首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Identification of the determinants of pathogen reservoir potential is central to understand disease emergence. It has been proposed that host lifespan is one such determinant: short-lived hosts will invest less in costly defenses against pathogens, so that they will be more susceptible to infection, more competent as sources of infection and/or will sustain larger vector populations, thus being effective reservoirs for the infection of long-lived hosts. This hypothesis is sustained by analyses of different hosts of multihost pathogens, but not of different genotypes of the same host species. Here we examined this hypothesis by comparing two genotypes of the plant Arabidopsis thaliana that differ largely both in life-span and in tolerance to its natural pathogen Cucumber mosaic virus (CMV). Experiments with the aphid vector Myzus persicae showed that both genotypes were similarly competent as sources for virus transmission, but the short-lived genotype was more susceptible to infection and was able to sustain larger vector populations. To explore how differences in defense against CMV and its vector relate to reservoir potential, we developed a model that was run for a set of experimentally-determined parameters, and for a realistic range of host plant and vector population densities. Model simulations showed that the less efficient defenses of the short-lived genotype resulted in higher reservoir potential, which in heterogeneous host populations may be balanced by the longer infectious period of the long-lived genotype. This balance was modulated by the demography of both host and vector populations, and by the genetic composition of the host population. Thus, within-species genetic diversity for lifespan and defenses against pathogens will result in polymorphisms for pathogen reservoir potential, which will condition within-population infection dynamics. These results are relevant for a better understanding of host-pathogen co-evolution, and of the dynamics of pathogen emergence.  相似文献   

2.
Basic postulates of the theory of natural focality of infections are considered in terms of modern ecological parasitology using the example of Ixodes ricinus and I. persulcatus ticks, the main vectors of tickborne encephalitis and borrelioses in Eurasia. Consideration is given to data on the population structure of ticks, their distribution in ecosystems, abundance, mortality at different stages of the life cycle, seasonal dynamics of activity, occurrence on different vertebrate species, relationships with potential hosts, and connections agents of infections. Due to long individual life span and development of one generation over 3–6 years, tick vector provide not only for transmission of pathogens, but also for their long-term storage and amplification. Several alternative routes of tick infection of ticks provide for pathogen exchange between individuals at different phases of development within one generation and between feeding ticks of different generations.  相似文献   

3.
Ixodes scapularis is the principal tick vector of the Lyme borreliosis agent Borrelia burgdorferi and other tick-borne zoonoses in northeastern North America. The degree of seasonal synchrony of nymphal and larval ticks may be important in influencing the basic reproductive number of the pathogens transmitted by I. scapularis. Because the seasonal phenology of tick vectors is partly controlled by ambient temperature, climate and climate change could shape the population biology of tick-borne pathogens. We used projected monthly normal temperatures, obtained from the second version of the Canadian Coupled Global Climate Model (CGCM2) under emissions scenario A2 of the Intergovernmental Panel on Climate Change for a site in southern Ontario, Canada, to simulate the phenology of I. scapularis in a mathematical model. The simulated seasonal abundance of ticks then determined transmission of three candidate pathogens amongst a population of white-footed mice (Peromyscus leucopus) using a susceptible-infected-recovered (SIR) model. Fitness of the different pathogens, in terms of resilience to changes in tick and rodent mortality, minima for infection duration, transmission efficiency and particularly any additional mortality of rodents specifically associated with infection, varied according to the seasonal pattern of immature tick activity, which was different under the temperature conditions projected for the 2020s, 2050s and 2080s. In each case, pathogens that were long-lived, highly transmissible and had little impact on rodent mortality rates were the fittest. However, under the seasonal tick activity patterns projected for the 2020s and 2050s, the fitness of pathogens that are shorter-lived, less efficiently transmitted, and more pathogenic to their natural hosts, increased. Therefore, climate change may affect the frequency and distribution of I. scapularis-borne pathogens and alter their evolutionary trajectories.  相似文献   

4.
The Lyme disease agent Borrelia burgdorferi is primarily transmitted to vertebrates by Ixodes ticks. The classical and alternative complement pathways are important in Borrelia eradication by the vertebrate host. We recently identified a tick salivary protein, designated P8, which reduced complement-mediated killing of Borrelia. We now discover that P8 interferes with the human lectin complement cascade, resulting in impaired neutrophil phagocytosis and chemotaxis and diminished Borrelia lysis. Therefore, P8 was renamed the tick salivary lectin pathway inhibitor (TSLPI). TSLPI-silenced ticks, or ticks exposed to TSLPI-immune mice, were hampered in Borrelia transmission. Moreover, Borrelia acquisition and persistence in tick midguts was impaired in ticks?feeding on TSLPI-immunized, B.?burgdorferi-infected mice. Together, our findings suggest an essential role for the lectin complement cascade in Borrelia eradication and demonstrate how a vector-borne pathogen co-opts a vector protein to facilitate early mammalian infection and vector colonization.  相似文献   

