首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Mercury (Hg2+), a sulfhydryl group reactant, wasused to probe structure-function relationships in photosystem II (PSII). In the present work, we investigated the impact of mercury on the polypeptide composition of PSII submembrane preparations. Electrophoretic analysis revealed that the incubation of the membranes in the presence of mercury produces the depletion of a polypeptide of molecular weight of 33 kDa. This polypeptide corresponds to the extrinsic protein EP33 of the oxygen evolving complex removed following urea treatment. However, the two closely related extrinsic polypeptides of 16 and 23 kDa, usually removed concomitantly after urea treatment, remained unaffected after the mercury treatment. These data demonstrated the existence of an intrinsic binding site for EP23. The molecular mode of action of mercury in the oxygen evolving complex of PSII is discussed.  相似文献   

2.
Treatment of Photosystem II particles from spinach chloroplasts with Triton X-100 with 2.6 M urea in the presence of 200 mM NaCl removed 3 polypeptides of 33 kDa, 24 kDa and 18 kDa, but left Mn bound to the particles. The (urea + NaCl)-treated particles could evolve oxygen in 200 mM, but not in 10 mM NaCl. Mn was gradually released with concomitant loss of oxygen-evolution activity in 10 mM NaCl but not in 200 mM Cl?. The NaCl-treated particles, which contained Mn and the 33-kDa polypeptide but not the 24-kDa and 18-kDa polypeptides, did not lose Mn or oxygen-evolution activity in 10 mM NaCl. These observations suggest that the 33-kDa polypeptide maintains the binding of Mn to the oxygen-evolution system and can be functionally replaced by 200 mM Cl?.  相似文献   

3.
Treatment with 2.6 M urea of the Photosystem II particles depleted of two polypeptides of 24 kDa and 18 kDa completely released a polypeptide of 33 kDa and eliminated the oxygen-evolution activity. The 33-kDa polypeptide rebound to the urea-treated particles and partially reactivated the oxygen evolution. A quantitative analysis of the rebinding suggests tha there is a specific binding site for the 33-kDa polypeptide on the membrane surface.  相似文献   

4.
An immunological approach was used for nearest-neighbor analyses for the 23 and 33 kDA proteins of the oxygen-evolving complex. Functional Photosystem II particles with a simple polypeptide composition were partly solubilized with detergent and incubated with monospecific antibodies against either the 23 or the 33 kDa protein. SDS-polyacrylamide gel electrophoresis revealed that the immunoprecipitates, apart from the antigenic proteins, also contained polypeptides at 24, 22 and 10 kDa. In contrast, polypeptides of the light-harvesting and Photosystem II core complexes showed very poor coprecipitation with the 23 and 33 kDa proteins. The 24, 22 and 10 kDa polypeptides were not precipitated by the antibodies if the 23 and 33 kDa proteins had been removed from the particles prior to solubilization. These observations demonstrate a close association between the 24, 22 and 10 kDa polypeptides and the 23 and 33 kDa proteins of the oxygen-evolving complex. None of these precipitated polypeptides contained any manganese. It is suggested that the 24, 22 and 10 kDa polypeptides are subunits of the oxygen-evolving complex and involved in the binding of the extrinsic 23 and 33 kDa proteins to the inner thylakoid surface.  相似文献   

5.
The effect of oxygen and anaerobiosis on the redox properties of Cyt b 559 was investigated in PSII preparations from spinach with different degree of disintegration of the donor side. Comparative studies were performed on intact PSII membranes and PSII membranes that were deprived of the 18-kDa peripheral subunit (0.25 NaCl washed), the 18- and 24-kDa peripheral subunits (1 M NaCl washed), the 18-, 24- and 33-kDa peripheral subunits (1.2 M CaCl2 washed), Cl depleted and after complete depletion of the Mn cluster (Tris washed). In active PSII centers, about 75% of Cyt b 559 was found in the high-potential form and the rest in the intermediate potential form. With decomposition of the donor side, the intermediate potential form started to dominate, reaching more than 90% after Tris treatment. The oxygen-dependent conversion of the intermediate potential form of Cyt b 559 into the low-potential and high-potential forms was only observed after treatments that directly affect the Mn cluster. In PSII membranes, deprived of all three extrinsic subunits (CaCl2 treatment), 21% of the intermediate potential form was converted into the low-potential form and 14% into the high-potential form by the removal of oxygen. In Tris-washed PSII membranes, completely lacking the Mn cluster, this conversion amounted to 60 and 33%, respectively. In intact PSII membranes, the oxygen-dependent conversion did not occur. The possible physiological role of this oxygen-dependent behavior of the Cyt b 559 redox forms during the assembly/photoactivation cycle of PSII is discussed.  相似文献   

