首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li L  Li Y  Biswas DK  Nian Y  Jiang G 《Bioresource technology》2008,99(6):1656-1663
Three parallel units of pilot-scale constructed wetlands (CWs), i.e., vertical subsurface flow (VSF), horizontal subsurface flow (HSF) and free water surface flow (FWS) wetland were experimented to assess their capabilities in purifying eutrophic water of Taihu Lake, China. Lake water was continuously pumped into the CWs at a hydraulic loading rate of 0.64 m d(-1) for each treatment. One year's performance displayed that average removal rates of chemical oxygen demand (COD), ammonia nitrogen (NH(4)(+)-N), nitrate nitrogen (NO(3)(-)-N), total nitrogen (TN) and total phosphorous (TP) were 17-40%, 23-46%, 34-65%, 20-52% and 35-66%, respectively. The VSF and HSF showed statistically similar high potential for nutrients removal except NH(4)(+)-N, with the former being 14% higher than that of the latter. However, the FWS wetland showed the least effect compared to the VSF and HSF at the high hydraulic loading rate. Mean effluent TP concentrations in VSF (0.056 mg L(-1)) and HSF (0.052 mg L(-1)) nearly reached Grade III (0.05 mg L(-1) for lakes and reserviors) water quality standard of China. Wetland plants (Typha angustifolia) grew well in the three CWs. We noted that plant uptake and storage were both important factors responsible for nitrogen and phosphorous removal in the three CWs. However, harvesting of the above ground biomass contributed 20% N and 57% P of the total N and P removed in FWS wetland, whereas it accounted for only 5% and 7% N, and 14% and 17% P of the total N and P removed in VSF and HSF CWs, respectively. Our findings suggest that the constructed wetlands could well treat the eutrophic lake waters in Taihu. If land limiting is considered, VSF and HSF are more appropriate than FWS under higher hydraulic loading rate.  相似文献   

2.
Constructed wetlands and algae-based systems have been compared regarding their efficiencies on faecal bacteria removal. Two types of constructed wetlands, sub-surface (SSF) and free water surface (FWS) flow systems, and two more types of algae-based systems, high rate algae ponds (HRAP) and maturation pond (MP) have been studied for two years. All systems treated the same wastewater from a rural locality in León (northwest of Spain). Hydraulic retention time was 3 days for both wetland systems, 20 days for the maturation pond and 10 days for the high rate algae pond. Total coliforms, faecal coliforms, faecal Streptococci, Clostridium perfringens, and Staphylococci were analyzed in the influent and effluents of each system. A comparison among the wetland systems showed that SSF were more efficient than FWS system when considering surface removal rates (cfu removed/m2/d). Nevertheless, differences were not statistically significant. Considering mean removal efficiencies (in log unit), results showed that higher reductions were observed in FWS for most of the groups except for clostridia and Staphylococci. Concerning algae-based systems, MP showed higher removal efficiencies than HRAP, getting higher surface removal rates in the HRAP. Generally constructed wetlands were more efficient than algae-based systems when considering both, efficiencies in % and surface removal rates.  相似文献   

3.
Removal efficiencies of polycyclic aromatic compounds (PAHs) and linear alkyl benzene sulfonates (LAS) were evaluated in a pilot-scale constructed wetland (CW) system combining a free water surface wetland, a subsurface wetland and a gravel filter in parallel. The effect of parameters such as temperature and mass loading rate was also examined. The subsurface constructed wetland system was found to have the overall best performance on pollutants removal. In particular, the average removal of PAHs and LAS was 79.2% and 55.5% for the SSF (Subsurface Flow) constructed wetland, 68.2% and 30.0% for the FWS (Free Water Surface) constructed wetland and 73.3% and 40.9% for the gravel filter, respectively. Removal efficiency and the estimated first-order volumetric removal rate constant (kv) for both PAHs and LAS decreased with increasing water temperature. The experimental results suggest that the absorption in solid media is the main mechanism for xenobiotics removal in constructed wetlands and that the overall performance of the SSF wetland is significantly better than the FWS wetland or the gravel filter.  相似文献   

