首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
We introduce a sensing platform for specific detection of DNA based on the formation of gold nanoparticles dimers on a surface. The specific coupling of a second gold nanoparticle to a surface bound nanoparticle by DNA hybridization results in a red shift of the nanoparticle plasmon peak. This shift can be detected as a color change in the darkfield image of the gold nanoparticles. Parallel detection of hundreds of gold nanoparticles with a calibrated true color camera enabled us to detect specific binding of target DNA. This enables a limit of detection below 1.0×10(-14) M without the need for a spectrometer or a scanning stage.  相似文献   

2.
We report a glycoanalysis method in which lectins are used to probe the glycans of therapeutic glycoproteins that are adsorbed on gold nanoparticles. A model mannose-presenting glycoprotein, ribonuclease B (RNase B), and the therapeutic monoclonal antibody (mAb) rituximab, were found to adsorb spontaneously and non-specifically to bare gold nanoparticles such that glycans were accessible for lectin binding. Addition of a multivalent binding lectin, such as concanavalin A (Con A), to a solution of the modified gold nanoparticles resulted in cross-linking of the nanoparticles. This phenomenon was evidenced within 1 min by a change in the hydrodynamic diameter, D(H), measured by dynamic light scattering (DLS) and a shift and increase in absorbance of the plasmon resonance band of the gold nanoparticles. By combining the sugar-binding specificity and the cross-linking capabilities of lectins, the non-specific adsorption of glycoproteins to gold surfaces, and the unique optical reporting properties of gold nanoparticles, a glycosylation pattern of rituximab could be generated. This assay provides advantages over currently used glycoanalysis methods in terms of short analysis time, simplicity of the conjugation method, convenience of simple spectroscopic detection, and feasibility of providing glycan characterization of the protein drug product by using a variety of binding lectins.  相似文献   

3.
The paper describes the rapid and label-free detection of the white spot syndrome virus (WSSV) using a surface plasmon resonance (SPR) device based on gold films prepared by electroless plating. The plating condition for obtaining films suitable for SPR measurements was optimized. Gold nanoparticles adsorbed on glass slides were characterized by transmission electron microscopy (TEM). Detection of the WSSV was performed through the binding between WSSV in solution and the anti-WSSV single chain variable fragment (scFv antibody) preimmobilized onto the sensor surface. Morphologies of the as-prepared gold films, gold films modified with self-assembled alkanethiol monolayers, and films covered with antibody were examined using an atomic force microscope (AFM). To demonstrate the viability of the method for real sample analysis, WSSV of different concentrations present in a shrimp hemolymph matrix was determined upon optimizing the surface density of the antibody molecules. The SPR device based on the electroless-plated gold films is capable of detecting concentration of WSSV as low as 2.5 ng/mL in 2% shrimp hemolymph, which is one to two orders of magnitude lower than the level measurable by enzyme-linked immunosorbant assays.  相似文献   

4.
Electrodes modified with passivating organic layers have been shown to, here and previously, to exhibit good Faradaic electrochemistry upon attachment of gold nanoparticles (AuNP). Due to their low background capacitances these constructs have good potential in electrochemical sensing. Herein is reported the application of these electrode constructs for impedance based immunosensing. The immunosensor was constructed by modifying a gold electrode with 4-thiophenol (4-TP) passivating layers by diazonium salt chemistry. Subsequently, the attachment of AuNP and then a biotin derivative as a model epitope to detect anti-biotin IgG were carried out. The interfacial properties of the modified electrodes were evaluated in the presence of Fe(CN)(6)(4-/3-) redox couple as a probe by cyclic voltammetry and electrochemical impedance spectroscopy. The impedance change, due to the specific immuno-interaction at the immunosensor surface was utilized to detect anti-biotin IgG. The increase in charge-transfer resistance (R(ct)) was linearly proportional to the concentration of anti-biotin IgG in the range of 5-500 ng mL(-1), with a detection limit of 5 ng mL(-1).  相似文献   

