphical user interface (GUI) that integrates the three main programs with an existing program for the graphical viewing of SNP additive and dominance effects (GVCeasy). The GREML_CE and GREML_QM programs offer complementary computing advantages with identical results for genomic prediction of breeding values, dominance deviations and genotypic values, and for genomic estimation of additive and dominance variances and heritabilities using a combination of expectation-maximization (EM) algorithm and average information restricted maximum likelihood (AI-REML) algorithm. GREML_CE is designed for large numbers of SNP markers and GREML_QM for large numbers of individuals. Test results showed that GREML_CE could analyze 50,000 individuals with 400 K SNP markers and GREML_QM could analyze 100,000 individuals with 50K SNP markers. GCORRMX calculates genomic additive and dominance relationship matrices using SNP markers. GVCeasy is the GUI for GVCBLUP integrated with an existing software tool for the graphical viewing of SNP effects and a function for editing the parameter files for the three main programs.

Conclusion

The GVCBLUP package is a powerful and versatile computing tool for assessing the type and magnitude of genetic effects affecting a phenotype by estimating whole-genome additive and dominance heritabilities, for genomic prediction of breeding values, dominance deviations and genotypic values, for calculating genomic relationships, and for research and education in genomic prediction and estimation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-270) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

A better understanding of non-additive variance could lead to increased knowledge on the genetic control and physiology of quantitative traits, and to improved prediction of the genetic value and phenotype of individuals. Genome-wide panels of single nucleotide polymorphisms (SNPs) have been mainly used to map additive effects for quantitative traits, but they can also be used to investigate non-additive effects. We estimated dominance and epistatic effects of SNPs on various traits in beef cattle and the variance explained by dominance, and quantified the increase in accuracy of phenotype prediction by including dominance deviations in its estimation.

Methods

Genotype data (729 068 real or imputed SNPs) and phenotypes on up to 16 traits of 10 191 individuals from Bos taurus, Bos indicus and composite breeds were used. A genome-wide association study was performed by fitting the additive and dominance effects of single SNPs. The dominance variance was estimated by fitting a dominance relationship matrix constructed from the 729 068 SNPs. The accuracy of predicted phenotypic values was evaluated by best linear unbiased prediction using the additive and dominance relationship matrices. Epistatic interactions (additive × additive) were tested between each of the 28 SNPs that are known to have additive effects on multiple traits, and each of the other remaining 729 067 SNPs.

Results

The number of significant dominance effects was greater than expected by chance and most of them were in the direction that is presumed to increase fitness and in the opposite direction to inbreeding depression. Estimates of dominance variance explained by SNPs varied widely between traits, but had large standard errors. The median dominance variance across the 16 traits was equal to 5% of the phenotypic variance. Including a dominance deviation in the prediction did not significantly increase its accuracy for any of the phenotypes. The number of additive × additive epistatic effects that were statistically significant was greater than expected by chance.

Conclusions

Significant dominance and epistatic effects occur for growth, carcass and fertility traits in beef cattle but they are difficult to estimate precisely and including them in phenotype prediction does not increase its accuracy.  相似文献   

5.
The partition of the total genetic variance into its additive and non-additive components can differ from trait to trait, and between purebred and crossbred populations. A quantification of these genetic variance components will determine the extent to which it would be of interest to account for dominance in genomic evaluations or to establish mate allocation strategies along different populations and traits. This study aims at assessing the contribution of the additive and dominance genomic variances to the phenotype expression of several purebred Piétrain and crossbred (Piétrain × Large White) pig performances. A total of 636 purebred and 720 crossbred male piglets were phenotyped for 22 traits that can be classified into six groups of traits: growth rate and feed efficiency, carcass composition, meat quality, behaviour, boar taint and puberty. Additive and dominance variances estimated in univariate genotypic models, including additive and dominance genotypic effects, and a genomic inbreeding covariate allowed to retrieve the additive and dominance single nucleotide polymorphism variances for purebred and crossbred performances. These estimated variances were used, together with the allelic frequencies of the parental populations, to obtain additive and dominance variances in terms of genetic breeding values and dominance deviations. Estimates of the Piétrain and Large White allelic contributions to the crossbred variance were of about the same magnitude in all the traits. Estimates of additive genetic variances were similar regardless of the inclusion of dominance. Some traits showed relevant amount of dominance genetic variance with respect to phenotypic variance in both populations (i.e. growth rate 8%, feed conversion ratio 9% to 12%, backfat thickness 14% to 12%, purebreds-crossbreds). Other traits showed higher amount in crossbreds (i.e. ham cut 8% to 13%, loin 7% to 16%, pH semimembranosus 13% to 18%, pH longissimus dorsi 9% to 14%, androstenone 5% to 13% and estradiol 6% to 11%, purebreds-crossbreds). It was not encountered a clear common pattern of dominance expression between groups of analysed traits and between populations. These estimates give initial hints regarding which traits could benefit from accounting for dominance for example to improve genomic estimated breeding value accuracy in genetic evaluations or to boost the total genetic value of progeny by means of assortative mating.  相似文献   

