首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The swimming behaviour of 534 coral reef fish larvae from 27 species was explored at Moorea Island (French Polynesia) while they searched for a suitable settlement habitat, on the first night of their lagoon life. Most larvae swam actively (74%) and avoided the bottom (77%). A significant relationship was highlighted between the vertical position of larvae in the water column and the distance they travelled from lagoon entrance to settlement habitat: larvae swimming close to the surface settled farther away on the reef than bottom-dwelling larvae.  相似文献   

2.
Larvae of the nudibranch Phestilla sibogae were used to study whether a natural dissolved settlement cue (from their prey, Porites compressa, an abundant coral on Hawaiian reefs) induces behavioral responses that can affect larval transport to suitable settlement sites. As cue and larvae are mixed in the turbulent flow over a reef, cue is distributed in fine-scale filaments that the larva experiences as rapid (seconds) on/off encounters. To examine larval responses in this setting, individual larvae were tethered in a small flume with flow simulating water velocity relative to a freely swimming larva, and their responses to realistic temporal patterns of cue encounter were videotaped. Competent larvae quickly ceased swimming in cue filaments and resumed swimming after exiting filaments. The threshold cue concentration eliciting a response was 3%-17% of concentrations within heads of P. compressa in nature. When moving freely in filtered seawater, competent larvae swam along straight paths in all directions at approximately 0.2 cm s(-1), whereas in water conditioned by P. compressa, most ceased swimming and sank at approximately 0.1 cm s(-1). The ability of larvae to rapidly respond (by sinking) to brief encounters with dissolved settlement cues can enhance their rapid transport to the substratum, even in wave-driven turbulent flow.  相似文献   

3.
1.  Thermal acclimation is one of the basic strategies by which organisms cope with thermal heterogeneity of the environment. Under predictable variation in environmental temperatures, theory predicts that selection favours acclimation of thermal performance curves over fixed phenotypes.
2.  We examined the influence of diel fluctuations in developmental temperatures on the thermal sensitivity of the maximal swimming capacity in larvae of the alpine newt, Triturus alpestris .
3.  We incubated newt eggs under three thermal regimes with varying daily amplitudes (1, 5 and 9 °C) and similar means (17·6–17·9 °C), and accordingly we measured the swimming speed of hatched larvae at three experimental temperatures (12, 17 and 22 °C), which they would normally experience in their natural habitat.
4.  Embryonic development under low and middle temperature fluctuations produced larvae with similar swimming speeds across experimental temperatures. In contrast, the most fluctuating regime induced development of phenotypes, which at 12 °C swam faster than larvae developed under moderate diel fluctuations.
5.  Our results provide evidence that diel temperature fluctuations induce acclimation of thermal dependence of locomotor performance. In ectotherms experiencing diel cycles in environmental temperatures, this plastic response may act as an important pacemaker in the evolution of thermal sensitivity.  相似文献   

4.
The polychaete Streblospio benedicti is unusual in that several field populations consist of individuals that exhibit either planktotrophic or lecithotrophic larval development. Planktotrophy in this species involves production of many small ova that develop into feeding larvae with a two- to three-week planktonic period. Lecithotrophy involves production of fewer, larger ova that develop into nonfeeding larvae that are brooded longer and have a brief planktonic stage. Reciprocal matings were performed to investigate genetic variance components and the correlation structure of life-history traits associated with planktotrophy and lecithotrophy. Our objective was to better understand persistence of this developmental dichotomy in Streblospio benedicti, and among marine invertebrates in general. Substantial additive genetic variation (75–98% of total) was detected for the following characters at first reproduction: female length; position of the first gametogenic setiger and first brood pouch; ovum diameter; three traits related to fecundity (numbers of ova per ovary, larvae per brood pouch, and larvae per brood); median larval planktonic period and the presence of larval swimming setae; but not for total number of brood pouches; larval length; larval feeding; and larval survivorship. Based on the unusual geographic distribution of development modes in this species, we hypothesize that the developmental traits have evolved in allopatry and have only recently come into contact in North Carolina. The high additive contribution to variance observed for many traits may be inflated due to (a) nonrandom breeding in nature, and (b) examination of only one component of an age-structured population at one time. Nuclear interaction variance and maternal variance accounted for 84% of the total variation in larval survivorship. This observation supports other empirical studies and theoretical predictions that nonadditive components of variance will increase in importance in individual traits that are most closely tied to fitness. A network of life-history trait correlations was observed that defines distinct planktotrophic and lecithotrophic trait complexes. Negative genetic correlations were present between fecundity and egg size, between fecundity and position of the first gametes, and between larval survivorship and median planktonic period. Positive genetic correlations were detected between fecundity and female size at first reproduction and between planktonic period and the presence of swimming setae. Intergenerational product-moment correlations were negative for larval length and fecundity, planktonic period and egg size, female size and larval survivorship, and fecundity and larval survivorship. If the genetic correlation structure observed in the laboratory persists in the field, it may constrain responses of individual characters to directional selection, and indirectly perpetuate the dichotomies associated with planktotrophy and lecithotrophy.  相似文献   