5.
Invasive species may impact pathogen transmission by altering the distributions and interactions among native vertebrate reservoir hosts and arthropod vectors. Here, we examined the direct and indirect effects of the red imported fire ant (Solenopsis invicta) on the native tick, small mammal and pathogen community in southeast Texas. Using a replicated large-scale field manipulation study, we show that small mammals were more abundant on treatment plots where S. invicta populations were experimentally reduced. Our analysis of ticks on small mammal hosts demonstrated a threefold increase in the ticks caught per unit effort on treatment relative to control plots, and elevated tick loads (a 27-fold increase) on one common rodent species. We detected only one known human pathogen (Rickettsia parkeri), present in 1.4% of larvae and 6.7% of nymph on-host Amblyomma maculatum samples but with no significant difference between treatment and control plots. Given that host and vector population dynamics are key drivers of pathogen transmission, the reduced small mammal and tick abundance associated with S. invicta may alter pathogen transmission dynamics over broader spatial scales.  相似文献   

6.
Transmission of the etiologic agent of Lyme disease, Borrelia burgdorferi, occurs by the attachment and blood feeding of Ixodes species ticks on mammalian hosts. In nature, this zoonotic bacterial pathogen may use a variety of reservoir hosts, but the white-footed mouse (Peromyscus leucopus) is the primary reservoir for larval and nymphal ticks in North America. Humans are incidental hosts most frequently infected with B. burgdorferi by the bite of ticks in the nymphal stage. B. burgdorferi adapts to its hosts throughout the enzootic cycle, so the ability to explore the functions of these spirochetes and their effects on mammalian hosts requires the use of tick feeding. In addition, the technique of xenodiagnosis (using the natural vector for detection and recovery of an infectious agent) has been useful in studies of cryptic infection. In order to obtain nymphal ticks that harbor B. burgdorferi, ticks are fed live spirochetes in culture through capillary tubes. Two animal models, mice and nonhuman primates, are most commonly used for Lyme disease studies involving tick feeding. We demonstrate the methods by which these ticks can be fed upon, and recovered from animals for either infection or xenodiagnosis.  相似文献   

7.

Background

The flaviviruses causing tick-borne encephalitis (TBE) persist at low but consistent levels in tick populations, despite short infectious periods in their mammalian hosts and transmission periods constrained by distinctly seasonal tick life cycles. In addition to systemic and vertical transmission, cofeeding transmission has been proposed as an important route for the persistence of TBE-causing viruses. Because cofeeding transmission requires ticks to feed simultaneously, the timing of tick activity may be critical to pathogen persistence. Existing models of tick-borne diseases do not incorporate all transmission routes and tick seasonality. Our aim is to evaluate the influence of seasonality on the relative importance of different transmission routes by using a comprehensive mathematical model.

Methodology/Principal Findings

We developed a stage-structured population model that includes tick seasonality and evaluated the relative importance of the transmission routes for pathogens with short infectious periods, in particular Powassan virus (POWV) and the related “deer tick virus,” emergent encephalitis-causing flaviviruses in North America. We used the next generation matrix method to calculate the basic reproductive ratio and performed elasticity analyses. We confirmed that cofeeding transmission is critically important for such pathogens to persist in seasonal tick populations over the reasonable range of parameter values. At higher but still plausible rates of vertical transmission, our model suggests that vertical transmission can strongly enhance pathogen prevalence when it operates in combination with cofeeding transmission.

Conclusions/Significance

Our results demonstrate that the consistent prevalence of POWV observed in tick populations could be maintained by a combination of low vertical, intermediate cofeeding and high systemic transmission rates. When vertical transmission is weak, nymphal ticks support integral parts of the transmission cycle that are critical for maintaining the pathogen. We also extended the model to pathogens that cause chronic infections in hosts and found that cofeeding transmission could contribute to elevating prevalence even in these systems. Therefore, the common assumption that cofeeding transmission is not relevant in models of chronic host infection, such as Lyme disease, could lead to underestimating pathogen prevalence.  相似文献   

