首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After cessation of lactation, the mammary gland undergoes involution, which is characterized by a massive epithelial cell death and proteolytic degradation of the extracellular matrix. Whereas the expression patterns and also the function of TGF-beta isoforms during mammary gland branching morphogenesis and lactation are well understood, their expression during postlactational involution and therefore a possible role in this process is poorly known. In this study we show that TGF-beta3 expression is dramatically induced (>fivefold) during mouse mammary gland involution when compared to that of virgin mouse, reaching a maximal expression level at day 4 after weaning. In contrast, other TGF-beta isoforms do not display significant increase in expression during involution (TGF-beta1, 1.3-fold and TGF-beta2, <1.5-fold) when compared to that of virgin or lactating mice. During mammary gland involution, TGF-beta3 is expressed in the epithelial layer and particularly in myoepithelial cells. A comparison of the kinetics of TGF-beta3 expression to that of programmed cell death and degradation of the basement membrane suggests that TGF-beta3 functions in the remodeling events of the extracellular matrix during the second stage of involution.  相似文献   

2.
3.
Urokinase-type plasminogen activator expression is induced in the mouse mammary gland during development and post-lactational involution. We now show that primiparous plasminogen-deficient (Plg(-/-)) mice have seriously compromised mammary gland development and involution. All mammary glands were underdeveloped and one-quarter of the mice failed to lactate. Although the glands from lactating Plg(-/-) mice were initially smaller, they failed to involute after weaning, and in most cases they failed to support a second litter. Alveolar regression was markedly reduced and a fibrotic stroma accumulated in Plg(-/-) mice. Nevertheless, urokinase and matrix metalloproteinases (MMPs) were upregulated normally in involuting glands of Plg(-/-) mice, and fibrin did not accumulate in the glands. Heterozygous Plg(+/-) mice exhibited haploinsufficiency, with a definite, but less severe mammary phenotype. These data demonstrate a critical, dose-dependent requirement for Plg in lactational differentiation and mammary gland remodeling during involution.  相似文献   

4.
5.
In most mammals under natural conditions weaning is gradual. Weaning occurs after the mammary gland naturally produces much less milk than it did at peak and established lactation. Involution occurs following the cessation of milk evacuation from the mammary glands. The abrupt termination of the evacuation of milk from the mammary gland at peak and established lactation induces abrupt involution. Evidence on mice has shown that during abrupt involution, mammary gland utilizes some of the same tissue remodeling programs that are activated during wound healing. These results led to the proposition of the “involution hypothesis”. According to the involution hypothesis, involution is associated with increased risk for developing breast cancer. However, the involution hypothesis is challenged by the metabolic and immunological events that characterize the involution process that follows gradual weaning. It has been shown that gradual weaning is associated with pre-adaption to the forthcoming break between dam and offspring and is followed by an orderly reprogramming of the mammary gland tissue. As discussed herein, such response may actually protect the mammary glands against the development of breast cancer and thus, may explain the protective effect of extended breastfeeding. On the other hand, the termination of breastfeeding during the first 6 months of lactation is likely associated with an abrupt involution and thus with an increased risk for developing breast cancer. Review of the literature on the epidemiology of breast cancer principally supports those conclusions.  相似文献   

6.
7.
Mammary epithelial cells undergo changes in growth, invasion, differentiation, and dedifferentiation throughout much of adult hood, and most strikingly during pregnancy, lactation, and involution. Clusterin is a multifunctional glycoprotein that is involved in the differentiation and morphogenesis of epithelia, and that is important in the regulation of postnatal mammary gland development. However, the mechanisms that regulate clusterin expression are still poorly understood. Here, we show that clusterin is up-regulated twice during mouse mammary gland development, a first time at the end of pregnancy and a second time at the beginning of the involution. These points of clusterin up-regulation coincide with the dramatic phenotypic and functional changes occurring in the mammary gland. Using cell culture conditions that resemble the regulatory microenvironment in vivo, we determined that the factors responsible for the first up-regulation of clusterin levels can include the extracellular matrix component, laminin, and the lactogenic hormones, prolactin and hydrocortisone. On the other hand, the second and most dramatic up-regulation of clusterin can be due to the potent induction by TGF-beta1, and this up-regulation by TGF-beta1 is dependent on beta1 integrin ligand-binding activity. Moreover, the level of expression of beta-casein, a marker of mammary epithelial cell differentiation, was decreased upon treatment of cells with clusterin siRNA. Overall, these findings reveal several novel pathways for the regulation of clusterin expression during mammary gland development, and suggest that clusterin is a morphogenic factor that plays a key role during differentiation.  相似文献   