5.
6.
We conducted laboratory experiments with kaluga, Huso dauricus, and Amur sturgeon, Acipenser schrenckii, to develop a conceptual model of early behavior. We daily observed embryos (first life phase after hatching) and larvae (period initiating exogenous feeding) to day-30 (late larvae) for preference of bright habitat and cover, swimming distance above the bottom, up- and downstream movement, and diel activity. Day-0 embryos of both species strongly preferred bright, open habitat and initiated a strong, downstream migration that lasted 4 days (3 day peak) for kaluga and 3 days (2 day peak) for Amur sturgeon. Kaluga migrants swam far above the bottom (150cm) on only 1 day and moved day and night; Amur sturgeon migrants swam far above the bottom (median 130cm) during 3 days and were more nocturnal than kaluga. Post-migrant embryos of both species moved day and night, but Amur sturgeon used dark, cover habitat and swam closer to the bottom than kaluga. The larva period of both species began on day 7 (cumulative temperature degree-days, 192.0 for kaluga and 171.5 for Amur sturgeon). Larvae of both species preferred open habitat. Kaluga larvae strongly preferred bright habitat, initially swam far above the bottom (median 50–105cm), and migrated downstream at night during days 10–16 (7-day migration). Amur sturgeon larvae strongly avoided illumination, had a mixed response to white substrate, swam 20–30cm above the bottom during most days, and during days 12–34 (most of the larva period) moved downstream mostly at night (23-day migration). The embryo–larva migration style of the two species likely shows convergence of non-related species for a common style in response to environmental selection in the Amur River. The embryo–larva migration style of Amur sturgeon is unique among Acipenser yet studied.  相似文献   

7.
Abstract. The morphology of marine invertebrate larvae is strongly correlated with egg size and larval feeding mode. Planktotrophic larvae typically have suites of morphological traits that support a planktonic, feeding life style, while lecithotrophic larvae often have larger, yolkier bodies, and in some cases, a reduced expression of larval traits. Poecilogonous species provide interesting cases for the analysis of early morphogenesis, as two morphs of larvae are produced by a single species. We compared morphogenesis in planktotrophic and lecithotrophic morphs of the poecilogonous annelid Streblospio benedicti from the trochophore stage through metamorphosis, using observations of individuals that were observed alive, with scanning electron microscopy, or in serial sections. Offspring of alternate developmental morphs of this species are well known to have divergent morphologies in terms of size, yolk content, and the presence of larval bristles. We found that some phenotypic differences between morphs occur as traits that are present in only one morph (e.g., larval bristles, bacillary cells on the prostomium and pygidium), but that much of the phenotypic divergence is based on heterochronic changes in the differentiation of shared traits (e.g., gut and coelom). Tissue and organ development are compared in both morphs in terms of their structure and ontogenetic change throughout early development and metamorphosis.  相似文献   

8.
Convergent maternal provisioning and life-history evolution in echinoderms   总被引:5,自引:0,他引:5  
In marine invertebrates, the frequent evolution of lecithotrophic nonfeeding development from a planktotrophic feeding ancestral developmental mode has involved the repeated, independent acquisition of a large, lipid-rich, usually buoyant egg. To investigate the mechanistic basis of egg-size evolution and the role of maternally provisioned lipids in lecithotrophic development, we identified and quantified the egg lipids in six sea urchin species and five sea star species encompassing four independent evolutionary transformations to lecithotrophy. The small eggs of species with planktotrophic development were dominated by triglycerides with low levels of wax esters, whereas the larger eggs of lecithotrophs contain measurable triglycerides but were dominated by wax ester lipids, a relatively minor egg component of planktotrophs. Comparative analysis by independent contrasts confirmed that after removing the influence of phylogeny, the evolution of a large egg by lecithotrophs was correlated with the conspicuous deposition of wax esters. Increases in wax ester abundance exceeded expectations based solely on changes in egg volume. Wax esters may have roles in providing buoyancy to the egg and for postmetamorphic provisioning. Experimentally reducing the amount of wax esters in blastula stage embryos of the lecithotroph Heliocidaris erythrogramma resulted in a viable but nonbuoyant larvae. During normal development for H. erythrogramma, wax ester biomass remained constant during development to metamorphosis (five days postfertilization), but decreased during juvenile development before complete mouth formation (12 days postfertilization) and was further reduced at 18 days postfertilization. The function of wax esters may be specific to the lecithotrophic developmental mode because there were negligible wax esters present in competent pluteus larvae of Strongylocentrotus drobachiensis, a planktotrophic species. These data suggest that this seminal evolutionary modification, the production of a large egg, has been accomplished in part by the elaboration of a preexisting oogenic component, wax esters. The modification of preexisting oogenic processes may facilitate the observed high frequency of transformations in larval mode in marine invertebrates.  相似文献   