6.
7.

Background

Milkability, primarily evaluated by measurements of milking speed and time, has an economic impact in milk production of dairy cattle. Recently the Italian Brown Swiss Breeders Association has included milking speed in genetic evaluations. The main objective of this study was to investigate the possibility of implementing genomic selection for milk flow traits in the Italian Brown Swiss population and thereby evaluate the potential of genomic selection for novel traits in medium-sized populations. Predicted breeding values and reliabilities based on genomic information were compared with those obtained from traditional breeding values.

Methods

Milk flow measures for total milking time, ascending time, time of plateau, descending time, average milk flow and maximum milk flow were collected on 37 213 Italian Brown Swiss cows. Breeding values for genotyped sires (n = 1351) were obtained from standard BLUP and genome-enhanced breeding value techniques utilizing two-stage and single-step methods. Reliabilities from a validation dataset were estimated and used to compare accuracies obtained from parental averages with genome-enhanced predictions.

Results

Genome-enhanced breeding values evaluated using two-stage methods had similar reliabilities with values ranging from 0.34 to 0.49 for the different traits. Across two-stage methods, the average increase in reliability from parental average was approximately 0.17 for all traits, with the exception of descending time, for which reliability increased to 0.11. Combining genomic and pedigree information in a single-step produced the largest increases in reliability over parent averages: 0.20, 0.24, 0.21, 0.14, 0.20 and 0.21 for total milking time, ascending time, time of plateau, descending time, average milk flow and maximum milk flow, respectively.

Conclusions

Using genomic models increased the accuracy of prediction compared to traditional BLUP methods. Our results show that, among the methods used to predict genome-enhanced breeding values, the single-step method was the most successful at increasing the reliability for most traits. The single-step method takes advantage of all the data available, including phenotypes from non-genotyped animals, and can easily be incorporated into current breeding evaluations.  相似文献   

8.

Background

The four casein proteins in goat milk are encoded by four closely linked casein loci (CSN1S1, CSN2, CSN1S2 and CSN3) within 250 kb on caprine chromosome 6. A deletion in exon 12 of CSN1S1, so far reported only in Norwegian goats, has been found at high frequency (0.73). Such a high frequency is difficult to explain because the national breeding goal selects against the variant''s effect.

Methods

In this study, 575 goats were genotyped for 38 Single Nucleotide Polymorphisms (SNP) located within the four casein genes. Milk production records of these goats were obtained from the Norwegian Dairy Goat Control. Test-day mixed models with additive and dominance fixed effects of single SNP were fitted in a model including polygenic effects.

Results

Significant additive effects of single SNP within CSN1S1 and CSN3 were found for fat % and protein %, milk yield and milk taste. The allele with the deletion showed additive and dominance effects on protein % and fat %, and overdominance effects on milk quantity (kg) and lactose %. At its current frequency, the observed dominance (overdominance) effects of the deletion allele reduced its substitution effect (and additive genetic variance available for selection) in the population substantially.