8.
Most emerging infectious diseases of humans are transmitted to humans from other animals. The transmission of these “zoonotic” pathogens is affected by the abundance and behavior of their wildlife hosts. However, the effects of infection with zoonotic pathogens on behavior of wildlife hosts, particularly those that might propagate through ecological communities, are not well understood. Borrelia burgdorferi is a bacterium that causes Lyme disease, the most common vector‐borne disease in the USA and Europe. In its North American range, the pathogen is most frequently transmitted among hosts through the bite of infected blacklegged ticks (Ixodes scapularis). Using sham and true vaccines, we experimentally manipulated infection load with this zoonotic pathogen in its most competent wildlife reservoir host, the white‐footed mouse, Peromyscus leucopus, and quantified the effects of infection on mouse foraging behavior, as well as levels of mouse infestation with ticks. Mice treated with the true vaccine had 20% fewer larval blacklegged ticks infesting them compared to mice treated with the sham vaccine, a significant difference. We observed a nonsignificant trend for mice treated with the true vaccine to be more likely to visit experimental foraging trays (20%–30% effect size) and to prey on gypsy moth pupae (5%–20% effect size) compared to mice treated with the sham vaccine. We observed no difference between mice on true‐ versus sham‐vaccinated grids in risk‐averse foraging. Infection with this zoonotic pathogen appears to elicit behavioral changes that might reduce self‐grooming, but other behaviors were affected subtly or not at all. High titers of B. burgdorferi in mice could elicit a self‐reinforcing feedback loop in which reduced grooming increases tick burdens and hence exposure to tick‐borne pathogens.  相似文献   

9.
An increasing number of studies reveal that ticks and their hosts are infected with multiple pathogens, suggesting that coinfection might be frequent for both vectors and wild reservoir hosts. Whereas the examination of associations between coinfecting pathogen agents in natural host–vector–pathogen systems is a prerequisite for a better understanding of disease maintenance and transmission, the associations between pathogens within vectors or hosts are seldom explicitly examined. We examined the prevalence of pathogen agents and the patterns of associations between them under natural conditions, using a previously unexamined host–vector–pathogen system—green lizards Lacerta viridis, hard ticks Ixodes ricinus, and Borrelia, Anaplasma, and Rickettsia pathogens. We found that immature ticks infesting a temperate lizard species in Central Europe were infected with multiple pathogens. Considering I. ricinus nymphs and larvae, the prevalence of Anaplasma, Borrelia, and Rickettsia was 13.1% and 8.7%, 12.8% and 1.3%, and 4.5% and 2.7%, respectively. The patterns of pathogen prevalence and observed coinfection rates suggest that the risk of tick infection with one pathogen is not independent of other pathogens. Our results indicate that Anaplasma can play a role in suppressing the transmission of Borrelia to tick vectors. Overall, however, positive effects of Borrelia on Anaplasma seem to prevail as judged by higher-than-expected BorreliaAnaplasma coinfection rates.  相似文献   

10.
The distribution of vector meals in the host community is an important element of understanding and predicting vector-borne disease risk. Lizards (such as the western fence lizard; Sceloporus occidentalis) play a unique role in Lyme disease ecology in the far-western United States. Lizards rather than mammals serve as the blood meal hosts for a large fraction of larval and nymphal western black-legged ticks (Ixodes pacificus--the vector for Lyme disease in that region) but are not competent reservoirs for the pathogen, Borrelia burgdorferi. Prior studies have suggested that the net effect of lizards is to reduce risk of human exposure to Lyme disease, a hypothesis that we tested experimentally. Following experimental removal of lizards, we documented incomplete host switching by larval ticks (5.19%) from lizards to other hosts. Larval tick burdens increased on woodrats, a competent reservoir, but not on deer mice, a less competent pathogen reservoir. However, most larvae failed to find an alternate host. This resulted in significantly lower densities of nymphal ticks the following year. Unexpectedly, the removal of reservoir-incompetent lizards did not cause an increase in nymphal tick infection prevalence. The net result of lizard removal was a decrease in the density of infected nymphal ticks, and therefore a decreased risk to humans of Lyme disease. Our results indicate that an incompetent reservoir for a pathogen may, in fact, increase disease risk through the maintenance of higher vector density and therefore, higher density of infected vectors.  相似文献   

11.
Ticks are often infected with more than one pathogen, and several field surveys have documented nonrandom levels of coinfection. Levels of coinfection by pathogens in four tick species were analyzed using published infection data. Coinfection patterns of pathogens in field-collected ticks include numerous cases of higher or lower levels of coinfection than would be expected due to chance alone, but the vast majority of these cases can be explained on the basis of vertebrate host associations of the pathogens, without invoking interactions between pathogens within ticks. Nevertheless, some studies have demonstrated antagonistic interactions, and some have suggested potential mutualisms, between pathogens in ticks. Negative or positive interactions between pathogens within ticks can affect pathogen prevalence, and thus transmission patterns. Probabilistic projections suggest that the effect on transmission depends on initial conditions. When the number of tick bites is relatively low (e.g., for ticks biting humans) changes in prevalence in ticks are predicted to have a commensurate effects on pathogen transmission. In contrast, when the number of tick bites is high (e.g., for wild animal hosts) changes in pathogen prevalence in ticks have relatively little effect on levels of transmission to reservoir hosts, and thus on natural transmission cycles.  相似文献   