9.
This investigation examines tubulin labeling associated with the apical ganglion in a variety of planktotrophic and lecithotrophic opisthobranch larvae. Emphasis is on the ampullary neurons, in which ciliary bundles within the ampulla are strongly labeled. The larvae of all but one species have five ampullary neurons and their associated ciliary bundles. The anaspid Phyllaplysia taylori, a species with direct development and an encapsulated veliger stage, has only four ampullary neurons. The cilia-containing ampulla extends to the pretrochal surface via a long, narrow canal that opens to the external environment through a very small pore (0.1 microm diameter). Cilia within the canal were never observed to project beyond the opening of the apical pore. The ampullary canals extend toward and are grouped with the ciliary tuft cells and remain in this location as planktotrophic larvae feed and grow. If, as has been reported, the ciliary tuft is motile, the pores may be continually bathed in fresh seawater. Such an arrangement would increase sensitivity to environmental chemical stimuli if the suggested chemosensory function of these neurons is correct. In general, ciliary bundles of newly hatched veligers are smaller in planktotrophic larvae than in lecithotrophic larvae. In planktotrophic larvae of Melibe leonina, the ciliary bundles increase in length and width as the veligers feed and grow. This may be related to an increase in sensitivity for whatever sensory function these neurons fulfill. An unexpected tubulin-labeled structure, tentatively called the apical nerve, was also found to be associated with the apical ganglion. This putative nerve extends from the region of the visceral organs to a position either within or adjacent to the apical ganglion. One function of the apical nerve might be to convey the stimulus resulting from metamorphic induction to the visceral organs.  相似文献   

10.
Free‐spawning species of chitons produce eggs enclosed in a coating known as the hull. In Chitonida, several studies have shown that the hull helps to direct sperm to specific areas of the egg surface, facilitating fertilization. One study has found evidence that this structure also serves to reduce the sinking rates of the eggs. To clarify how the presence of the hull modifies sinking rates in chiton eggs, here we compare sinking speeds and densities of eggs of Mopalia kennerleyi with and without the hull. Sinking rates of eggs with the hull were approximately one‐third of those without it. This structure acts as a flotation device because it has a density very close to that of seawater, and it increases the effective diameter and therefore the drag on the negatively buoyant egg. Since there is limited knowledge about morphology and behavior of chiton larvae, we also analyzed changes during ontogeny in behavior, swimming speeds, and body shape of larvae of M. kennerleyi. Over time, the larvae decreased their upward swimming tendency and preferred to stay near the bottom, and their bodies became elongated and dorso‐ventrally compressed. These changes may be related to preparation for settlement and metamorphosis. Further studies of these subjects are required in chitons, since movement of early stages, as eggs/embryos sinking or larvae swimming in the water column, may affect their survival.  相似文献   

11.
The contribution of phenotypically plastic traits to evolution depends on the degree of environmental influence on the target of selection (the phenotype) as well as the underlying genetic structure of the trait and plastic response. Likewise, maternal effects can help or hinder evolution through affects to the response to selection. The sacoglossan sea slug Alderia willowi exhibits intraspecific variation for developmental mode (= poecilogony) that is environmentally modulated with populations producing more yolk‐feeding (lecithotrophic) larvae during the summer, and more planktonic‐feeding (planktotrophic) larvae in the winter. I found significant family‐level variation in the reaction norms between 17 maternal families of A. willowi when reared in a split‐brood design in low (16 ppt) versus high (32 ppt) salinity, conditions which mimic seasonal variation in salinity of natural populations. I documented a significant response to selection for lecithotrophic larvae in high and low salinity. The slope of the reaction norm was maintained following one generation of selection for lecithotrophy. When the maternal environment was controlled in the laboratory, I found significant maternal effects, which reduced the response to selection. These results suggest there is standing genetic variation for egg‐mass type in A. willowi, but the ability of selection to act on that variation may depend on the environment in which the phenotype is expressed in preceding generations.  相似文献   