4.
In this paper the factors influencing treatment performance of subsurface flow constructed wetlands (SSF wetlands) treating aquaculture effluents were identified and quantified. The financial impact of advanced aquaculture effluent treatment with SSF wetlands was calculated.It is the first long-term, commercial-scale trial of SSF wetland treatment for effluents from intensive trout farming, a highly diluted effluent at very high flow rates (mean total phosphorous concentration 0.34 mg L?1 at 14.3 L s?1). The 12-month survey provided the opportunity to generate calculation fundamentals for the commercial application of SSF wetlands for aquaculture. Treatment efficiencies of up to 75–86% for total ammonia nitrogen (TAN), biological oxygen demand (BOD5) and total suspended solids (TSS) were achieved. The daily area retention rate per square meter wetland area was between 2.1 and 4.5 g for TAN and between 30 and 98 g for TSS.The performance of the six wetland cells comprising three replicated hydraulic loading groups (14.5, 6.9, 3.3 m3 m?2 day?1) was monitored, offering the possibility to identify factors influencing treatment efficiency through multifactor analysis. These factors turned out to be nutrient inflow concentration, hydraulic loading rate and accumulation of TSS within the wetland bed, the only time-dependent factor. Factors such as vegetation period and fish harvesting were shown to be of significant but negligible importance.Inflow nutrient concentration is determined by production intensity, husbandry conditions, feed quality and any pre-treatment of effluent. Hydraulic load is determined by the space and budget available for SSF construction. TSS accumulation in the wetland is influenced by pre-treatment of the solid fraction prior to the wetland and determines the wetland service lifetime.From these factors the expenses of commercial wetland application can be estimated, leading to a cost increase around €0.20 kg?1 fish produced (less than 10% of production costs) and therefore confirm the commercial feasibility of SSF wetland treatment.  相似文献   

5.
We aimed at indicating some regularities of a constructed wetland treating agricultural runoff in China. The regularities, including the nitrogen removal capacity all year round, the nitrogen distribution pathways, and the nitrogen species removal kinetics, of a free water surface constructed wetland (2,800 m2) in the Dianchi Valley, which has been in operation for 27 months, were studied. The planted Phragmites australis and Zizania caduciflora were harvested biannually. The average inflow rate was recorded by an ultrasonic flow instrument, and then the hydraulic loading rate (HLR) and hydraulic retention time (HRT) were calculated. The average inflow and outflow concentrations of total nitrogen (TN), ammonia, and nitrate were measured, while the corresponding removal rates were calculated, showing better results than other constructed wetlands. Then the distribution pathways of nitrogen were analyzed, which indicated that plant harvesting was more important in wetland-treated agricultural runoff than in domestic wastewater. The reason for a good nitrogen removal capability and the obvious function of plants in the present wetland is the sound climate and intermittent inflow in the wetland. Results showed that inflow load had significant correction with both TN and ammonia removal efficiency. HLR, inflow rate, inflow nitrogen concentration, and temperature had significant and positive correction with both TN and ammonia removal. However, HRT had negative correction with both TN and ammonia removal, and the nitrate removal efficiency and parameters mentioned earlier were not significantly correlated. The rate constant values for nitrate and ammonia in summer were obviously larger than in winter. It is possible that bacterial and microbial activities were more active in summer than winter, and more conducive to bacterial and vegetative growth in summer than winter. Since this study was a pioneer for the implementation of constructed wetlands in China treating agricultural runoff, it has proved that this eco-technology could be used effectively for water quality enhancement in China and other areas with a similar climate.  相似文献   

6.
The dynamics nitrate retention and export were studied at the Des Plaines River wetland demonstration site. Seven wetlands received pulses of river water in discrete pumping events. Twenty-eight wetland events were monitored over 4 years for all hydrologic variables, pumping, rain, storage change, and outflow. Nitrate was measured at high frequency for the ouflows, and at lower frequency for inflows and interior stations. Most events were isolated in time, with sufficient inter-event spacing to allow complete equilibration before the subsequent event. Pumping was selected to provide up to 45 displacements of the wetland water volume. River water averaged 2.3 mg/L of nitrate nitrogen, and wetland effluent averaged 0.9 mg/L. The average mass removal of nitrate was 67% over all events, with a range from 17% to 100%. A calibrated dynamic water mass balance was developed as the framework for interpreting results. Internal hydraulics were characterized by tanks-in-series (TIS) models calibrated to tracer studies. Residence time distributions were describable by three TIS (three wetlands) and five TIS (four wetlands). Dynamic nitrate mass balances were used, in conjunction with a first order areal uptake model, to model the time sequence of NO3N concentrations and flows. Parameter estimation, based on NO3N mass flow fitting, produced rate constants that best described the series of events the wetlands. Rate constants were much higher for the events than for previous steady state performance for the wetlands (k20 = 107 vs. 37 m/yr). Rate coefficients increased at higher water temperatures, with a modified Arrhenius temperature factor of 1.090. Performance for N removal was found to be partially due to displacement of antecedent treated water, and partially due to treatment occurring during the event, and partially due to treatment after the event. Carbon availability was estimated not to limit denitrification, except possibly at the highest nitrate loadings.  相似文献   

