首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Annexins are calcium-dependent phospholipid-binding proteins existing both in animal and plant cells. Mammalian and especially human annexins were examined for many years, and their functions in these organisms are already well known, but it is not the case for plant annexins. On the basis of existing literature and experimental evidence, it can be proposed that plant annexins may have a role in stress response. Annexin At1 of Arabidopsis thaliana (AnnAt1) is one of eight proteins of this family in A. thaliana. In its sequence many potentially functional domains are found, owing to that this protein can play an important role in stress response of the organism. Considering literature data and our own experiments one can postulate that AnnAt1 has weak peroxidase activity and form oligomers in hydrogen peroxide-dependent manner. This can be important in response to oxidative stress. Also we found that this protein forms ion channel in pH-dependent manner. This phenomenon may have particular significance in maintaining calcium homeostasis in the cell and calcium signaling, therefore AnnAt1 may play different roles in regulating stress response of plant. This is extremely important because plants during growth and development have to cope different stress factors like drought, deficiency or excess of mineral compounds in the soil, as well as low or high temperatures.  相似文献   

2.
Human recombinant annexin VI (AnxVI) or its N- (AnxVIA) and C-terminal (AnxVIB) fragments were expressed in E. coli. Their ability to form voltage-dependent ion channels in membranes, induced by low pH, was measured to verify the hypothesis that, upon acidification, the hydrophobicity of AnxVI at a specific domain significantly increases allowing the AnxVI interaction with lipids in a Ca(2+)-independent manner. By theoretically analyzing changes in protein hydrophobicity, we found that hydrophobicity of AnxVIA significantly differed from that of AnxVIB at low pH. These predictions were confirmed experimentally by using planar lipid bilayers and liposome pull-down assay. We found striking difference between AnxVIA and AnxVIB in the ion channel activity, as well as in the membrane binding, suggesting that the halves of AnxVI maybe functionally different. Moreover, we calculated and predicted that the ion channel activity at low pH should appear in other human annexins, as AnxII, AnxV (as known), AnxVIII, and AnxXIII. The possibility that AnxVI acts as cytosolic component of a transmembrane pH-sensing mechanism is proposed.  相似文献   

3.
4.
Early events of pepsinogen activation   总被引:1,自引:0,他引:1  
H E Auer  D M Glick 《Biochemistry》1984,23(12):2735-2739
Stopped-flow measurements both with native pig pepsinogen and with a fluorescent derivative, labeled near the carboxyl terminus with a toluidinylnaphthalenesulfonyl (TNS) group at Lys364, show rapid fluorescence changes following acidification. The rate constants observed by intrinsic fluorescence of the native zymogen are distinctly greater than those exhibited by the TNS derivative in the pH range examined. The rate constants for two early events in the activation of the derivative increase as the pH decreases from pH 3 to pH 2. The fluorescent intensities of these two processes also vary with pH. Because the ratios of these amplitudes fit the Henderson-Hasselbalch equation, it is concluded that the two processes represent concurrent events, rather than sequential ones. It is proposed that a protonation separates two forms of the zymogen. The conjugate acid undergoes the slower event, whereas the conjugate base, which predominates at pH 3, undergoes the faster event. It is proposed that both these pathways result in activation.  相似文献   

5.
Summary Extrinsic fluorescence changes in squid giant axons were examined under a variety of experimental conditions using 2-p-toluidinylnaphthalene-6-sulfonate (TNS) and other fluorescent probes. Measurements of the degree of polarization of the fluorescent light (with the axis of the polarizer parallel to the longitudinal axis of the axon) indicated that the class of the TNS molecules in the axon membrane which participate in production of fluorescence signals have a definite orientation with their absorption and emission oscillators directed parallel to the long axis of the axon. Rectangular depolarizing voltage pulses produced a transient decrease in the fluorescent intensity, of which the early component is correlated tentatively with the rise in the membrane conductance. In response to hyperpolarizing pulses, there was an increase in fluorescence intensity which may be explained in terms of increased incorporation of TNS into the ordered structure in the membrane. Hyperpolarizing responses in KCl depolarized axons were accompanied by a change in fluorescent intensity. Tetrodotoxin appeared to suppress the initial component of the fluorescence signal produced by depolarizing clamping pulses. The technique for detecting these fluorescence changes and the physico-chemical properties of TNS are described in some detail.  相似文献   