5.
The labeling strategy with gold nanoparticles for the conventional surface plasmon resonance (SPR) signal enhancement has been frequently used for the sensitive determination of small molecules binding to its interaction partners. However, the influence of gold nanoparticles with different size and shape on SPR signal is not known. In this paper, three kinds of gold nanoparticles, namely nanorods, nanospheres, and nanooctahedrons with different size, were prepared and used to investigate their effects on the conventional SPR signal at a fixed excitation wavelength 670 nm. It was found that the SPR signal (i.e., resonant angle shift) was varied with the shapes and sizes of gold nanoparticles in suspension at a fixed concentration due to their different plasmon absorbance bands. For gold nanorods with different longitudinal absorbance bands, three conventional SPR signal regions could be clearly observed when the gold nanorod suspensions were separately introduced onto the SPR sensor chip surface. One region was the longitudinal absorbance bands coinciding with or close to the SPR excitation wavelength that suppressed the SPR angle shift. The second region was the longitudinal absorbance bands at 624 to 639 and 728 to 763 nm that produced a moderate increase on the SPR resonant angle shift. The third region was found for the longitudinal absorbance bands from 700 to 726 nm that resulted in a remarkable increase in the SPR angle shift responses. This phenomenon can be explained on the basis of calculation of the correlation of SPR angle shift response with the gold nanorod longitudinal absorbance bands. For nanospheres and nanooctahedrons, the SPR angle shift responses were found to be particle shape and size dependent in a simple way with a sustaining increase when the sizes of the nanoparticles were increased. Consequently, a guideline for choosing gold nanoparticles as tags is suggested for the SPR determination of small molecules with binding to the immobilized interaction partners.  相似文献   

6.
An optical gold nanoparticles (AuNPs)-based method was fabricated for the rapid detection of matrix metalloproteinase (MMP) activity and screening potential MMP inhibitors without sophisticated instruments. The diagnosis platform was composed of AuNPs, particular MMP substrates and 6-mercapto-1-hexanol (MCH). The functionalized AuNPs were subjected to specific MMP digestion, and the MMP found the substrate on AuNPs, such that the AuNPs lost shelter and MCH increased the attraction force between AuNPs. Consequently, AuNPs aggregation and a color change from red to purple with increasing MMP concentration were observed. The surface plasmon resonance (SPR) of the formed AuNPs allowed for the quantitative detection of MMP activity. A sensitive linear correlation existed between the absorbance and the activity of the MMPs, which ranged from 10 ng/mL to 700 ng/mL in NTTC buffer and plasma samples. The proposed colorimetric method could be accomplished in a homogeneous solution with one-step operation in 30 min and has been successfully applied to the determination of particular MMP activity in plasma samples, in which the results are consistent with substrate zymography. This technology may become a simple platform for parallel screening a number of inhibitors and offer an alternative method to studying the efficiency of inhibitors for suppressing MMP activity. The absorbance ratio at 625 nm and 525 nm (A(625)/A(525)) confirmed the efficiency of the inhibitors as observed in substrate zymography. The IC(50) of ONO-4817 and galardin for MMP-1, MMP-2 and MMP-7 determined by the proposed colorimetric method was similar to the results of substrate zymography.  相似文献   

7.
Carcinoembryonic antigen (CEA) was used as a separator to prevent the Rhodamine 6G (R6G)-induced aggregation of colloidal gold nanoparticles. The destroyed aggregation has been monitored by measuring the absorption and resonance light scattering peaks corresponding to the longitudinal surface plasmon resonance (SPR) of the chain-like aggregated gold nanoparticles (AuNPs). It was found that the pre-adding of CEA with different concentrations to the gold colloids before mixing them with R6G could lead to the longitudinal SPR peak decrease and blue shift. By analysing the intensity changing and wavelength shifting of the absorption spectra, CEA could be detected in a linear range from 0.2 to 4 ng/mL, and the limit of detection reaches to 0.1 ng/mL. The sensitivity of the CEA concentration dependent shifting and quenching of the plasmonic absorption and scattering corresponding to the AuNPs aggregation presents a well potential application of biologic spectral sensing.  相似文献   

8.
The interaction between cysteine and gold nanoparticles was studied. Through the covalent combination with the -SH group and the electrostatic binding with the -NH3+ group of cysteine, gold nanoparticles can self-assemble to form a network structure, which results in greatly enhanced resonance light scattering (RLS). The experimental results demonstrate that the RLS technique offers a sensitive tool for investigations of self-assembly of nanoparticles. On the other hand, the RLS method can be applied to selectively determine cysteine with high sensitivity and simple operation. The linear range of determination of cysteine is from 0.01 to 0.25 microg/mL with the detection limit of 2.0 ng/mL (16.5 nM, 3sigma). None of the amino acids found in proteins interferes with the determination.  相似文献   

