首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Accurate identification of cell types from single-cell RNA sequencing(scRNA-seq) data plays a critical role in a variety of scRNA-seq analysis studies. This task corresponds to solving an unsupervised clustering problem, in which the similarity measurement between cells affects the result significantly. Although many approaches for cell type identification have been proposed,the accuracy still needs to be improved. In this study, we proposed a novel single-cell clustering framework based on similarity learning, called SSRE. SSRE models the relationships between cells based on subspace assumption, and generates a sparse representation of the cell-to-cell similarity.The sparse representation retains the most similar neighbors for each cell. Besides, three classical pairwise similarities are incorporated with a gene selection and enhancement strategy to further improve the effectiveness of SSRE. Tested on ten real scRNA-seq datasets and five simulated datasets, SSRE achieved the superior performance in most cases compared to several state-of-the-art single-cell clustering methods. In addition, SSRE can be extended to visualization of scRNA-seq data and identification of differentially expressed genes. The matlab and python implementations of SSRE are available at https://github.com/CSUBioGroup/SSRE.  相似文献   

6.
Technological advances have enabled us to profile multiple molecular layers at unprecedented single-cell resolution and the available datasets from multiple samples or domains are growing. These datasets, including scRNA-seq data, scATAC-seq data and sc-methylation data, usually have different powers in identifying the unknown cell types through clustering. So, methods that integrate multiple datasets can potentially lead to a better clustering performance. Here we propose coupleCoC+ for the integrative analysis of single-cell genomic data. coupleCoC+ is a transfer learning method based on the information-theoretic co-clustering framework. In coupleCoC+, we utilize the information in one dataset, the source data, to facilitate the analysis of another dataset, the target data. coupleCoC+ uses the linked features in the two datasets for effective knowledge transfer, and it also uses the information of the features in the target data that are unlinked with the source data. In addition, coupleCoC+ matches similar cell types across the source data and the target data. By applying coupleCoC+ to the integrative clustering of mouse cortex scATAC-seq data and scRNA-seq data, mouse and human scRNA-seq data, mouse cortex sc-methylation and scRNA-seq data, and human blood dendritic cells scRNA-seq data from two batches, we demonstrate that coupleCoC+ improves the overall clustering performance and matches the cell subpopulations across multimodal single-cell genomic datasets. coupleCoC+ has fast convergence and it is computationally efficient. The software is available at https://github.com/cuhklinlab/coupleCoC_plus.  相似文献   

7.
Roman  Theodore  Xie  Lu  Schwartz  Russell 《BMC genomics》2016,17(1):97-107

Despite the enormous medical impact of cancers and intensive study of their biology, detailed characterization of tumor growth and development remains elusive. This difficulty occurs in large part because of enormous heterogeneity in the molecular mechanisms of cancer progression, both tumor-to-tumor and cell-to-cell in single tumors. Advances in genomic technologies, especially at the single-cell level, are improving the situation, but these approaches are held back by limitations of the biotechnologies for gathering genomic data from heterogeneous cell populations and the computational methods for making sense of those data. One popular way to gain the advantages of whole-genome methods without the cost of single-cell genomics has been the use of computational deconvolution (unmixing) methods to reconstruct clonal heterogeneity from bulk genomic data. These methods, too, are limited by the difficulty of inferring genomic profiles of rare or subtly varying clonal subpopulations from bulk data, a problem that can be computationally reduced to that of reconstructing the geometry of point clouds of tumor samples in a genome space. Here, we present a new method to improve that reconstruction by better identifying subspaces corresponding to tumors produced from mixtures of distinct combinations of clonal subpopulations. We develop a nonparametric clustering method based on medoidshift clustering for identifying subgroups of tumors expected to correspond to distinct trajectories of evolutionary progression. We show on synthetic and real tumor copy-number data that this new method substantially improves our ability to resolve discrete tumor subgroups, a key step in the process of accurately deconvolving tumor genomic data and inferring clonal heterogeneity from bulk data.