6.
Treatment of intact thylakoid membranes with Triton X-100 at pH 6 produces a preparation of the PS II complex capable of high rates of O2 evolution. The preparation contains four managanese, one cytochrome b-559, one Signal IIf and one Signal IIs per 250 chlorophylls. By selective manipulation of the preparation polypeptides of approximate molecular weights of 33, 23 and 17 kDa can be removed from the complex. Release of 23 and 17 kDa polypeptides does not release functional manganese. Under these conditions Z+ is not readily and directly accessible to an added donor (benzidine) and it appears as if at least some of the S-state transitions occur. Evidence is presented which indicates that benzidine does have increased access to the oxygen-evolving complex in these polypeptide depleted preparations. Conditions which release the 33 kDa species along with Mn and the 23 and 17 kDa polypeptides generate an alteration in the structure of the oxidizing side of PS II, which becomes freely accessible to benzidine. These findings are examined in relationship to alterations of normal S-state behavior (induced by polypeptide release) and a model is proposed for the organization of functional manganese and polypeptides involved in the oxygen-evolving reaction.  相似文献   

7.
Electron paramagnetic resonance (EPR) spectroscopy and O2 evolution assays were performed on photosystem II (PSII) membranes which had been treated with 1 M CaCl2 to release the 17, 23 and 33 kilodalton (kDa) extrinsic polypeptides. Manganese was not released from PSII membranes by this treatment as long as a high concentration of chloride was maintained. We have quantitated the EPR signals of the several electron donors and acceptors of PSII that are photooxidized or reduced in a single stable charge separation over the temperature range of 77 to 240 K. The behavior of the samples was qualitatively similar to that observed in samples depleted of only the 17 and 23 kDa polypeptides (de Paula et al. (1986) Biochemistry25, 6487–6494). In both cases, the S2 state multiline EPR signal was observed in high yield and its formation required bound Ca2+. The lineshape of the S2 state multiline EPR signal and the magnetic properties of the manganese site were virtually identical to those of untreated PSII membranes. These results suggest that the structure of the manganese site is unaffected by removal of the 33 kDa polypeptide. Nevertheless, in samples lacking the 33 kDa polypeptide a stable charge separation could only be produced in about one half of the reaction centers below 160 K, in contrast to the result obtained in untreated or 17 and 23 kDa polypeptide-depleted PSII membranes. This suggests that one function of the 33 kDa polypeptide is to stabilize conformations of PSII that are active in secondary electron transfer events.Abbreviations Chl- chlorophyll - DCBQ- 2,5-dichloro-p-benzoquinone - DCMU- (diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EGTA- ethylene glycol bis-(-aminoethyl ether) N,N,N,N-tetraacetic acid - EPR- electron paramagnetic resonance - HSB- high salt buffer - HSCaB- high salt Ca2+ buffer - kDa- kilodalton - MES- 2-(N-morpholino)ethanesulfonic acid - P680- primary electron donor in PSII - PaGE- polyacrylamide gel electrophoresis - PSII- Photosystem II - QA- primary quinone electron acceptor in PSII - RB- resuspension buffer - TMPD- N,N,N,N-tetramethyl-p- phenylenediamine - Tris- tris(hydroxymethyl)aminomethane - TX100- Triton X-100 - Z- endogenous electron donor to P680+  相似文献   