Conclusions

The selection pressure of conventional breeding on the allele with the deletion is limited due to the observed dominance (overdominance) effects. Inclusion of molecular information in the national breeding scheme will reduce the frequency of this deletion in the population.  相似文献   

9.
Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP) markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and dominance genetic effects (MAD), and 4) a full model including all three genetic components (MAED). Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions.  相似文献   

10.
We established a genomic model of quantitative trait with genomic additive and dominance relationships that parallels the traditional quantitative genetics model, which partitions a genotypic value as breeding value plus dominance deviation and calculates additive and dominance relationships using pedigree information. Based on this genomic model, two sets of computationally complementary but mathematically identical mixed model methods were developed for genomic best linear unbiased prediction (GBLUP) and genomic restricted maximum likelihood estimation (GREML) of additive and dominance effects using SNP markers. These two sets are referred to as the CE and QM sets, where the CE set was designed for large numbers of markers and the QM set was designed for large numbers of individuals. GBLUP and associated accuracy formulations for individuals in training and validation data sets were derived for breeding values, dominance deviations and genotypic values. Simulation study showed that GREML and GBLUP generally were able to capture small additive and dominance effects that each accounted for 0.00005–0.0003 of the phenotypic variance and GREML was able to differentiate true additive and dominance heritability levels. GBLUP of the total genetic value as the summation of additive and dominance effects had higher prediction accuracy than either additive or dominance GBLUP, causal variants had the highest accuracy of GREML and GBLUP, and predicted accuracies were in agreement with observed accuracies. Genomic additive and dominance relationship matrices using SNP markers were consistent with theoretical expectations. The GREML and GBLUP methods can be an effective tool for assessing the type and magnitude of genetic effects affecting a phenotype and for predicting the total genetic value at the whole genome level.  相似文献   

11.

Background

The one-step blending approach has been suggested for genomic prediction in dairy cattle. The core of this approach is to incorporate pedigree and phenotypic information of non-genotyped animals. The objective of this study was to investigate the improvement of the accuracy of genomic prediction using the one-step blending method in Chinese Holstein cattle.

Findings

Three methods, GBLUP (genomic best linear unbiased prediction), original one-step blending with a genomic relationship matrix, and adjusted one-step blending with an adjusted genomic relationship matrix, were compared with respect to the accuracy of genomic prediction for five milk production traits in Chinese Holstein. For the two one-step blending methods, de-regressed proofs of 17 509 non-genotyped cows, including 424 dams and 17 085 half-sisters of the validation cows, were incorporated in the prediction model. The results showed that, averaged over the five milk production traits, the one-step blending increased the accuracy of genomic prediction by about 0.12 compared to GBLUP. No further improvement in accuracies was obtained from the adjusted one-step blending over the original one-step blending in our situation. Improvements in accuracies obtained with both one-step blending methods were almost completely contributed by the non-genotyped dams.

Conclusions

Compared with GBLUP, the one-step blending approach can significantly improve the accuracy of genomic prediction for milk production traits in Chinese Holstein cattle. Thus, the one-step blending is a promising approach for practical genomic selection in Chinese Holstein cattle, where the reference population mainly consists of cows.  相似文献   

12.
With the objective of evaluating measures of milk yield persistency, 27,000 test-day milk yield records from 3362 first lactations of Brazilian Gyr cows that calved between 1990 and 2007 were analyzed with a random regression model. Random, additive genetic and permanent environmental effects were modeled using Legendre polynomials of order 4 and 5, respectively. Residual variance was modeled using five classes. The average lactation curve was modeled using a fourth-order Legendre polynomial. Heritability estimates for measures of persistency ranged from 0.10 to 0.25. Genetic correlations between measures of persistency and 305-day milk yield (Y305) ranged from -0.52 to 0.03. At high selection intensities for persistency measures and Y305, few animals were selected in common. As the selection intensity for the two traits decreased, a higher percentage of animals were selected in common. The average predicted breeding values for Y305 according to year of birth of the cows had a substantial annual genetic gain. In contrast, no improvement in the average persistency breeding value was observed. We conclude that selection for total milk yield during lactation does not identify bulls or cows that are genetically superior in terms of milk yield persistency. A measure of persistency represented by the sum of deviations of estimated breeding value for days 31 to 280 in relation to estimated breeding value for day 30 should be preferred in genetic evaluations of this trait in the Gyr breed, since this measure showed a medium heritability and a genetic correlation with 305-day milk yield close to zero. In addition, this measure is more adequate at the time of peak lactation, which occurs between days 25 and 30 after calving in this breed.  相似文献   

13.