8.
Leptin is an autocrine and paracrine factor which affects the development of duct, formation of gland alveolus, expression of milk protein gene and onset involution of mammary gland. In order to know the function and mechanism of leptin in mammary gland, the protein expression and localization of leptin and its long form receptor (OB-Rb) were detected by a confocal laser scanning microscope. To study the impacts of leptin on mammary gland and leptin signal transduction pathway in pregnancy-, lactation-and involution-stage mammary gland, explants were cultured and Western blotting was used. The results showed that in the whole development cycle of mammary gland, the expression of leptin and OB-Rb was in positive correlation. In virgin the leptin expression was the highest and then decreased in pregnancy. In lactation the expression of leptin was low and upgraded in involution, and recovered to the original level about virgin on involution 13 d. The localization of leptin and OB-Rb revealed that leptin induced the expression of OB-Rb specifically and controlled the development and physiological function of the mammary gland by binding to OB-Rb. In pregnancy stage, leptin stimulated proliferation and differentiation of ductal epithelial cells by JAK-MAPK signal pathway. In lactation, leptin induced gene expression of β-casein by JAK-STAT5 signal pathway, and in involution leptin induced mammary epithelial cell apoptosis and mammary gland restitution by JAK-STAT3 signal pathway.  相似文献   

9.
10.
Marsupials provide a suitable alternative model to studying mammary gland involution. They have evolved a different reproductive strategy from eutherians, giving birth to an altricial young and secreting milk that changes in composition during lactation. In this study, we used a marsupial-specific EST microarray to identify 47 up-regulated genes during mammary gland involution in the tammar wallaby (Macropus eugenii). These include the pro-apoptotic tumour necrosis factor receptor superfamily 21 (TNFRSF21) gene, whose expression in the mammary gland has not previously been reported. Genes encoding putative novel milk proteins which may protect the mammary gland from infection were also found to be up-regulated, such as amiloride binding protein 1 (ABP1), complement component 1QB (C1QB), complement component 4A (C4A) and colony stimulating factor 2 receptor β (CSF2Rβ). Our results show that the marsupial reproductive strategy was successfully exploited to identify genes and putative novel milk proteins implicated in mammary gland involution.  相似文献   

11.
Expression and function of leptin and its receptor in mouse mammary gland   总被引:4,自引:0,他引:4  
Leptin is an autocrine and paracrine factor which affects the development of duct, formation of gland alveolus, expression of milk protein gene and onset involution of mammary gland. In order to know the function and mechanism of leptin in mammary gland, the protein expression and localization of leptin and its long form receptor (OB-Rb) were detected by a confocal laser scanning microscope. To study the impacts of leptin on mammary gland and leptin signal transduction pathway in pregnancy-, lacta-tion-and involution-stage mammary gland, explants were cultured and Western blotting was used. The results showed that in the whole development cycle of mammary gland, the expression of leptin and OB-Rb was in positive correlation. In virgin the leptin expression was the highest and then decreased in pregnancy. In lactation the expression of leptin was low and upgraded in involution, and recovered to the original level about virgin on involution 13 d. The localization of leptin and OB-Rb revealed that leptin induced the expression of OB-Rb specifically and controlled the development and physiological function of the mammary gland by binding to OB-Rb. In pregnancy stage, leptin stimulated proliferation and differentiation of ductal epithelial cells by JAK-MAPK signal pathway. In lactation, leptin induced gene expression of β-casein by JAK-STAT5 signal pathway, and in involution leptin induced mammary epithelial cell apoptosis and mammary gland restitution by JAK-STAT3 signal pathway.  相似文献   

12.
Mammary gland development is dependent on macrophages, as demonstrated by their requirement during the expansion phases of puberty and pregnancy. Equally dramatic tissue restructuring occurs following lactation, when the gland regresses to a state that histologically resembles pre-pregnancy through massive programmed epithelial cell death and stromal repopulation. Postpartum involution is characterized by wound healing-like events, including an influx of macrophages with M2 characteristics. Macrophage levels peak after the initial wave of epithelial cell death, suggesting that initiation and execution of cell death are macrophage independent. To address the role of macrophages during weaning-induced mammary gland involution, conditional systemic deletion of macrophages expressing colony stimulating factor 1 receptor (CSF1R) was initiated just prior to weaning in the Mafia mouse model. Depletion of CSF1R(+) macrophages resulted in delayed mammary involution as evidenced by loss of lysosomal-mediated and apoptotic epithelial cell death, lack of alveolar regression and absence of adipocyte repopulation 7 days post-weaning. Failure to execute involution occurred in the presence of milk stasis and STAT3 activation, indicating that neither is sufficient to initiate involution in the absence of CSF1R(+) macrophages. Injection of wild-type bone marrow-derived macrophages (BMDMs) or M2-differentiated macrophages into macrophage-depleted mammary glands was sufficient to rescue involution, including apoptosis, alveolar regression and adipocyte repopulation. BMDMs exposed to the postpartum mammary involution environment upregulated the M2 markers arginase 1 and mannose receptor. These data demonstrate the necessity of macrophages, and implicate M2-polarized macrophages, for epithelial cell death during normal postpartum mammary gland involution.  相似文献   