8.
Various washing procedures were tested on Triton-prepared PS II particles for their ability to remove the 33 kDa extrinsic polypeptide (33 kDa EP) associated with the water-splitting complex. Residual 33 kDa EP was evaluated by Coomassie blue staining of SDS gels of washed particles and by Western blotting with an antibody specific for the 33 kDa EP. A wash with 16 mM Tris buffer, pH 8.3, inhibited water-splitting activity but did not remove all the 33 kDa EP. Sequential washes with 30 mM octyl glucoside (pH 8.0 and 6.8), and a single wash with 0.8 M Tris were also ineffective in removing all the 33 kDa EP. Washing with 1 M CaCl2 was more effective in removing 33 kDa EP; while only a faint trace of protein was detectable by Coomassie-staining, immunoblotting revealed a considerable remainder. The treated particles retained some water-splitting activity. The two step procedure of Miyao and Murata (1984) involving 1 M NaCl and 2.3 M urea was most effective, removing all but a trace of antibody positive protein. Our finding suggests that (1) the degree of depletion of the 33 kDa EP cannot be judged on the basis of Coomassie stain alone, and (2) this extrinsic protein is very tightly associated with the membrane, perhaps via a hydrophilic portion of this otherwise hydrophilic protein. The results also suggest that the presence or absence of the 33 kDa protein per se is not the primary determinant of residual water splitting activity.Abbreviations Chl chlorophyll - DCPIP dichlorophenolindophenol - DPC diphenolcarbazide - DTT dithiothreitol - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MES 2(N-morpholino)ethanesulfonic acid - SDS sodium dodecyl sulfate - Tris Tris(hydroxymethyl)aminomethane  相似文献   

9.
The function of the extrinsic 23 kDa protein of Photosystem II (PSII) was studied with respect to Mn binding and its ability to supply Mn to PSII during photoactivation, i.e. the light-dependent assembly of the tetramanganese cluster. The extrinsic proteins and the Mn cluster were removed by TRIS treatment from PSII-enriched membrane fragments and purified by anion exchange chromatography. Room temperature EPR spectra of the purified 23 kDa protein demonstrated the presence of Mn. Photoactivation was successful with low Mn concentrations when the 23 kDa protein was present, while in its absence a higher Mn concentration was needed to reach the same level of oxygen evolution activity. In addition, the rate of photoactivation was significantly accelerated in the presence of the 23 kDa protein. It is proposed that the 23 kDa protein plays an important role in providing Mn during the process of PSII assembly and that it acquires Mn during the light-induced turnover of D1 in the PSII damage-repair cycle and delivers Mn to repaired PSII.  相似文献   

10.
We found that sulfite incubation of photosystem II submembrane fractions can induce selective depletion of the 18, 23 and 33 kDa polypeptides of the PSII oxygen evolving complex. When the sulfite treatment was done at pH 8.0, the 18 and 23 kDa proteins were removed efficiently from the PSII oxygen evolving complex. Under the same conditions, the 33 kDa subunit remained bound (even when 2 M sodium sulfite was used). However, in more alkaline conditions (pH 9.8), we show extensive removal of the 33 kDa in the presence of a low sulfite concentration (50 mM). The different extraction affinity for the 18, 23 and 33 kDa of the photosystem II complex was interpreted to mean that the 33 kDa polypeptides are bound to photosystem II by both electrostatic and hydrogen bonding forces.  相似文献   

11.
The function of the extrinsic 23 kDa protein of Photosystem II (PSII) was studied with respect to Mn binding and its ability to supply Mn to PSII during photoactivation, i.e. the light-dependent assembly of the tetramanganese cluster. The extrinsic proteins and the Mn cluster were removed by TRIS treatment from PSII-enriched membrane fragments and purified by anion exchange chromatography. Room temperature EPR spectra of the purified 23 kDa protein demonstrated the presence of Mn. Photoactivation was successful with low Mn concentrations when the 23 kDa protein was present, while in its absence a higher Mn concentration was needed to reach the same level of oxygen evolution activity. In addition, the rate of photoactivation was significantly accelerated in the presence of the 23 kDa protein. It is proposed that the 23 kDa protein plays an important role in providing Mn during the process of PSII assembly and that it acquires Mn during the light-induced turnover of D1 in the PSII damage-repair cycle and delivers Mn to repaired PSII.  相似文献   