9.
利用表面等离子体共振仪检测黄瓜花叶病毒   总被引:1,自引:0,他引:1  
目的:研究一种便捷、高效地检测黄瓜花叶病毒(CMV)的方法。方法:利用表面等离子体共振(SPR)技术检测CMV。首先用11-MUA修饰SPR金片,再用EDC/NHS活化,之后通过NHS酯基与CMV抗体结合,用BSA封闭未结合的NHS酯基。将SPR金片装入SPR仪,通入待检样品,通过折射率变化实时监测实验过程。结果:该方法检测CMV的灵敏度能够达到10ng/mL,具有良好的特异性,与同属的花生矮化病毒、番茄不孕病毒无交叉反应。结论:建立的SPR方法操作简单、灵敏度高、特异性好,是一种新的高效检测CMV的方法。  相似文献   

10.
目的:建立检测苏云金芽孢杆菌(Bt)crylF蛋白的表面等离子共振(SPR)传感器方法。方法:采用SPR检测技术,利用生物分子相互作用分析原理,在金表面修饰特异性单克隆抗体,对crylF蛋白的检测进行研究。结果:该方法可以较好地检测到crylF蛋白,最低检测限可达10ng/mL,并且具有很好的特异性。结论:SPR检测方法的重复性较好,灵敏度高,目前可用于crylF蛋白的定性检测,为crylF蛋白及其他Bt蛋白的检测提供了新方法,在检测转Bt基因植物方面具有广阔的应用前景。  相似文献   

11.
A chemiluminescence (CL) immunoassay was developed to determine human growth hormone (hGH) based on copper‐enhanced gold nanoparticles. In this method, gold nanoparticles were deposited on polystyrene wells for adsorption of human growth antibodies as well as catalyst for reducing of copper ions from the copper enhancer solution. The reduction of copper ions was prevented where the gold nanoparticles were covered by the antibody–antigen immunocomplex. The deposited copper on Au nanoparticles was then dissolved in HNO3 solution and quantified using the CL method. The CL intensity response was logarithmically dependent on the hGH concentrations over the range 0.2–50 ng/mL, with a detection limit (3σ) of 0.036 ng/mL. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Methods of myoglobin determination based on electrochemical analysis by means of analysis of electrochemical parameters of modified electrodes have been proposed. The method of direct detection is based on interaction of myoglobin with anti-myoglobin with subsequent electrochemical registration of this hemoprotein. The electrode surface was modified by a membrane-like synthetic didodecyldimethylammonium bromide (DDAB), gold nanoparticles and antibodies to human cardiac myoglobin the electrochemical reduction of myoglobin heme was registered provided that the antigen (myoglobin) was present in the samples. The reaction of myoglobin binding to antibodies immobilized on the electrode surface was also registered using electrochemical impedance spectroscopy. The study of electro analytical characteristics revealed high specificity and sensitivity of the developed method. The biosensor was characterized by low detection limit and a high working range of the detected concentrations from 17.8 to 1780 ng/ml (from 1 to 100 nM). The method of myoglobin determination based on a signal of gold nanoparticles has also been proposed. The signal was detected with stripping voltammetry. There was a change in the cathodic peak area and the peak height of gold oxide reduction for the electrodes with antibodies and the electrodes with the antibody-myoglobin complex.  相似文献   

13.
An electrochemical impedimetric immunosensor was developed for ultrasensitive determination of insulin-like growth factor-1 (IGF-1) based on immobilization of a specific monoclonal antibody on gold nanoparticles (GNPs) modified gold electrode. Self-assembly of colloidal gold nanoparticles on the gold electrode was conducted through the thiol groups of 1,6-hexanedithiol (HDT) monolayer as a cross linker. The redox reactions of [Fe(CN)(6)](4-)/[Fe(CN)(6)](3-) on the electrode surface was probed for studying the immobilization and determination processes, using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The interaction of antigen with grafted antibody recognition layer was carried out by soaking the modified electrode into antigen solution at 37°C for 3 h. The immunosensor showed linearity over 1.0-180.0 pg mL(-1) and the limit of detection was 0.15 pg mL(-1). The association constant between IGF-1 and immobilized antibody was calculated to be 9.17×10(11) M(-1). The proposed method is a useful tool for screening picogram amounts of IGF-1 in clinical laboratory as a diagnostic test.  相似文献   