Background

Modern dairy cattle breeding goals include several production and more and more functional traits. Estimated breeding values (EBV) that are combined in the total merit index usually come from single-trait models or from multivariate models for groups of traits. In most cases, a multivariate animal model based on phenotypic data for all traits is not feasible and approximate methods based on selection index theory are applied to derive the total merit index. Therefore, the objective of this study was to compare a full multitrait animal model with two approximate multitrait models and a selection index approach based on simulated data.

Methods

Three production and two functional traits were simulated to mimic the national Austrian Brown Swiss population. The reference method for derivation of the total merit index was a multitrait evaluation based on all phenotypic data. Two of the approximate methods were variations of an approximate multitrait model that used either yield deviations or de-regressed breeding values. The final method was an adaptation of the selection index method that is used in routine evaluations in Austria and Germany. Three scenarios with respect to residual covariances were set up: residual covariances were equal to zero, or half of or equal to the genetic covariances.

Results

Results of both approximate multitrait models were very close to those of the reference method, with rank correlations of 1. Both methods were nearly unbiased. Rank correlations for the selection index method showed good results when residual covariances were zero but correlations with the reference method decreased when residual covariances were large. Furthermore, EBV were biased when residual covariances were high.

Conclusions

We applied an approximate multitrait two-step procedure to yield deviations and de-regressed breeding values, which led to nearly unbiased results. De-regressed breeding values gave even slightly better results. Our results confirmed that ignoring residual covariances when a selection index approach is applied leads to remarkable bias. This could be relevant in terms of selection accuracy. Our findings suggest that the approximate multitrait approach applied to de-regressed breeding values can be used in routine genetic evaluation.  相似文献   

14.

Background

In national evaluations, direct genomic breeding values can be considered as correlated traits to those for which phenotypes are available for traditional estimation of breeding values. For this purpose, estimates of the accuracy of direct genomic breeding values expressed as genetic correlations between traits and their respective direct genomic breeding values are required.

Methods

We derived direct genomic breeding values for 2239 registered Limousin and 2703 registered Simmental beef cattle genotyped with either the Illumina BovineSNP50 BeadChip or the Illumina BovineHD BeadChip. For the 264 Simmental animals that were genotyped with the BovineHD BeadChip, genotypes for markers present on the BovineSNP50 BeadChip were extracted. Deregressed estimated breeding values were used as observations in weighted analyses that estimated marker effects to derive direct genomic breeding values for each breed. For each breed, genotyped individuals were clustered into five groups using K-means clustering, with the aim of increasing within-group and decreasing between-group pedigree relationships. Cross-validation was performed five times for each breed, using four groups for training and the fifth group for validation. For each trait, we then applied a weighted bivariate analysis of the direct genomic breeding values of genotyped animals from all five validation sets and their corresponding deregressed estimated breeding values to estimate variance and covariance components.

Results

After minimizing relationships between training and validation groups, estimated genetic correlations between each trait and its direct genomic breeding values ranged from 0.39 to 0.76 in Limousin and from 0.29 to 0.65 in Simmental. The efficiency of selection based on direct genomic breeding values relative to selection based on parent average information ranged from 0.68 to 1.28 in genotyped Limousin and from 0.51 to 1.44 in genotyped Simmental animals. The efficiencies were higher for 323 non-genotyped young Simmental animals, born after January 2012, and ranged from 0.60 to 2.04.

Conclusions

Direct genomic breeding values show promise for routine use by Limousin and Simmental breeders to improve the accuracy of predicted genetic merit of their animals at a young age and increase response to selection. Benefits from selecting on direct genomic breeding values are greater for breeders who use natural mating sires in their herds than for those who use artificial insemination sires. Producers with unregistered commercial Limousin and Simmental cattle could also benefit from being able to identify genetically superior animals in their herds, an opportunity that has in the past been limited to seed stock animals.  相似文献   

15.