6.
7.
Keunecke M  Hansen UP 《Planta》2000,210(5):792-800
The isolation of bundle sheath protoplasts from leaves of Zea mays L. for patch clamp whole-cell experiments presents special problems caused by the suberin layer surrounding these cells. These problems were overcome by the isolation technique described here. Two different types of whole-cell response were found: a small response caused by MB-1 (maize bundle sheath conductance type 1) which was instantaneously activated, and another caused by MB-2 (maize bundle sheath conductance type 2) consisting of an instantaneous response (maize bundle sheath K+ instantaneous current type 2; MB-KI2) similar to but stronger than the current through MB-1 plus a small time-dependent outward rectifying component (maize bundle sheath activated outward rectifying current; MB-AOR) with voltage-dependent delayed activation. The occurrence of MB-AOR was often accompanied by a smaller contribution from an inward rectifying channel at negative potentials. Activation of MB-2 required ATP. It is suggested that MB-1 and MB-2 are related to bundle sheath cells with and without direct contact with the xylem vessels. In mesophyll cells, only one type of response caused by MM-2 (maize mesophyll conductance type 2) was found with an instantaneous (maize mesophyll K+ instantaneous current type 2, MM-KI2) and a voltage-dependent delayed component (maize mesophyll activated outward rectifying current, MM-AOR). The most striking difference between bundle sheath and mesophyll cells was the pH dependence of K+ uptake. At pH 7.2, uptake of K+ by MB-2 was identical to that by MM-2 over the whole voltage range. However, acidification stimulated K+ conductance in bundle sheath cells, whereas a decrease was found for MM-2. At pH 6.15, the bundle sheath channel MB-2 had more than a 10-fold higher K+ uptake at positive and negative potentials than MM-2. The channel MB-1, too, was stimulated by low pH. This seems to indicate a putative role for MB-1 and MB-2 in charge balance during uptake of nutrients via cotransport from the xylem into the symplasm. Received: 23 April 1999 / Accepted: 19 July 1999  相似文献   

8.
The wall-yielding properties of cell walls were examined using frozen-thawed and pressed segments (FTPs) obtained from the elongation zones of cucumber hypocotyls with a newly developed programmable creep meter. The rate of wall extension characteristically changed depending on both tension and pH. By treatment of the FTPs with acid, the yield tension (y) was shifted downward and the extensibility (phi) was increased. However, the downward shift of y was greatly suppressed and the increase in phi was partly inhibited in boiled FTPs. The boiled FTPs reconstituted with expansin fully recovered the acid-induced downward y shift as well as the increase in phi. Even under the tension below y, wall extension took place pH dependently. Such extension was markedly slower (low-rate extension) than that under the tension above y (high-rate extension). At a higher concentration (8 M), urea markedly inhibited the creep ascribable to the inhibition of the acid-induced downward y shift and increase in phi. Moderate concentrations (2 M) of urea promoted wall creep pH dependently. The promotion was equivalent to a 0.5 decrease in pH. The promotion of creep by 2 M urea was observed in boiled FTPs reconstituted with expansin but not in boiled FTPs. These findings indicated that the acid-facilitated creep was controlled by y as well as in cucumber cell walls. However, y and phi might be inseparable and mutually related parameters because the curve of the stress extension rate (SER) showed a gradual change from the low-rate extension to the high-rate extension. Expansin played a role in pH-dependent regulation of both y and phi. The physiological meaning of the pH-dependent regulation of wall creep under different creep tensions is also discussed with reference to a performance chart obtained from the SER curves.  相似文献   

9.
Using the planar lipid bilayer technique we demonstrate that the lipodepsipeptide antibiotic, syringomycin E, forms voltage-sensitive ion channels of weak anion selectivity. The formation of channels in bilayers made from dioleoylglycerophosphatidylserine doped with syringomycin E at one side (1–40 μg/ml) was greatly affected by cis-positive voltage. A change of voltage from a positive to a negative value resulted in (i) an abrupt increase in the single channel conductance (the rate of increase was voltage dependent) simultaneous with (ii) a closing of these channels and an exponential decrease in macroscopic conductance over time. The strong voltage dependence of multichannel steady state conductance, the single channel conductance, the rate of opening of channels at positive voltages and closing them at negative voltages, as well as the observed abrupt increase of single channel conductance after voltage sign reversal suggest that the change of the transmembrane field induces a significant rearrangement of syringomycin E channels, including a change in the spacing of charged groups that function as voltage sensors. The conductance induced by syringomycin E increased with the sixth power of syringomycin E concentration suggesting that at least six monomers are required for channel formation. Received: 3 April 1995/Revised: 24 August 1995  相似文献   