14.
A novel label free electrochemiluminescence (ECL) immunosensor based on the ECL of peroxydisulfate solution for detection of α-1-fetoprotein (AFP) has been developed. For this proposed immunosensor, L-cysteine was firstly electrodeposited on the gold electrode surface, which promoted the electron transfer and largely enhanced the ECL of peroxydisulfate solution. Subsequently, gold nanoparticles (nano-Au) were assembled onto the L-cysteine film modified electrode to improve the absorption capacity of antibody and further amplify the ECL signal. Then, antibody was immobilized onto the electrode through nano-Au. At last bovine serum albumin (BSA) was employed to block the nonspecific binding sites. As a result, a novel ECL immunosensor was firstly obtained by applying the ECL of peroxydisulfate solution without conventional luminescent reagents. The AFP was determined in the range of 0.01-100 ng mL(-1), with a low detection limit of 3.3 pg mL(-1) (S/N=3). The proposed ECL immunosensor provides a rapid, simple, and sensitive immunoassay protocol for protein detection, which might hold a promise for clinical application. Moreover, this work would open up a new field in the application of peroxydisulfate solution ECL for highly sensitive bioassays.  相似文献   

15.
This paper is concerned with an investigation of electron transfer between cytochrome P450scc (CYP11A1) and gold nanoparticles immobilised on rhodium-graphite electrodes. Thin films of gold nanoparticles were deposited onto the rhodium-graphite electrodes by drop casting. Cytochrome P450scc was deposited onto both gold nanoparticle modified and bare rhodium-graphite electrodes. Cyclic voltammetry indicated enhanced activity of the enzyme at the gold nanoparticle modified surface. The role of the nanoparticles in mediating electron transfer to the cytochrome P450scc was verified using ac impedance spectroscopy. Equivalent circuit analysis of the impedance spectra was performed and the values of the individual components estimated. On addition of aliquots of cholesterol to the electrolyte bioelectrocatalytic reduction currents were obtained. The sensitivity of the nanoparticle modified biosensor to cholesterol was 0.13 microA microM-1 in a detection range between 10 and 70 microM of cholesterol. This confirms that gold nanoparticles enhance electron transfer to the P450scc when present on the rhodium-graphite electrodes.  相似文献   

16.
In recent years, CD surface modification methods are employed for immunoassay techniques that is called BioCD technology. In this research, first polycarbonate surface was activated with UV ozone and a hydrophilic surface was obtained. Contact angle measurements and atomic force microscopy technique confirmed the hydrophilic property of surface. After that, tetanus toxoid was immobilized on modified CD surface then specific monoclonal antibody, gold nanoparticles conjugated antibody, silver salt, and hydroquinone were added on modified CD surface. So a sandwiches complex as tetanus toxoid, tetanus toxoid monoclonal antibody, and gold nanoparticles conjugated antibody was obtained on CD surface. ATR result showed the immobilization of tetanus toxoid on modified CD surface. Localized surface plasmon resonance (LSPR) and DLS results confirmed the complex formation. Silver salt and hydroquinone were added for signal amplification. Detection limit of anti-tetanus toxoid IgG monoclonal antibody was obtained 0.005 IU/ml by LSPR and DLS techniques. The presented method increases the assay’s sensitivity. BioCD-based immunoassay for detection of anti-tetanus toxoid IgG monoclonal antibody could be applicable in development and fabrication of biomedical devices.  相似文献   

17.
Prostate specific antigen (PSA) is a valuable tumor marker for prostate cancer screening. In this work, a novel and sensitive resonance light scattering (RLS) spectral assay of PSA was proposed based on PSA aptamer modified gold nanoparticles (AuNPs). The sulfhydryl modified single-strand aptamer could interact with AuNPs, which made the AuNPs stable in high concentration of salt. In pH 7.0 BR buffer solution, the highly selective combination of PSA and AuNPs-labeling aptamer resulted in the aggregation of AuNPs which showed high RLS intensity. Under the optimal conditions, the magnitude of enhanced RLS intensity (ΔI(RLS)) was proportional to the concentration of PSA in the range from 0.13 to 110 ng/mL, with a detection limit (LOD, 3σ) of 0.032 ng/mL. This developed RLS assay as well as a commercially available enzyme-linked immunosorbent assay (ELISA) kit was successfully applied to the detection of PSA in 15 serum samples, and an excellent correlation of the levels of PSA measured was obtained. This is the first report of the aptamer based RLS assay for PSA and it is also a significant application of instrumental analysis technique.  相似文献   