Background

The purpose of this work was to study the impact of both the size of genomic reference populations and the inclusion of a residual polygenic effect on dairy cattle genetic evaluations enhanced with genomic information.

Methods

Direct genomic values were estimated for German Holstein cattle with a genomic BLUP model including a residual polygenic effect. A total of 17,429 genotyped Holstein bulls were evaluated using the phenotypes of 44 traits. The Interbull genomic validation test was implemented to investigate how the inclusion of a residual polygenic effect impacted genomic estimated breeding values.

Results

As the number of reference bulls increased, both the variance of the estimates of single nucleotide polymorphism effects and the reliability of the direct genomic values of selection candidates increased. Fitting a residual polygenic effect in the model resulted in less biased genome-enhanced breeding values and decreased the correlation between direct genomic values and estimated breeding values of sires in the reference population.

Conclusions

Genetic evaluation of dairy cattle enhanced with genomic information is highly effective in increasing reliability, as well as using large genomic reference populations. We found that fitting a residual polygenic effect reduced the bias in genome-enhanced breeding values, decreased the correlation between direct genomic values and sire''s estimated breeding values and made genome-enhanced breeding values more consistent in mean and variance as is the case for pedigree-based estimated breeding values.  相似文献   

16.

Background

Many studies have provided evidence of the existence of genetic heterogeneity of environmental variance, suggesting that it could be exploited to improve robustness and uniformity of livestock by selection. However, little is known about the perspectives of such a selection strategy in beef cattle.

Methods

A two-step approach was applied to study the genetic heterogeneity of residual variance of weight gain from birth to weaning and long-yearling weight in a Nellore beef cattle population. First, an animal model was fitted to the data and second, the influence of additive and environmental effects on the residual variance of these traits was investigated with different models, in which the log squared estimated residuals for each phenotypic record were analyzed using the restricted maximum likelihood method. Monte Carlo simulation was performed to assess the reliability of variance component estimates from the second step and the accuracy of estimated breeding values for residual variation.

Results

The results suggest that both genetic and environmental factors have an effect on the residual variance of weight gain from birth to weaning and long-yearling in Nellore beef cattle and that uniformity of these traits could be improved by selecting for lower residual variance, when considering a large amount of information to predict genetic merit for this criterion. Simulations suggested that using the two-step approach would lead to biased estimates of variance components, such that more adequate methods are needed to study the genetic heterogeneity of residual variance in beef cattle.  相似文献   

17.
Genomic evaluation models can fit additive and dominant SNP effects. Under quantitative genetics theory, additive or “breeding” values of individuals are generated by substitution effects, which involve both “biological” additive and dominant effects of the markers. Dominance deviations include only a portion of the biological dominant effects of the markers. Additive variance includes variation due to the additive and dominant effects of the markers. We describe a matrix of dominant genomic relationships across individuals, D, which is similar to the G matrix used in genomic best linear unbiased prediction. This matrix can be used in a mixed-model context for genomic evaluations or to estimate dominant and additive variances in the population. From the “genotypic” value of individuals, an alternative parameterization defines additive and dominance as the parts attributable to the additive and dominant effect of the markers. This approach underestimates the additive genetic variance and overestimates the dominance variance. Transforming the variances from one model into the other is trivial if the distribution of allelic frequencies is known. We illustrate these results with mouse data (four traits, 1884 mice, and 10,946 markers) and simulated data (2100 individuals and 10,000 markers). Variance components were estimated correctly in the model, considering breeding values and dominance deviations. For the model considering genotypic values, the inclusion of dominant effects biased the estimate of additive variance. Genomic models were more accurate for the estimation of variance components than their pedigree-based counterparts.  相似文献   

18.

Background

In this study, we used different animal models to estimate genetic and environmental variance components on harvest weight in two populations of Oncorhynchus kisutch, forming two classes i.e. odd- and even-year spawners.

Methods

The models used were: additive, with and without inbreeding as a covariable (A + F and A respectively); additive plus common environmental due to full-sib families and inbreeding (A + C + F); additive plus parental dominance and inbreeding (A + D + F); and a full model (A + C + D + F). Genetic parameters and breeding values obtained by different models were compared to evaluate the consequences of including non-additive effects on genetic evaluation.