10.
Sugar regulates a variety of genes and controls plant growth and development similarly to phytohormones. As part of a screen for Arabidopsis mutants with defects in sugar-responsive gene expression, we identified a loss-of-function mutation in the HOOKLESS1 (HLS1) gene. HLS1 was originally identified to regulate apical hook formation of dark-grown seedlings (Lehman et al., 1996, Cell 85: 183-194). In hls1, sugar-induced gene expression in excised leaf petioles was more sensitive to exogenous sucrose than that in the wild type. Exogenous IAA partially repressed sugar-induced gene expression and concomitantly activated some auxin response genes such as AUR3 encoding GH3-like protein. The repression and the induction of gene expression by auxin were attenuated and enhanced, respectively, by the hls1 mutation. These results suggest that HLS1 plays a negative role in sugar and auxin signaling. Because AUR3 GH3-like protein conjugates free IAA to amino acids (Staswick et al., 2002, Plant Cell 14: 1405-1415; Staswick et al., 2005, Plant Cell 17: 616-627), enhanced expression of GH3-like genes would result in a decrease in the free IAA level. Indeed, hls1 leaves accumulated a reduced level of free IAA, suggesting that HLS1 may be involved in negative feedback regulation of IAA homeostasis through the control of GH3-like genes. We discuss the possible mechanisms by which HLS1 is involved in auxin signaling for sugar- and auxin-responsive gene expression and in IAA homeostasis.  相似文献   

11.
Amyloid fibrillization is multistep process involving soluble oligomeric intermediates, including spherical oligomers and protofibrils. Amyloid oligomers have a common, generic structure, and they are intrinsically toxic to cells, even when formed from non-disease related proteins, which implies they also share a common mechanism of pathogenesis and toxicity. Here we report that soluble oligomers from several types of amyloids specifically increase lipid bilayer conductance regardless of the sequence, while fibrils and soluble low molecular weight species have no effect. The increase in membrane conductance occurs without any evidence of discrete channel or pore formation or ion selectivity. The conductance is dependent on the concentration of oligomers and can be reversed by anti-oligomer antibody. These results indicate that soluble oligomers from many types of amyloidogenic proteins and peptides increase membrane conductance in a conformation-specific fashion and suggest that this may represent the common primary mechanism of pathogenesis in amyloid-related degenerative diseases.  相似文献   

12.
13.
Diphtheria toxin forms pores in biological and model membranes upon exposure to low pH. These pores may play a critical role in the translocation of the A chain of the toxin into the cytoplasm. The effect of protein concentration on diphtheria toxin pore formation in model membrane systems was assayed by using a new fluorescence quenching method. In this method, the movement of Cascade Blue labeled dextrans of various sizes across membranes is detected by antibodies which quench Cascade Blue fluorescence. It was found that at low pH the toxin makes pores in phosphatidylcholine/phosphatidylglycerol vesicles with a size that depends on protein concentration. At the lowest toxin concentrations only the entrapped free fluorophore (MW 538) could be released from model membranes. At intermediate toxin concentrations, a 3 kD dextran could be released. At the highest toxin concentration, a 10 kD dextran could be released, but not a 70 kD dextran. Similar pore properties were found using vesicles lacking phosphatidylglycerol or containing 30% cholesterol. However, larger pores formed at lower protein concentrations in the presence of cholesterol. The dependence of pore size on toxin concentration suggests that toxin oligomerization regulates pore size. This behavior may explain some of the conflicting data on the size of the pores formed by diphtheria toxin. The formation of oligomers by membrane-inserted toxin is consistent with the results of chemical crosslinking and measurements of the self-quenching of rhodamine-labeled toxin. Based on these experiments we propose diphtheria toxin forms oligomers with a variable stoichiometry, and that pore size depends on the oligomerization state. Reasons why oligomerization could assist proper membrane insertion of the toxin and other proteins that convert from soluble to membrane-inserted states are discussed. Received: 10 March 1999/Revised: 22 June 1999  相似文献   

14.
Studies were conducted to test whether an increase of cytoplasmic calcium concentration influences H+-ATPase activity in cultured rabbit nonpigmented ciliary epithelium (NPE). Cytoplasmic calcium concentration or cytoplasmic pH was measured by a fluorescence ratio technique in cells loaded with either Fura-2 or BCECF. Cytoplasmic calcium was increased in three ways; by exposure to BAY K 8644 (1 μm), by exposure to a mixture of epinephrine (1 μm) + acetylcholine (10 μm) or by depolarization with potassium-rich solution. In each case cytoplasmic pH increased significantly. In all three cases 100 nm bafilomycin A1, a specific H+-ATPase inhibitor, significantly inhibited the pH increase. These results suggest an increase of cytoplasmic calcium might initiate events that lead to activation of proton export from the cytoplasm by a mechanism involving H+-ATPase. This notion is supported by the observation that the pH increase was suppressed when either verapamil or nifedipine was used to prevent the cytoplasmic calcium increase in cells exposed to potassium-rich solution. Protein kinase C activation might also be involved in the mechanism of H+-ATPase stimulation since staurosporine suppressed the pH response to potassium-rich solution. A transient rise of cytoplasmic calcium concentration was observed when cytoplasmic acidification was induced by exposure to high pCO2. This suggests a rise of cytoplasmic calcium might represent part of a physiological mechanism to stimulate H+-ATPase-mediated protein export under acid conditions. Received: 11 August 2000/Revised: 29 March 2001  相似文献   