  相似文献   

8.
GeneRAGE: a robust algorithm for sequence clustering and domain detection   总被引:9,自引:0,他引:9  
MOTIVATION: Efficient, accurate and automatic clustering of large protein sequence datasets, such as complete proteomes, into families, according to sequence similarity. Detection and correction of false positive and negative relationships with subsequent detection and resolution of multi-domain proteins. RESULTS: A new algorithm for the automatic clustering of protein sequence datasets has been developed. This algorithm represents all similarity relationships within the dataset in a binary matrix. Removal of false positives is achieved through subsequent symmetrification of the matrix using a Smith-Waterman dynamic programming alignment algorithm. Detection of multi-domain protein families and further false positive relationships within the symmetrical matrix is achieved through iterative processing of matrix elements with successive rounds of Smith-Waterman dynamic programming alignments. Recursive single-linkage clustering of the corrected matrix allows efficient and accurate family representation for each protein in the dataset. Initial clusters containing multi-domain families, are split into their constituent clusters using the information obtained by the multi-domain detection step. This algorithm can hence quickly and accurately cluster large protein datasets into families. Problems due to the presence of multi-domain proteins are minimized, allowing more precise clustering information to be obtained automatically. AVAILABILITY: GeneRAGE (version 1.0) executable binaries for most platforms may be obtained from the authors on request. The system is available to academic users free of charge under license.  相似文献   

9.
Clustering cells and depicting the lineage relationship among cell subpopulations are fundamental tasks in single-cell omics studies. However, existing analytical methods face challenges in stratifying cells, tracking cellular trajectories, and identifying critical points of cell transitions. To overcome these, we proposed a novel Markov hierarchical clustering algorithm (MarkovHC), a topological clustering method that leverages the metastability of exponentially perturbed Markov chains for systematically reconstructing the cellular landscape. Briefly, MarkovHC starts with local connectivity and density derived from the input and outputs a hierarchical structure for the data. We firstly benchmarked MarkovHC on five simulated datasets and ten public single-cell datasets with known labels. Then, we used MarkovHC to investigate the multi-level architectures and transition processes during human embryo preimplantation development and gastric cancer procession. MarkovHC found heterogeneous cell states and sub-cell types in lineage-specific progenitor cells and revealed the most possible transition paths and critical points in the cellular processes. These results demonstrated MarkovHC’s effectiveness in facilitating the stratification of cells, identification of cell populations, and characterization of cellular trajectories and critical points.  相似文献   

10.
Single-cell RNA sequencing enables us to characterize the cellular heterogeneity in single cell resolution with the help of cell type identification algorithms. However, the noise inherent in single-cell RNA-sequencing data severely disturbs the accuracy of cell clustering, marker identification and visualization. We propose that clustering based on feature density profiles can distinguish informative features from noise. We named such strategy as ‘entropy subspace’ separation and designed a cell clustering algorithm called ENtropy subspace separation-based Clustering for nOise REduction (ENCORE) by integrating the ‘entropy subspace’ separation strategy with a consensus clustering method. We demonstrate that ENCORE performs superiorly on cell clustering and generates high-resolution visualization across 12 standard datasets. More importantly, ENCORE enables identification of group markers with biological significance from a hard-to-separate dataset. With the advantages of effective feature selection, improved clustering, accurate marker identification and high-resolution visualization, we present ENCORE to the community as an important tool for scRNA-seq data analysis to study cellular heterogeneity and discover group markers.  相似文献   

11.
12.
Single-cell RNA sequencing has become a powerful tool for identifying and characterizing cellular heterogeneity. One essential step to understanding cellular heterogeneity is determining cell identities. The widely used strategy predicts identities by projecting cells or cell clusters unidirectionally against a reference to find the best match. Here, we develop a bidirectional method, scMRMA, where a hierarchical reference guides iterative clustering and deep annotation with enhanced resolutions. Taking full advantage of the reference, scMRMA greatly improves the annotation accuracy. scMRMA achieved better performance than existing methods in four benchmark datasets and successfully revealed the expansion of CD8 T cell populations in squamous cell carcinoma after anti-PD-1 treatment.  相似文献   