7.
Anoxic subsurface flow (SSF) constructed wetlands were evaluated for denitrification using nitrified wastewater. The treatment wetlands utilized a readily available organic woodchip-media packing to create the anoxic conditions. After 2 years in operation, nitrate removal was found to be best described by first-order kinetics. Removal rate constants at 20 °C (k20) were determined to be 1.41–1.30 d?1, with temperature coefficients (θ) of 1.10 and 1.17, for planted and unplanted experimental woodchip-media SSF wetlands, respectively. First-order removal rate constants decreased as length of operation increased; however, a longer-term study is needed to establish the steady-state values. The hydraulic conductivity in the planted woodchip-media SSF wetlands, 0.13–0.15 m/s, was similar to that measured in an unplanted gravel-media SSF control system.  相似文献   

8.
A tidal flow constructed wetland system was investigated for the removal of organic matter and ammoniacal-nitrogen from diluted piggery wastewater. The results demonstrated that the operation of tidal flow enhanced the transfer of oxygen into wetland matrices. The supply of oxygen by the operation (473 gO2/m2d) matched the demand for wastewater treatment. The overall oxygen consumption rate in the system was considerably higher than the typical rate obtainable in conventional wetlands; most oxygen being used for the decomposition of organic matter. Compared with conventional systems, the tidal flow system demonstrated greater efficiency in the removal of organic matter. Significant nitrification did not take place, although 27-48% ammonia was removed from the wastewater. Immobilization by microbial cells and adsorption were the likely routes to remove ammonia under the specific experiment conditions. Percentage removals of BOD5, NH4-N and SS increased after effluent recirculation at a ratio of 1:1 was employed.  相似文献   

9.
《Process Biochemistry》2007,42(2):199-209
The flow diverted bed (FDB) system was developed to improve the stream water quality. This system (Run 2) had two wetlands where the flow from the upper layer (aerobic) in the first wetland could be redirected to the lower layer (anaerobic) in the second wetland by the flow diverter, and vice versa. In addition, the yellow-soil media placed at the bottom layer allowed a larger influx in the lower layer and had a sorption capacity of phosphate ions. The removal efficiencies of COD and TN at Run 2 [hydraulic loading rate (HLR) = 177 cm/d] was 1.7–3.6 times higher than that at Run 1 (HLR = 192 cm/d) without the diverter. The values of void fraction, dimensionless variance, dispersion number, Peclet number and velocity for this system were found to be 0.6637, 0.2847, 0.1717, 5.8241, and 53.2 m/d, respectively. The reducing trend of each pollutant was exponentially decreased along the overall length of this system. Also, the transport was dominated by convection (plug flow) rather than dispersion (complete mix). The volumetric removal rate constants for COD, SS, TKN, TN, and TP were found to be 4.854, 7.988, 1.388, 1.625, and 1.767 d−1 via the first-order rate model. Consequently, the flow diverter and yellow-soil media in this system played an important role in enhancing the treatability of pollutants and operating at a higher HLR.  相似文献   

10.
Integration of partial nitrification (nitritation) and anaerobic ammonium oxidation (anammox) in constructed wetlands creates a sustainable design for nitrogen removal. Three wetland treatment systems were operated with synthetic wastewater (60 mg NH3–N L?1) in a batch mode of fill – 1-week reaction – drain. Each treatment system had a surface flow wetland (unplanted, planted, and planted plus aerated, respectively) with a rooting substrate of sandy loam and limestone pellets, followed by an unplanted subsurface flow wetland. Meanwhile, three surface flow wetlands with a substrate of sandy loam and pavestone were operated in parallel to the former surface flow wetlands. Influent and effluent were monitored weekly for five cycles. Aeration reduced nitrogen removal due to hindered nitrate reduction. Vegetation maintained pH near neutral and moderate dissolved oxygen, significantly improved ammonia removal by anammox, and had higher TN removal due to coexistence of anammox and denitrification in anaerobic biofilm layers. Nitrite production was at a peak at the residence time of 4–5 d. Relative to pavestone, limestone increased the nitrite mass production peak by 97%. The subsurface flow wetlands removed nitrogen via nitritation and anammox, having an anammox activity of up to 2.4 g N m?3 d?1 over a startup operation of two months.  相似文献   