12.
Zoonotic pathogens that cause devastating morbidity and mortality in humans may be relatively harmless in their natural reservoir hosts. The tick-borne bacterium Borrelia burgdorferi causes Lyme disease in humans but few studies have investigated whether this pathogen reduces the fitness of its reservoir hosts under natural conditions. We analyzed four years of capture-mark-recapture (CMR) data on a population of white-footed mice, Peromyscus leucopus, to test whether B. burgdorferi and its tick vector affect the survival of this important reservoir host. We used a multi-state CMR approach to model mouse survival and mouse infection rates as a function of a variety of ecologically relevant explanatory factors. We found no effect of B. burgdorferi infection or tick burden on the survival of P. leucopus. Our estimates of the probability of infection varied by an order of magnitude (0.051 to 0.535) and were consistent with our understanding of Lyme disease in the Northeastern United States. B. burgdorferi establishes a chronic avirulent infection in their rodent reservoir hosts because this pathogen depends on rodent mobility to achieve transmission to its sedentary tick vector. The estimates of B. burgdorferi infection risk will facilitate future theoretical studies on the epidemiology of Lyme disease.  相似文献   

13.
Ticks are obligatory parasites with complex life cycles that often depend on larger bodied vertebrates as final hosts. These traits make them particularly sensitive to local coextinction with their host. Loss of wildlife abundance and diversity should thus lead to loss of tick abundance and diversity to the point where only generalist tick species remain. However, direct empirical tests of these hypotheses are lacking, despite their relevance to our understanding of tick-borne disease emergence in disturbed environments. Here, we compare vertebrate and tick communities across 12 forest islands and peninsulas in the Panama Canal that ranged 1000-fold in size (2.6–2811.3?ha). We used drag sampling and camera trapping to directly assess the abundance and diversity of communities of questing ticks and vertebrate hosts. We found that the abundance and species richness of ticks were positively related to those of wildlife. Specialist tick species were only present in fragments where their final hosts were found. Further, less diverse tick communities had a higher relative abundance of the generalist tick species Amblyomma oblongoguttatum, a potential vector of spotted fever group rickettsiosis. These findings support the host-parasite coextinction hypothesis, and indicate that loss of wildlife can indeed have cascading effects on tick communities. Our results also imply that opportunities for pathogen transmission via generalist ticks may be higher in habitats with degraded tick communities. If these patterns are general, then tick identities and abundances serve as useful bioindicators of ecosystem health, with low tick diversity reflecting low wildlife diversity and a potentially elevated risk of interspecific disease transmission via remaining host species and generalist ticks.  相似文献   

14.
15.
16.
Ticks are important vectors of numerous pathogens causing illness, fatalities, and economic loss worldwide. Infectious disease episodes are increasing, and novel tick-borne pathogens are described frequently. Identification of novel reservoir hosts and vectors of tick-borne pathogens is essential if control measures are to be successful. In South Africa, the eastern rock sengi, Elephantulus myurus , hosts a number of tick species of veterinary importance. Despite this, there remains a paucity of information regarding the tick fauna of this species, the pathogen associations of ticks that it hosts, and its role as a reservoir host of tick-borne pathogens. The current study documents the tick fauna of E. myurus and sympatric small mammal species in Limpopo Province, South Africa. The pathogen associations of ticks hosted by elephant shrews were also investigated by PCR screening of engorged nymphs for a broad range of bacterial and protozoan tick-borne infections, including Borrelia burgdorferi sensu lato and members of Apicomplexa and the order Rickettsiales. There were marked differences in tick species and abundance among host species. Elephantulus myurus was heavily, and predominantly, parasitized by an as-yet undescribed tick species that we identify as Rhipicephalus sp. near warburtoni. PCR and sequence analysis revealed the presence of Anaplasma bovis in this tick species, which may have consequences for livestock production and conservation efforts in the area where this tick species occurs.  相似文献   