12.
Caddisfly larvae are typically restricted to benthic microhabitats due to the presence of mobile tubular cases constructed out of mineral or organic material. Members of one family (Leptoceridae) use setae on extended metathoracic legs to swim. We describe the swimming behavior of a North American caddisfly, Triaenodes tardus, and experimentally evaluate two hypotheses proposed to explain this behavior. Triaenodes swam 1.47 cm/s, while carrying almost twice their mass in the case material. The larvae employ a stereotypic sequence of motions that likely reduce resistance during the upstroke and increases forward momentum during the downstroke. When placed on substrates of different sizes, larvae swam more on fine sediments but did not elevate off the sediment. After larvae were provided with living or artificial vegetation, the number of swimming bouts decreased compared to a pre-treatment observation period. These results indicate swimming likely does not function to facilitate movement off fine sediments, but rather, helps larvae locate and move between aquatic macrophytes which are the primary habitat of this, and other, swimming species.  相似文献   

13.
Credible cases of poecilogony, the production of two distinct larval morphs within a species, are extremely rare in marine invertebrates, yet peculiarly common in a clade of herbivorous sea slugs, the Sacoglossa. Only five animal species have been reported to express dimorphic egg sizes that result in planktotrophic and lecithotrophic larvae: the spionid polychaete Streblospio benedicti and four sacoglossans distributed in temperate estuaries or the Caribbean. Here, we present developmental and genetic evidence for a fifth case of poecilogony via egg-size dimorphism in the Sacoglossa and the first example from the tropical Indo-Pacific. The sea slug Elysia pusilla produced both planktotrophic and lecithotrophic larvae in Guam and Japan. Levels of genetic divergence within populations were markedly low and rule out cryptic species. However, divergence among populations was exceptionally high (10-12% at the mitochondrial cytochrome c oxidase I locus), illustrating that extensive phylogeographic structure can persist in spite of the dispersal potential of planktotrophic larvae. We review reproductive, developmental, and ecological data for the five known cases of poecilogony in the Sacoglossa, including new data for Costasiella ocellifera from the Caribbean. We hypothesize that sacoglossans achieve lecithotrophy at smaller egg sizes than do related clades of marine heterobranchs, which may facilitate developmental plasticity that is otherwise vanishingly rare among animals. Insight into the environmental drivers and evolutionary results of shifts in larval type will continue to be gleaned from population-level studies of poecilogonous taxa like E. pusilla, and should inform life-history theory about the causes and consequences of alternative development modes in marine animals.  相似文献   

14.
While the stock of introduced Pacific oysters (Crassostrea gigas) increased in the Oosterschelde estuary (SW Netherlands), so did the filtration pressure of all bivalve species together. In the same period, stocks of native bivalves declined slightly. The expansion of Pacific oysters in Dutch estuaries might be partially due to better abilities of their larvae to avoid or escape filtration, compared to larvae of native bivalves. In this context, escape and swimming abilities of Pacific oyster larvae and the larvae of the native blue mussel (Mytilus edulis) were compared.Swimming behaviour of C. gigas larvae and larvae of M. edulis was recorded in still water and in a suction current mimicking a bivalve feeding current, in a horizontal and in a vertical plane. Larval swimming behaviour in a suction flow field was reconstructed by subtracting local water movement vectors from the total movement of larvae, yielding movement paths due to larval swimming alone.Swimming speeds and the rate of displacement in vertical direction of C. gigas and M. edulis larvae were related to larval shell length, and to the pitch of up- or downward swimming.Larvae of both species did not show escape reactions in a suction flow field. With increasing shell length, larval swimming speeds of both species increased significantly. Swimming speeds of C. gigas larvae were significantly higher than swimming speeds of M. edulis larvae, resulting in a faster vertical displacement. The ability to migrate to more favourable water layers faster may offer C. gigas an advantage over native bivalves with slower swimming larvae.  相似文献   