11.
The two most prevalent types of treatment wetland, especially during the early history of the technology, are free water surface (FWS) and horizontal subsurface flow (HSSF) wetlands. The several factors involved in the choice of which alternative to choose include size, cost, operability, together with health and nuisance issues and ancillary benefits. Contaminant removal performance differs by constituent, with the advantage to FWS for moderate to high biochemical oxygen demand (BOD), TSS, ammonia, total nitrogen and phosphorus. HSSF are more effective for tertiary BOD levels, nitrate and pathogens. Superpositions of the loading data show that the respective data clouds overlap virtually entirely for HSSF and FWS wetlands. There is little or no performance difference when they are compared on this areal basis. In general, there is little or no advantage of HSSF for space saving. In cold climates, HSSF systems are less cold sensitive, and easier to insulate for winter operation. The use of winter storage enables FWS to be used in freezing conditions, but the cost makes that option comparable to the more expensive HSSF. In general, economics do not favor the choice of HSSF wetlands. Factors other than reduction performance are also important in the selection process. Other principal reasons for selecting the HSSF option over the FWS option are prevention of human health contact problems, mosquito control and minimization of wildlife interactions.  相似文献   

12.
AIMS: To correlate microbial community composition and water quality changes within wetland cells containing varying plant densities and composition in a free water surface (FWS) constructed wetland. METHODS AND RESULTS: Water chemistry was monitored weekly for nitrate, orthophosphate, and suspended solids, at various sites throughout the wetland for 6 months. Treatment ponds with 50% plant cover had about a 96.3% nitrate removal. The average change between the influent and effluent was 50-60% nitrate removal and 40-50% orthophosphate removal. Community profile of total DNA, generated by using denaturing gradient gel electrophoresis (DGGE), was used to determine the major microbial composition associated with the wetland sediment, rhizosphere, and surface water. Bacterial cloned libraries were constructed, and 300 clones were analysed by amplified ribosomal DNA restriction analysis (ARDRA) and grouped into operational taxonomic units (OTUs). A total of 35, 31, and 36 different OTU were obtained from sediment, rhizosphere, and surface water, respectively. The bacterial members within the dominant group of our clone library belonged to unclassified taxa, while the second predominant group consisted of members of the phylum Proteobacteria. The dominant organisms within the class were in the gamma, beta, and delta classes. CONCLUSION: Microbial diversity as determined by Shannon-Weaver index (H) was higher in the wetland cells with 50% plant density than the 100%. This was in agreement with the most efficient wetland contaminant removal units. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides evidence that wetlands with 50% plant cover may promote the growth of diverse microbial communities that facilitate decomposition of chemical pollutants in surface water, and improve water quality.  相似文献   

13.
A system of planted and unplanted small‐scale subsurface flow (SSF) and surface flow (SF) constructed wetlands together with hydroponic systems (HP) were installed to compare the removal efficiencies of Fe and Zn from acid mine drainage (AMD) under long‐term field conditions. Maximum removal of 94–97 % (116–142 mg/m2 d) for Fe and 69–77 % (6.2–7.9 mg/m2 d) for Zn was calculated for the planted soil systems. The planted SSF was most sensitive to heavy rain fall. Short‐term increases of the metal concentration in the outflows, short‐term breakdowns of the Fe removal and continual long‐term breakdowns of the Zn removal were observed. In contrast to Zn removal, all wetland types are applicable for Fe removal with maximum removal in the range of 60–98 %. Most of the removed Fe and Zn was transformed and deposited inside the soil bed. The amount absorbed by the plants (0.03 to 0.3 %) and gravel‐associated soil beds (0.03 to 1.7 %) of the total input were low for both metals. The response of the planted SSF to rainfall suggests a remobilization of metals accumulated inside the rhizosphere and the importance of buffering effects of the surface water layers of SF systems. The importance of plants for metal removal was shown.  相似文献   