Results

Including inbreeding as a covariable did not affect the estimation of genetic parameters, but heritability was reduced when dominance or common environmental effects were included. A high heritability for harvest weight was estimated in both populations (even = 0.46 and odd = 0.50) when simple additive models (A + F and A) were used. Heritabilities decreased to 0.21 (even) and 0.37 (odd) when the full model was used (A + C + D + F). In this full model, the magnitude of the dominance variance was 0.19 (even) and 0.06 (odd), while the magnitude of the common environmental effect was lower than 0.01 in both populations. The correlation between breeding values estimated with different models was very high in all cases (i.e. higher than 0.98). However, ranking of the 30 best males and the 100 best females per generation changed when a high dominance variance was estimated, as was the case in one of the two populations (even).

Conclusions

Dominance and common environmental variance may be important components of variance in harvest weight in O. kisutch, thus not including them may produce an overestimation of the predicted response; furthermore, genetic evaluation was seen to be partially affected, since the ranking of selected animals changed with the inclusion of non-additive effects in the animal model.  相似文献   

19.

Background

In the analysis of complex traits, genetic effects can be confounded with non-genetic effects, especially when using full-sib families. Dominance and epistatic effects are typically confounded with additive genetic and non-genetic effects. This confounding may cause the estimated genetic variance components to be inaccurate and biased.

Methods

In this study, we constructed genetic covariance structures from whole-genome marker data, and thus used realized relationship matrices to estimate variance components in a heterogenous population of ~ 2200 mice for which four complex traits were investigated. These mice were genotyped for more than 10,000 single nucleotide polymorphisms (SNP) and the variances due to family, cage and genetic effects were estimated by models based on pedigree information only, aggregate SNP information, and model selection for specific SNP effects.

Results and conclusions

We show that the use of genome-wide SNP information can disentangle confounding factors to estimate genetic variances by separating genetic and non-genetic effects. The estimated variance components using realized relationship were more accurate and less biased, compared to those based on pedigree information only. Models that allow the selection of individual SNP in addition to fitting a relationship matrix are more efficient for traits with a significant dominance variance.  相似文献   

20.

Background

Inbreeding reduces the fitness of individuals by increasing the frequency of homozygous deleterious recessive alleles. Some insight into the genetic architecture of fitness, and other complex traits, can be gained by using single nucleotide polymorphism (SNP) data to identify regions of the genome which lead to reduction in performance when identical by descent (IBD). Here, we compared the effect of genome-wide and location-specific homozygosity on fertility and milk production traits in dairy cattle.

Methods

Genotype data from more than 43 000 SNPs were available for 8853 Holstein and 4138 Jersey dairy cows that were part of a much larger dataset that had pedigree records (338 696 Holstein and 64 049 Jersey animals). Measures of inbreeding were based on: (1) pedigree data; (2) genotypes to determine the realised proportion of the genome that is IBD; (3) the proportion of the total genome that is homozygous and (4) runs of homozygosity (ROH) which are stretches of the genome that are homozygous.

Results

A 1% increase in inbreeding based either on pedigree or genomic data was associated with a decrease in milk, fat and protein yields of around 0.4 to 0.6% of the phenotypic mean, and an increase in calving interval (i.e. a deterioration in fertility) of 0.02 to 0.05% of the phenotypic mean. A genome-wide association study using ROH of more than 50 SNPs revealed genomic regions that resulted in depression of up to 12.5 d and 260 L for calving interval and milk yield, respectively, when completely homozygous.

Conclusions

Genomic measures can be used instead of pedigree-based inbreeding to estimate inbreeding depression. Both the diagonal elements of the genomic relationship matrix and the proportion of homozygous SNPs can be used to measure inbreeding. Longer ROH (>3 Mb) were found to be associated with a reduction in milk yield and captured recent inbreeding independently and in addition to overall homozygosity. Inbreeding depression can be reduced by minimizing overall inbreeding but maybe also by avoiding the production of offspring that are homozygous for deleterious alleles at specific genomic regions that are associated with inbreeding depression.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0071-7) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号