18.
Liu S  Yang Z  Liu Z  Kong L 《Analytical biochemistry》2006,353(1):108-116
Gold nanoparticles with a 12-nm diameter were used as probes for the determination of proteins by resonance Rayleigh-scattering techniques. In weak acidic solution, large amounts of citrate anions will self-assemble on the surface of positively charged gold nanoparticles to form supermolecular compounds with negative charges. Below the isoelectric point, proteins with positive charges such as human serum albumin (HSA), bovine serum albumin (BSA), and ovalbumin (Ova) can bind gold nanoparticles to form larger volume products (the diameter of the binding product of gold nanoparticles with HSA is 23 nm.) through electrostatic force, hydrogen bonds, and hydrophobic effects, which can result in a red shift of the maximum absorption wavelength, the remarkable enhancement of the resonance Rayleigh-scattering intensity (RRS), and the appearance of the RRS spectra. At the same time, the second-order-scattering (SOS) and frequency-doubling-scattering (FDS) intensities are also enhanced. The binding products of gold nanoparticles with different proteins have similar spectral characteristics and the maximum wavelengths are located near 303 nm for RRS, 540 nm for SOS, and 390 for FDS, respectively. The scattering enhancement (DeltaI) is directly proportional to the concentration of proteins. Among them, the RRS method has the highest sensitivity and the detection limits are 0.38 ng/ml for HSA, 0.45 ng/ml for BSA, and 0.56 ng/ml for Ova, separately. The methods have good selectivity. A new RRS method for the determination of trace proteins using a gold nanoparticle probe has been developed. Because gold nanoparticle probes do not need to be modified chemically in advance, the method is very simple and fast.  相似文献   

19.
A novel amperometric immunosensor for the detection of the p24 antigen (p24Ag) from HIV-1 was constructed using gold nanoparticles (GNP), multi-walled carbon nanotubes (MWCNTs), and an acetone-extracted propolis film (AEP). First, amino-functionalized MWCNTs (MWCNTNH?) were prepared and dispersed in an HAuCl? solution to synthesize GNPs in situ. Next, the GNP/CNT/AEP nanocomposite was prepared by mixing an AEP solution and the GNP/CNT powder. The nanocomposite was dripped onto a gold electrode (GE), and then p24 antibody (anti-p24 Ab) was immobilized on the resulting modified gold electrode to construct the immunosensor. The assembly process was characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The factors that were likely to influence the performance of the proposed immunosensor were studied in detail. Under optimal conditions, the proposed immunosensor exhibited good electrochemical sensitivity to the presence of p24 in a concentration range of 0.01 to 60.00 ng/mL, with a relatively low detection limit of 0.0064 ng/mL (S/N = 3). Moreover, the proposed immunosensor showed a rapid (≤ 18 s) and highly sensitive amperometric response (0.018 and 1.940 μA/ng/mL) to p24 with acceptable stability and reproducibility.  相似文献   

20.
A novel scheme for the fabrication of gold nanoparticle modified cholesterol oxidase based bioelectrode is presented and its application potential for cholesterol biosensor is investigated. The fabrication procedure is based on the deposition of gold nanoparticles on the 1,6-hexanedithiol modified gold electrode, functionalization of the surface of deposited gold nanoparticles with carboxyl groups using 11-mercaptoundecanoic acid and then covalent immobilization of cholesterol oxidase on the surface of gold nanoparticle film using the N-ethyl-N'-(3-dimethylaminopropyl carbodimide) and N-hydroxysuccinimide ligand chemistry. The assembly process of the bioelectrode is investigated using atomic force microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The gold nanoparticle film on the electrode surface provided an environment for the enhanced electrocatalytic activities and thus resulted in enhanced analytical response. The resulting bioelectrode is further applied to the amperometric detection of cholesterol and exhibited a linear response to cholesterol in the range of 0.04-0.22 mM with a detection limit of 34.6 μM, apparent Michaelis-Menten constant (K(m)(app)) of 0.062 mM and a high sensitivity of 9.02 μA mM(-1). The fabricated bioelectrode is successfully used for the selective determination of cholesterol in human serum samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号