14.
The effect of hydraulic loading rate (HLR) and hydraulic retention time (HRT) on the bioremediation of municipal wastewater using a pilot scale subsurface horizontal flow constructed treatment wetland (HFCTW) vegetated with Cyprus papyrus was investigated. Different HLRs were applied to the treatment system namely 0.18, 0.10, and 0.07 m3/m2. d with corresponding HRTs of 1.8, 3.2, and 4.7 days, respectively. The flow rate was 8 m3/d, and the average organic loading rate (OLR) was 0.037 kg BOD/m3/d. Results showed that the performance of the HFCTW was linearly affected by decreasing the HLR and increasing the HRT. The highest treatment efficiency was achieved at HRT (4.7 days) and HLR (0.07 m3/m2. d). The percentage reductions of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS) were 86%, 87%, and 80%, respectively. Satisfactory nutrient removal was obtained. Also, removal of 2–3 logs of bacterial indicators of pollution was achieved. The dry biomass of Cyperus was 7.7 kg/m2 and proved to be very efficient in nitrification processes due to high diversity of the roots that increase the treatment surface area.  相似文献   

15.
模拟人工湿地中植物多样性配置对硝态氮去除的影响   总被引:1,自引:0,他引:1  
为检验植物多样性对人工湿地脱氮功能的影响,在模拟人工湿地试验系统中设置了植物单种和混种处理并定期供给氮形态仅为硝态氮的模拟污水。结果表明:混种系统的出水硝态氮浓度显著低于单种(P<0.05);混种与单种系统在基质氮含量和植物氮积累量上无统计差异;质量平衡分析表明混种促进系统反硝化强度;菩提子单种系统中的硝态氮移除能力显著高于香蒲、芦苇和菖蒲单种系统,后3种硝态氮移除能力则无显著差异。本研究可为人工湿地选择高效物种、多样性配置以提高氮去除率提供依据。  相似文献   

16.
Surface-flow wetlands constructed with Acorus and Typha plants, connected to a wastewater treatment plant, were investigated with respect to organics (dissolved organic matter), anions (nitrate, sulfate, and phosphate), metals (Cu, Ni, Zn, Fe, and Mn), and metalloids (As). The results of the research indicated: (1) effluent organic matter (EfOM), based on dissolved organic carbon (DOC), was not efficiently removed by the wetlands. However, the hydrophobic, transphilic, and hydrophilic EfOM fractions varied throughout the wetlands, as identified by XAD-8/4 resins. (2) Nitrate, as compared to sulfate and phosphate, was efficiently removed, especially in the Typha wetland pond that had long retention time, under anoxic condition. (3) Most of the heavy metals were ineffectively removed via the wetland ponds. However, the iron concentration increased in the Typha wetland pond, which was probably due to its reduction under anoxic condition.  相似文献   

17.
Constructed treatment wetlands (CTWs) have been used effectively to treat a range of wastewaters and non-point sources contaminated with nitrogen (N). But documented long-term case studies of CTWs treating dilute nitrate-dominated agricultural runoff are limited. This study presents an analysis of four years of water quality data for a 1.6-ha surface-flow CTW treating irrigation return flows in Yakima Basin in central Washington. The CTW consisted of a sedimentation basin followed by two surface-flow wetlands in parallel, each with three cells. Inflow typically contained 1–3 mg-N/L nitrate and <0.4 mg-N/L total Kjeldahl N (TKN). Hydraulic loading was fairly constant, ranging from around 125 cm/d in the sedimentation basin to 12 cm/d in the treatment wetlands. Concentration removal efficiencies for nitrate averaged 34% in the sedimentation basin and 90–93% in the treatment wetlands. Total N removal efficiencies averaged 21% and 57–63% in the sedimentation basin and treatment wetlands, respectively. Area-based first-order removal rate constants for nitrate in the wetlands averaged 142–149 m/yr. Areal removal rates for nitrate in treatment wetlands averaged 139–146 mg-N/m2/d. Outflow from the CTW typically contained <0.1 mg-N/L nitrate and <0.6 mg-N/L TKN. Rates of nitrate loss in wetlands were highly seasonal, generally peaking in the summer months (June–August). Nitrate loss rates also correlated significantly with water temperature (positively) and dissolved oxygen (negatively). Based on the modified Arrhenius relationship, θ for nitrate loss in the wetlands was 1.05–1.09. The CTW also significantly affected temperature and dissolved oxygen concentration in waters flowing through the system. On average, the sedimentation basin caused an increase in temperature (+1.7 °C) and dissolved oxygen (+1.5 mg/L); in contrast the wetlands caused a decrease in temperature (?1.6 °C) and dissolved oxygen (?5.0 mg/L). Results show that CTWs with surface-flow wetlands can be extremely effective at polishing dilute non-point sources, particularly in semi-arid environments where warm temperatures and low oxygen levels in treatment wetland water promote biological denitrification.  相似文献   