17.
The spread of tick-borne pathogens represents an important threat to human and animal health in many parts of Eurasia. Here, we analysed a 9-year time series of Ixodes ricinus ticks feeding on Apodemus flavicollis mice (main reservoir-competent host for tick-borne encephalitis, TBE) sampled in Trentino (Northern Italy). The tail of the distribution of the number of ticks per host was fitted by three theoretical distributions: Negative Binomial (NB), Poisson-LogNormal (PoiLN), and Power-Law (PL). The fit with theoretical distributions indicated that the tail of the tick infestation pattern on mice is better described by the PL distribution. Moreover, we found that the tail of the distribution significantly changes with seasonal variations in host abundance. In order to investigate the effect of different tails of tick distribution on the invasion of a non-systemically transmitted pathogen, we simulated the transmission of a TBE-like virus between susceptible and infective ticks using a stochastic model. Model simulations indicated different outcomes of disease spreading when considering different distribution laws of ticks among hosts. Specifically, we found that the epidemic threshold and the prevalence equilibria obtained in epidemiological simulations with PL distribution are a good approximation of those observed in simulations feed by the empirical distribution. Moreover, we also found that the epidemic threshold for disease invasion was lower when considering the seasonal variation of tick aggregation.  相似文献   

18.
Pathogen species often consist of genetically distinct strains, which can establish mixed infections or coinfections in the host. In coinfections, interactions between pathogen strains can have important consequences for their transmission success. We used the tick-borne bacterium Borrelia afzelii, which is the most common cause of Lyme disease in Europe, as a model multi-strain pathogen to investigate the relationship between coinfection, competition between strains, and strain-specific transmission success. Mus musculus mice were infected with one or two strains of B. afzelii, strain transmission success was measured by feeding ticks on mice, and the distribution of each strain in six different mouse organs and the ticks was measured using qPCR. Coinfection and competition reduced the tissue infection prevalence of both strains and changed their bacterial abundance in some tissues. Coinfection and competition also reduced the transmission success of the B. afzelii strains from the infected hosts to feeding ticks. The ability of the B. afzelii strains to establish infection in the host tissues was strongly correlated with their transmission success to the tick vector. Our study demonstrates that coinfection and competition between pathogen strains inside the host tissues can have major consequences for their transmission success.Subject terms: Microbial ecology, Bacteria  相似文献   

19.
Iron is an indispensable element for most microorganisms, including many pathogenic bacteria. Iron-withholding is a known component of the innate immunity, particularly of vertebrate hosts. Ticks are vectors of multiple pathogens and reports have shown that they naturally harbor several bacterial species. Thus, tick innate immunity must be crucial in limiting bacterial population to tolerable level that will not cause adverse effects. We have previously characterized two types of the iron-binding protein ferritin (HlFER) in the hard tick Haemaphysalis longicornis, known to be a vector of some protozoan parasites and rickettsiae, and showed their antioxidant function and importance in blood feeding and reproduction. Here we examined the possible role of HlFERs in tick immunity against bacterial infection. After silencing Hlfer genes, adult ticks were injected with live enhanced green fluorescence protein-expressing Escherichia coli, and then monitored for survival rate. Hemolymph that included hemocytes was collected for microscopic examination to observe cellular immune response, and for E. coli culture to determine bacterial viability after injection in the ticks. The expression of some antimicrobial peptides in whole ticks was also analyzed by RT-PCR. Hlfer-silenced ticks had a significantly lower survival rate than control ticks after E. coli injection. Greater number of bacteria inside and outside the hemocytes and higher bacterial colony counts after culture with hemolymph were also observed in Hlfer-silenced ticks. However, no difference on the expression of antimicrobial peptides was observed. These results suggest that ferritin molecules might be important in the cellular immune response of ticks to some bacteria.  相似文献   

20.
Ticks are important vectors for many emerging pathogens. However, they are also infected with many symbionts and commensals, often competing for the same niches. In this paper, we characterize the microbiome of Amblyomma americanum (Acari: Ixodidae), the lone star tick, in order to better understand the evolutionary relationships between pathogens and nonpathogens. Multitag pyrosequencing of prokaryotic 16S rRNA genes (16S rRNA) was performed on 20 lone star ticks (including males, females, and nymphs). Pyrosequencing of the rickettsial sca0 gene (also known as ompA or rompA) was performed on six ticks. Female ticks had less diverse microbiomes than males and nymphs, with greater population densities of Rickettsiales. The most common members of Rickettsiales were “Candidatus Rickettsia amblyommii” and “Candidatus Midichloria mitochondrii.” “Ca. Rickettsia amblyommii” was 2.6-fold more common in females than males, and there was no sequence diversity in the sca0 gene. These results are consistent with a predominantly vertical transmission pattern for “Ca. Rickettsia amblyommii.”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号