15.
Larval behaviour is important to dispersal and settlement, but is seldom quantified. Behavioural capabilities of larval Lutjanus carponotatus in both offshore pelagic and reef environments at Lizard Island, Great Barrier Reef were observed in situ to determine if they were sufficient to influence dispersal. Offshore, larvae swam with higher directional precision and faster on the windward side of the island (28 cm.s−1) than on the leeward side (16 cm s−1). Most larvae swam directionally. Mean swimming directions were southerly in the windward area and northerly in the leeward area. Larvae avoided the surface and remained mostly between 3–15 m. Larvae released near reefs were 2–3 times faster swimming away from reefs (19 cm s−1) than swimming toward or over them (6–8 cm s−1). Speed swimming away was similar to that offshore. Of 41 larvae released near reefs, 73% reached the reef, 59% settled, and 13% of those reaching the reef were eaten. Larvae settled onto hard and soft coral (58%), topographic reef features (29%) and sand and rubble (13%). Settlement depth averaged 5.5 m (2–8 m). Before settling larvae spent up to 800 s over the reef (mean 231 s) and swam up to 53 m (mean 14 m). About half of the larvae interacted with reef residents including predatory attacks and aggressive approaches by residents and aggressive approaches by settling larvae. Settlement behaviour of L. carponotatus was more similar to a serranid than to pomacentrids. Settlement-stage larvae of L. carponotatus are behaviourally capable, and have a complex settlement behaviour.  相似文献   

16.
Behaviour of drifting insect larvae   总被引:1,自引:1,他引:0  
The larval drift behaviour of 23 species representing Ephemeroptera, Plecoptera and Trichoptera was investigated in the laboratory using different current regimes. Mayfly nymphs often performed swimming, while caddis larvae were reluctant to do so. Stonefly nymphs were intermediate. In mayflies swimming seemed to be used to reach the substrate as soon as possible. In contrast most stonefly nymphs by swimming prolonged the time spent in the water column. Modes of swimming and sinking posture differed markedly between the orders. Living passively sinking animals often reached bottom faster than dead control specimens, so consequently behaviour did not always express itself in activity. Some caddis larvae spun adherent anchor lines. Differences among taxa seemed more important in explaining swimming activity compared to preferred habitats (as stream, river and lake) in each species. However, observed differences among closely related species indicated subtle differences related to microhabitat to be of profound importance in explaining the alternative behavioural strategies used.  相似文献   

17.
Notes on the reproduction of high-Antarctic molluscs from the Weddell Sea   总被引:2,自引:2,他引:0  
Summary The reproductive modes of 66 molluscan species from the Weddell Sea, Antarctica were investigated either by rearing of specimens in aquaria (Neomeniomorpha [Solenogastres], Polyplacophora and Gastropoda) or by studies of the larval shell (Bivalvia). The results show that not all marine invertebrates living in cold water environments produce large eggs, provide postspawning parental care or lack planktonic larvae (Thorson's rule), nor that brooding behaviour is always associated with small adult size. Several lecithotrophic (Solenogastres, Polyplacophora) and meroplanktonic, planktotrophic larvae (Gastropoda) were observed in aquaria. Investigations of the larval shell morphology indicate a planktotrophic or lecithotrophic larval stage in 27 Bivalvia species. With exception of two species of meroplanktonic gastropod larvae no developmental stages of benthic molluscs were ever found in plankton hauls in the Weddell Sea. This indicates that most larvae may live demersally. Brooding occurred in 1 Monoplacophora and 17 Bivalvia species. Intracapsular metamorphosis with very long embryonic development was observed in 15 Gastropoda species.  相似文献   

18.
In situ settlement behaviour of damselfish (Pomacentridae) larvae   总被引:2,自引:0,他引:2  
Settlement‐stage damselfish (Pomacentridae) larvae of 13 species in seven genera were obtained from light traps at Lizard Island, Great Barrier Reef, Australia. Behaviour, observed in situ by SCUBA divers, of 245 larvae (6–13 mm, LS; 5–60 individuals per species) released individually within a few m of reefs during the day differed markedly among species. From 0–28% (range among 13 species) of individuals of each species swam away from the adjacent reefs without swimming to the reefs. Of those that swam to a reef, 0–75% settled. For three species, sufficient data were available to test the hypothesis that these percentages did not differ amongst reefs: the hypothesis was rejected in one species. From 0–75% of larvae that reached the reef were eaten, 0–63% subsequently left the reef and 0–60% were still swimming over the reef at the end of the observation period. Swimming speeds of all but one species were greater when swimming away from the reef than toward it. Most species exceeded average current speeds when swimming away from reefs, but not when swimming toward and over them. Average swimming depths were in the upper half of the water column for most species, and were somewhat greater where the water depths were greater. The time the larvae swam over the reef before settling and the distance swum varied greatly among species from 0 to a mean of 5.5 min and 43 m. Settlement habitats chosen differed amongst species, and in some species, they were very specific. Average settlement depth varied among species from 6–13.5 m. In one species, settlement depth varied between reefs. About half of the 53 observed interactions between larvae and reef resident fishes were predation attempts: fishes of eight species (six families) attacked larvae. The other interactions were aggressive approaches by 11 species of resident fishes, all but one of which were pomacentrids. Many of these aggressive interactions discouraged settlement attempts. Larvae of some species experienced no predatory or aggressive interactions, whereas in other species interactions averaged >0.6 per released larva. Species that swam more‐or‐less directly to settlement sites near the reef edge experienced more interactions. Even within the same family, settlement behaviour differed among species in nearly all measures.  相似文献   