18.
In this study, we used a two-dimensional (2D) mechanistic mathematical model in order to evaluate the relative contribution of different microbial reactions to organic matter removal (in terms of COD) in horizontal subsurface-flow constructed wetlands that treated urban wastewater. We also used the model to analyse the effect of increasing or decreasing the organic loading rate (changing the hydraulic loading rate (HLR) at a constant influent organic matter concentration, or changing the organic matter concentration at a constant HLR) on both the removal efficiency and the relative importance of the microbial reactions. The model is based on the code RetrasoCodeBright, which we modified to include the main microbial processes related to organic matter and nitrogen transformations in the wetlands: hydrolysis, aerobic respiration, nitrification, denitrification, sulphate reduction and methanogenesis. The model was calibrated and validated with data from two wetlands (each with a surface area of 55 m2) located in a pilot plant near Barcelona (Spain). According to the simulations, anaerobic processes (methanogenesis and sulphate reduction) are more widespread in the wetlands and contribute to a higher COD removal rate (60–70%) than anoxic (denitrification) and aerobic reactions do. These model results are confirmed by experimental observations. In all the cases tested, the reaction that most contributed to COD removal was methanogenesis (33–52%). According to our simulations, decreasing the HLR (for example, from 40 to 25 mm/d) while maintaining a constant COD influent concentration has a clear positive impact on COD removal efficiency (which increases from 65% to 89%). Changing influent COD concentration (for example, from 290 to 190 mg/L) while maintaining a constant HLR has a smaller impact, causing efficiency to increase from 79% to 84%. Changes in influent COD concentration (at a constant HLR) affect the relative contribution of the microbial reactions to organic matter removal. However, this trend is not seen when the HLR changes and the COD influent concentration remains constant.  相似文献   

19.
The aim of the present study was to select a suitable natural organic substrate as a potential carbon source for use in a denitrification permeable reactive barrier (PRB). A number of seven organic substrates were first tested in batch tests. The materials attained varying degrees of success at promoting denitrification. Some of the organic substrates performed very well, achieving complete nitrate removal (>98%), while others were considered unsuitable for a variety of reasons, including: insufficient nitrate or nitrogen removal, excessive release of leachable nitrogen from the substrate or excessive reduction of nitrate to ammonium rather than removing it as gaseous N2. The top performing substrate in terms of denitrification extent (>98%) and rate (0.067 mgNO3(-)-N dm(-3)d(-1)g(sub)(-1)) was then selected for two bench-scale column experiments in an attempt to simulate the PRB. The inlet concentration was 50 mg dm(-3) NO3(-)-N and the columns operated at two different flow rates: 0.3 cm3 min(-1) (Column 1) and 1.1cm3 min(-1) (Column 2). The two columns showed different general patterns, making it clear that the flow rate was a key factor at the nitrate removal. Nitrate was completely removed (>96%) by the passage through Column 1, while only partially removed in Column 2 (66%). The results indicated that the selected organic substrate (Softwood) was applicable for further use as a filling material for a PRB.  相似文献   

20.
抚仙湖窑泥沟人工湿地的除磷效果研究   总被引:9,自引:2,他引:7  
为了减缓和控制抚仙湖局部湖湾水体富营养化趋势,在抚仙湖北岸建设了净化面积1 hm2的人工湿地.综合利用生物氧化塘、水平潜流人工湿地和表面流人工湿地治理技术,对入湖河道窑泥沟污水中磷的去除效果进行了试验研究.结果表明,该人工湿地系统对磷具有较强的去除能力.总磷去除率在57.7%~81.10%之间,平均去除率为54.9%.单位面积磷滞留量平均为26 mg·m-2·d-1,其中,湿地植物同化作用磷滞留量为26.1 mg·m-2·d-1,约占磷滞留总量的10%,大部分磷去除是通过基质吸附和沉降作用,但主要湿地植物水芹的季节变化对相应功能区的除磷效果会产生一定影响.试验期间,各功能区单位面积磷滞留量依次为水平潜流人工湿地>生物氧化塘>沉淀池>表面流人工湿地.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号