12.
The oxygen evolving complex of photosystem II (PS II) contains three extrinsic polypeptides of approximate molecular weights 16, 23 and 33 kDa. These polypeptides are associated with the roles of Cl-, Ca2+ and Mn2+ in oxygen evolution. We have shown that selective removal of 16 and 23 kDa polypeptides from the above complex by NaCl washing of PS II enriched membrane fragments renders the PS II core complex more susceptible to the herbicide atrazine. On the other hand, when both native and depleted preparations were resupplied with exogenous Ca2+ and Cl-, we obtained a reduction of atrazine inhibition which was much stronger in the depleted preparations than in the native ones. It is concluded that removal of 16 and 23 kDa polypeptides in general, and disorganization of associated Ca2+ and Cl- in particular, enhances atrazine penetration to its sites of action in the vicinity of the PS II complex. The above could be interpreted if we assume a reduced plastoquinone affinity at the QB (secondary plastoquinone electron acceptor) pocket of D1 polypeptide following transmembranous modifications caused by the depletion of these polypeptides.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - Chl chlorophyll - DCIP 2,6-dichlorophenolindophenol - MES 2-(N-morpholino)ethanesulfonic acid - PMSF phenylmethylsul-phonyfluoride - PS II photosystem II - PAGE polyacrilamide gel electrophoresis  相似文献   

13.
Pb2+ and Zn2+ inhibition of photosystem II (PSII) activity was reported to be mediated via displacement of native inorganic cofactors (Cl, Ca2+ and Mn2+) from the oxygen evolving complex, OEC [Rashid and Popovic (1990) FEBS Lett. 271, 181–184; Rashid et al. (1991) Photosynth. Res. 30, 123–130]. Since the binding sites of these cofactors are protected by a shield of three extrinsic polypeptides (17, 23 and 33 kDa), we investigated whether these metal ions affect the extrinsic polypeptide shield of OEC. By immunoblotting with antibodies recognizing the 23 and 33 kDa polypeptides, we showed that both the metal ions significantly dissociated the 23 kDa (+17 kDa) polypeptide, and partially dissociated the 33 kDa. Ca2+, one of the important inorganic cofactors of oxygen evolution, strongly prevented the dissociating action of Pb2+ but did not prevent the action of Zn2+. The probable molecular mechanism of action of Pb2+ and Zn2+ on PSII OEC is discussed.  相似文献   

14.
The reduction of tyrosine Y(.)(Z) by benzidine and exogenous Mn(2+) was studied by kinetic EPR experiments in various Photosystem II (PSII) preparations. Using lanthanide treated PSII membranes it was demonstrated that neither the extrinsic polypeptides (17, 23 and 33 kDa) nor the Mn complex block the accessibility of Y(.)(Z) to exogenous reductants, such as benzidine. In addition, it was shown that in the presence of the native Mn complex exogenous Mn(2+) does not reduce Y(.)(Z).  相似文献   

15.
Selective extraction-reconstitution experiments with the extrinsic Photosystem II polypeptides (33 kDa, 23 kDa and 17 kDa) have demonstrated that the manganese complex and the 33 kDa polypeptide are both necessary structural elements for the tight binding of the water soluble 17 and 23 kDa species. When the manganese complex is intact the 33 kDa protein interacts strongly with the rest of the photosynthetic complex. Destruction of the Mn-complex has two dramatic effects: i) The binding of the 33 kDa polypeptide is weaker, since it can be removed by exposure of the PS II system to 2 M NaCl, and ii) the 17 and 23 kDa species do not rebind to Mn-depleted Photosystem II membranes that retain the 33 kDa protein.Abbreviations Chl chlorophyll - HQ hydroquinone - MES 2(N-morpholino)ethanesulfonic acid - PS II Photosystem II - Tris 2-amino-2-hydroxymethylpropane-1,3-diol  相似文献   

16.
Free fatty acids (FFA) generated in thylakoids upon chilling of tomato leaves at 0°C for a few days result in release of functionally active Mn and inactivation of O2 evolution. Chilling does not lead to a decrease in the extrinsic 16, 23 and 33 kDa polypeptides. Upon illumination of chilled leaves both Mn content and O2 evolution in thylakoids are restored and FFA content is reduced to the level of the control. Photoactivation of O2 evolution in chilled leaves does not change the ratio of unsaturated/saturated FFA. Constant Arrhenius activation energy (Ea) for O2 evolution by thylakoids isolated from control leaves was found, whereas it increased at temperatures below 8.0 and 10.5°C in thylakoids from cold-treated and photoactivated leaves, respectively. This indicates that restoration of O2 evolution as well as of FFA and Mn contents is not accompanied by a complete reversal of membrance conformation.  相似文献   