13.
Stem cells(SCs) with their self-renewal and pluripotent differentiation potential,show great promise for therapeutic applications to some refractory diseases such as stroke, Parkinsonism, myocardial infarction, and diabetes. Furthermore, as seed cells in tissue engineering, SCs have been applied widely to tissue and organ regeneration. However, previous studies have shown that SCs are heterogeneous and consist of many cell subpopulations. Owing to this heterogeneity of cell states, gene expression is highly diverse between cells even within a single tissue,making precise identification and analysis of biological properties difficult, which hinders their further research and applications. Therefore, a defined understanding of the heterogeneity is a key to research of SCs. Traditional ensemble-based sequencing approaches, such as microarrays, reflect an average of expression levels across a large population, which overlook unique biological behaviors of individual cells, conceal cell-to-cell variations, and cannot understand the heterogeneity of SCs radically. The development of high throughput single cell RNA sequencing(scRNA-seq) has provided a new research tool in biology, ranging from identification of novel cell types and exploration of cell markers to the analysis of gene expression and predicating developmental trajectories. scRNA-seq has profoundly changed our understanding of a series of biological phenomena. Currently, it has been used in research of SCs in many fields, particularly for the research of heterogeneity and cell subpopulations in early embryonic development. In this review, we focus on the scRNA-seq technique and its applications to research of SCs.  相似文献   

14.
With the rapid accumulation of biological omics datasets, decoding the underlying relationships of cross-dataset genes becomes an important issue. Previous studies have attempted to identify differentially expressed genes across datasets. However, it is hard for them to detect interrelated ones. Moreover, existing correlation-based algorithms can only measure the relationship between genes within a single dataset or two multi-modal datasets from the same samples. It is still unclear how to quantify the strength of association of the same gene across two biological datasets with different samples. To this end, we propose Approximate Distance Correlation (ADC) to select interrelated genes with statistical significance across two different biological datasets. ADC first obtains the k most correlated genes for each target gene as its approximate observations, and then calculates the distance correlation (DC) for the target gene across two datasets. ADC repeats this process for all genes and then performs the Benjamini-Hochberg adjustment to control the false discovery rate. We demonstrate the effectiveness of ADC with simulation data and four real applications to select highly interrelated genes across two datasets. These four applications including 21 cancer RNA-seq datasets of different tissues; six single-cell RNA-seq (scRNA-seq) datasets of mouse hematopoietic cells across six different cell types along the hematopoietic cell lineage; five scRNA-seq datasets of pancreatic islet cells across five different technologies; coupled single-cell ATAC-seq (scATAC-seq) and scRNA-seq data of peripheral blood mononuclear cells (PBMC). Extensive results demonstrate that ADC is a powerful tool to uncover interrelated genes with strong biological implications and is scalable to large-scale datasets. Moreover, the number of such genes can serve as a metric to measure the similarity between two datasets, which could characterize the relative difference of diverse cell types and technologies.  相似文献   

15.
A major challenge for cells lies in their ability to detect, respond and adapt to changing environments that may threaten their survival. Among the numerous evolutionary strategies, cell-to-cell heterogeneity allows the emergence of different phenotypes within a population. This variability in cellular behaviors can be essential for a small fraction of cells to adapt and survive in various environments. Analyses at the single-cell level have allowed to highlight the great variability that is present between cells within an isogenic population. Numerous molecular mechanisms have been uncovered, allowing to understand the emergence and the role of cellular heterogeneity. These attempts at identifying the source of cellular noise have also provided clues for strategies needed to control heterogeneity. In this review, S. cerevisiae is used as an example to illustrate the different factors leading to cell heterogeneity, ranging from intracellular processes to environmental constraints. In addition, some recent strategies developed to modulate cell-to-cell variability are discussed.  相似文献   

16.
17.
18.
19.
The single-cell RNA sequencing (scRNA-seq) technologies obtain gene expression at single-cell resolution and provide a tool for exploring cell heterogeneity and cell types. As the low amount of extracted mRNA copies per cell, scRNA-seq data exhibit a large number of dropouts, which hinders the downstream analysis of the scRNA-seq data. We propose a statistical method, SDImpute (Single-cell RNA-seq Dropout Imputation), to implement block imputation for dropout events in scRNA-seq data. SDImpute automatically identifies the dropout events based on the gene expression levels and the variations of gene expression across similar cells and similar genes, and it implements block imputation for dropouts by utilizing gene expression unaffected by dropouts from similar cells. In the experiments, the results of the simulated datasets and real datasets suggest that SDImpute is an effective tool to recover the data and preserve the heterogeneity of gene expression across cells. Compared with the state-of-the-art imputation methods, SDImpute improves the accuracy of the downstream analysis including clustering, visualization, and differential expression analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号