19.
Pachut, J.F. & Fisherkeller, P. 2010: Inferring larval type in fossil bryozoans. Lethaia, Vol. 43, pp. 396–410. Larval type in extinct organisms might be recognizable because larvae of living marine invertebrates are approximately of the same size as the initial post‐larval organism. Two larval types typically occur. Planktotrophic larvae feed on other members of the plankton, potentially prolonging their larval existence and producing broad geographic distributions. Conversely, lecithotrophic larvae feed on yolk supplied by the fertilized egg, often settle quickly after release, and display more restricted distributions. However, some lecithotrophic bryozoans undergo embryonic fission forming multiple, small, polyembryonic larvae. The relationship between post‐larval size and larval type was evaluated in bryozoans by comparing the size of the ancestrula, the founding individual of a colony, to the sizes of extant planktotrophic, lecithotrophic and polyembryonic lecithotrophic larvae and ancestrulae. The sizes of larvae and ancestrulae in extant lecithotrophic and planktotrophic cheilostome (gymnolaemate) species are statistically the same. They are, however, statistically larger than the polyembryonic larvae of extant cyclostomes (stenolaemates). In turn, the sizes of cyclostome larvae are indistinguishable from the ancestrulae of extant and fossil cyclostomes, the ancestrulae of other fossil stenolaemate species measured from the literature, and the ancestrulae of three of four genera from North American Cincinnatian strata. Ancestrulae of a fourth genus, Dekayia, are the same size as cyclostome ancestrulae but are statistically smaller than the ancestrulae of other stenolaemates. With few exceptions, stenolaemates have statistically smaller larvae and ancestrulae than both lecithotrophic and planktotrophic cheilostomes. We infer that the sizes of fossil ancestrulae permit the discrimination of taxa that had polyembryonic lecithotrophic larvae from those possessing other larval types. This inference is strengthened, in several cases, by the co‐occurrence of brood chambers (gynozooecia) and restricted palaeobiogeographic distributions. The presence of cyclostomes in Early Ordovician strata suggests that polyembryony may have been acquired during the initial radiation of Class Stenolaemata. Polyembryony appears to be a monophyletic trait, but confirmation requires the demonstration that species of several stenolaemate suborders lacking skeletally expressed brood chambers possessed polyembryonic larvae. □Ancestrulae, evolution, fossil bryozoans, gynozooecia, larvae.  相似文献   

20.
To understand the riverine life history of the amphidromous goby, Sicyopterus japonicus, studies were conducted in the Ota River, Wakayama, Japan. They were distributed from 3 to 23 km upstream from the river mouth, and abundance was higher in the middle reaches than in the upper and lower reaches. Fish were not observed in rapids during winter, suggesting a seasonal change of habitat. Body length ranged from 24 to 120 mm SL. Both females and males ranged from 1 to 6 years old, and males had larger asymptotic length than females. Condition factor showed two peaks in July and November, which appeared to correspond to the spawning season and preparation for over wintering. Gonad somatic index increased in summer with a peak in August indicating a summertime spawning season that was confirmed by collections of the newly hatched larvae migrating downstream. Eggs of 0.5 mm diameter were attached to stones and newly hatched larvae made continuous vertical movements of sinking and upward swimming and the distance of each movement was longer in freshwater than in seawater. The newly hatched larvae were collected at nighttime (19:00–24:00) mainly in August. Those larvae were very small (mean: 1.4 mm TL) with a yolk sac and no eye pigmentation. Low wintertime temperatures are likely an important determinant of the spawning and recruitment seasons and seasonal changes of activity of this species that lives at much higher latitudes than all other species of the subfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号