13.
The claudins are a family of tight junction proteins that display varied tissue distribution and preferential specificity. We recently identified by microarray analysis, members of this family, particularly claudin 1 (cldn1), as highly upregulated genes in the mouse mammary gland during early involution. Gene expression was confirmed by immunohistochemistry and real-time PCR. We then examined gene and protein expression throughout normal mammary gland development. The cldn3 gene showed a steady increase in expression from pregnancy to involution, while cldn1 and cldn4 gene expression increased during pregnancy, but decreased sharply by D10 of lactation, and once again was significantly increased by D1 of involution (P < 0.001 for both genes). The different patterns of gene expression observed between cldn3, and cldn1, and 4 suggest that different family members may be functionally important at different times during mouse mammary gland development. All three genes exhibited a high level of expression at day 1 (D1) of involution, followed by a dramatic decrease in gene expression to day 10 of involution. Immunostaining with the cldn3 antibody showed intense staining of epithelial cells; however, a lesser degree of staining was evident with the cldn1 antibody. In addition to the lateral staining of epithelial cells, basal staining was evident at D1 and D2 of involution and cytoplasmic staining was evident during lactation. Since claudins are known to play a role as tight junction proteins, lateral and basal staining may suggest a role in other functions such as vesicle trafficking or remodeling of tight junctions at different stages of mammary gland development. Cldn1 and 3 antibodies also stained epithelial cells in mouse mammary tumors. In summary, cldn1, 3, and 4 are differentially expressed in the mammary gland during pregnancy, lactation, and involution, suggesting different roles for these proteins at different stages of mammary gland function. In addition, cldn1 and cldn3 are detected in mammary tumors and the wide distribution of cldn3 in particular, suggest specific roles for these proteins in mammary tumorigenesis.  相似文献   

14.
Protein-tyrosine phosphatases (PTPs) have an important role in cell survival, differentiation, proliferation, migration and other cellular processes in conjunction with protein-tyrosine kinases. Still relatively little is known about the function of PTPs in vivo. We set out to systematically identify all classical PTPs in the zebrafish genome and characterize their expression patterns during zebrafish development. We identified 48 PTP genes in the zebrafish genome by BLASTing of human PTP sequences. We verified all in silico hits by sequencing and established the spatio-temporal expression patterns of all PTPs by in situ hybridization of zebrafish embryos at six distinct developmental stages. The zebrafish genome encodes 48 PTP genes. 14 human orthologs are duplicated in the zebrafish genome and 3 human orthologs were not identified. Based on sequence conservation, most zebrafish orthologues of human PTP genes were readily assigned. Interestingly, the duplicated form of ptpn23, a catalytically inactive PTP, has lost its PTP domain, indicating that PTP activity is not required for its function, or that ptpn23b has lost its PTP domain in the course of evolution. All 48 PTPs are expressed in zebrafish embryos. Most PTPs are maternally provided and are broadly expressed early on. PTP expression becomes progressively restricted during development. Interestingly, some duplicated genes retained their expression pattern, whereas expression of other duplicated genes was distinct or even mutually exclusive, suggesting that the function of the latter PTPs has diverged. In conclusion, we have identified all members of the family of classical PTPs in the zebrafish genome and established their expression patterns. This is the first time the expression patterns of all members of the large family of PTP genes have been established in a vertebrate. Our results provide the first step towards elucidation of the function of the family of classical PTPs.  相似文献   

15.
The effect of pregnancy on postweaning mammary gland involution was investigated in mice. On the third day after forced weaning at Lactation Day 10, the apoptotic index was 56% lower in mammary tissue of mice that were pregnant at the time of weaning than in nonpregnant mice. Conversely, the bromodeoxyuridine-labeling index was increased sevenfold in pregnant mice compared to nonpregnant controls (3.5% vs. 0.5%, respectively). Structure of mammary alveoli was largely maintained in postweaning pregnant mice. The effect of pregnancy on three specific mammary epithelial cell survival pathways was also examined. First, pregnancy blocked the loss of Stat5a phosphorylation during involution. Significantly, loss of Stat5a phosphorylation during involution was not correlated with loss of Stat5a nuclear localization. Second, pregnancy maintained nuclear-localized progesterone receptor during lactation. Third, pregnancy was associated with increased expression of bfl-1 during involution but had little effect on the expression of other bcl-2 family members. The data indicate that pregnancy inhibits mammary cell apoptosis after weaning while permitting proliferation of the mammary epithelium, and they support the hypothesis that Stat5a and progesterone-signaling pathways act in concert to mediate this effect.  相似文献   

16.
17.
18.
Suppressor of cytokine signalling (SOCS) proteins are critical attenuators of cytokine-mediated signalling in diverse tissues. To determine the importance of Socs3 in mammary development, we generated mice in which Socs3 was deleted in mammary epithelial cells. No overt phenotype was evident during pregnancy and lactation, indicating that Socs3 is not a key physiological regulator of prolactin signalling. However, Socs3-deficient mammary glands exhibited a profound increase in epithelial apoptosis and tissue remodelling, resulting in precocious involution. This phenotype was accompanied by augmented Stat3 activation and a marked increase in the level of c-myc. Moreover, induction of c-myc before weaning using an inducible transgenic model recapitulated the Socs3 phenotype, and elevated expression of likely c-myc target genes, E2F-1, Bax and p53, was observed. Our data establish Socs3 as a critical attenuator of pro-apoptotic pathways that act in the developing mammary gland and provide evidence that c-myc regulates apoptosis during involution.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号