17.
35Cl-NMR studies are presented here for spinach Photosystem II membranes inhibited by hydroxylamine (to remove Mn), Tris (to remove Mn and 18, 24 and 33 kDa polypeptides), and salt-washing (to remove 18 and 24 kDa; and 33 kDa polypeptides). Removal of Mn affects the 35Cl-NMR binding curve only slightly, indicating that not all of the bound Mn is directly required for Cl-binding. Removal of both Mn and extrinsic polypeptides eliminates almost all of the Cl-specific binding observable by NMR. Removal of the extrinsic 18 and 24 kDa polypeptides drastically changes the 35Cl-NMR binding pattern; this effect is partially restored by the addition of 2 mM CaSO4, and, to a lesser extent, by the partial rebinding of the polypeptides. Existence of Cl binding to the intrinsic polypeptides (e.g., D1/D2), with a peak at 0.5 mM Cl, is shown in samples lacking 18, 24 and 33 kDa polypeptides. Thus, both intrinsic (i.e., on the D1/D2 membrane protein) and extrinsic (i.e., on the 33 kDa protein) binding sites for Cl are suggested to exist.  相似文献   

18.
Thylakoid membranes were isolated and purified from diploid filamentous sporophytes of Porphyra yezoensis Ueda using sucrose density gradient ultracentrifugation (SDGUC). After thylakoid membranes were solubilized with SDS, the phtosystem II (PSII) particles with high 2, 6-dichloroindophenol (DCIP) photoreduction activity were isolated by SDGUC. The absorption and fluorescence spectra, DCIP photoreduction activity and oxygen evolution activity of the thylakoid membranes and PSII particles were determined. The polypeptide composition of purified PSII particles was distinguished by SDS-PAGE. Results showed that PSII particles of sporophytes differed from the gametophytes in spectral properties and polypeptide composition. Apart from 55 kDa D1-D2 heterodimer, CP47, CP43, 33 kDa protein, D1, D2, cyt b559 and 12 kDa protein were identified from PSII particles from sporophytes; a new 102 kDa protein was also detected. However, cyt c-550, 20 kDa, 14 kDa and 16 kDa proteins found in PSII particles from gametophytes were not detected in the sporophytes.  相似文献   

19.
Incubation of a membrane preparation enriched in Photosystem Two (PSII) at alkaline pH inhibited the water-splitting reactions in two distinct steps. Up to pH 8.5 the inhibition was reversible, whereas at higher alkalinities it was irreversible. It was shown that the reversible phase correlated with loss and rebinding of the 23 kDa extrinsic polypeptide. However, after mild alkaline treatments a partial recovery was possible without the binding of the 23 kDa polypeptide when the assay was at the optimal pH of 6.5 and in a medium containing excess Cl-. The irreversible phase was found to be closely linked with the removal of the 33 kDa extrinsic protein of PSII. Treatments with pH values above 8.5 not only caused the 33 kDa protein to be displaced from the PSII-enriched membranes, but also resulted in an irreversible modification of the binding sites such that the extrinsic 33 kDa protein could not reassociate with PSII when the pH was lowered to 6.5. The results obtained with these more extreme alkaline pH treatments support the notion that the 23 kDa protein cannot bind to PSII unless the 33 kDa protein is already bound. The differential effect of pH on the removal of the 23 kDa and 33 kDa proteins contrasted with the data of Kuwabara & Murata [(1983) Plant Cell Physiol. 24, 741-747], but this discrepancy was accounted for by the use of glycerol in the incubation media.  相似文献   

20.
Photosystem II thylakoid particles possessing high rates of oxygen evolution, were shown to have a very simple polypeptide composition. Upon washing of these particles with 250 mM NaCl the oxygen evolution was inhibited up to 80% concomitant with a release of two polypeptides of 23 and 16 kDa. Readdition of the pure 23 kDa protein to the depleted thylakoids under low ionic strength reconstituted more than half of the lost activity. No stimulation was obtained with the 16 kDa protein alone or in combination with glycerol. The results give further strong evidence that the 23 kDa protein is an essential component in the oxygen evolving complex. The possible involvement of other proteins in this complex is discussed in light of the demonstrated simple polypeptide pattern of the photosystem II particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号