15.
Most Chl a in PSI complexes was removed without any loss of P700 by ether treatment, yielding antenna-depleted P700-Chl a protein complexes (CP1s) with a Chl a/P700 ratio of 12. On addition of about 60 molecules of Chl b per P700 with phosphatidylglycerol, about 20 molecules of Chl b per P700 were bound to the complexes. The ratio of the bound Chl b to the added Chl b was about one-third, irrespective of the amount of Chl b added. The same partition ratio was obtained on reconstitution with Chl a, suggesting that the binding affinity of Chl b for the Chl a-binding sites is similar to that of Chl a. The relative quantum efficiency of P700 photooxidation, determined by the increase in its initial rate, increased in proportion to the increase in number of bound Chl b molecules. The degree of the increase was the same as expected if the bound Chl b had the same antenna activity as the bound Chl a. The bound Chl b emitted fluorescence with a peak at 660 nm, and its yield was as high as the Chl a remaining in the complexes. However, the excitation spectrum of the Chl a fluorescence, detected at 680 nm, was almost the same as the absorption spectrum of the Chl b-bound complexes, indicating efficient energy transfer of the bound Chl b to Chl a. These results suggest that Chl b primarily occupies the Chl a-binding sites close to the reaction center region, acting as an efficient antenna for P700.  相似文献   

16.
Catharanthus roseus cell suspension cultures converted exogenously added curcumin to a series of curcumin glucosides that possessed drastically enhanced water solubility. A cDNA clone encoding a glucosyltransferase responsible for glucosylation of curcumin to form curcumin 4'-O-glucoside was previously isolated, and in the present study a novel sugar-sugar glycosyltransferase, UDP-glucose:curcumin glucoside glucosyltransferase (UCGGT), was purified approximately 900-fold to apparent homogeneity from cultured cells of C. roseus. The purified enzyme (0.2% activity yield) catalyzed 1,6-glucosylation of curcumin 4'-O-glucoside to yield curcumin 4'-O-gentiobioside. The molecular weight and isoelectric point were estimated to be about 50 kDa and 5.2, respectively. The enzyme showed a pH optimum between 7.5 and 7.8. Both flavonoid 3-O- and 7-O-glucosides were also preferred acceptor substrates of the enzyme, whereas little activity was shown toward simple phenolic glucosides such as arbutin and glucovanillin, cyanogenic glucoside (prunasin) or flavonoid galactoside. These results suggest that UCGGT may also function in the biosynthesis of flavonoid glycosides in planta.  相似文献   

17.
18.
We have investigated the effects of extracellular and intracellular pH on single channel and macroscopic (macropatches) currents through volume-regulated anion channels (VRAC) in endothelial cells. Protonation of extracellular binding sites with an apparent pK of 4.6 increased voltage independent of the single-channel amplitude. Cytosolic acidification had a dual effect on VRAC currents: on the one hand, it increased single channel conductance by ∼20% due to protonation of a group with an apparent pK of 6.5 and a Hill coefficient of 2. On the other hand, it reduced channel activity due to protonation of a group with an apparent pK of 6.3 and a Hill coefficient of 2.1. This dual effect enhances the macroscopic current at a slightly acidic pH but inhibits it at more acidic pH. Cytosolic alkalization also reduced channel activity with a pK of 8.4 and a Hill coefficient of 1.9, but apparently did not affect single-channel conductance. These data show that VRAC channels are maintained in an active state in a narrow pH range around the normal physiological pH and shut down outside this range. They also show that HEPES-buffered pipette solutions do not effectively buffer pH in the vicinity of the VRAC channels. Received: 31 January 2000/Revised: 21 April 2000  相似文献   

19.
The apoplastic pH of guard cells probably acidifies in response to light, since light induces proton extrusion by both guard cells and epidermal leaf cells. From the data presented here, it is concluded that these apoplastic pH changes will affect K+ fluxes in guard cells of Arabidopsis thaliana (L.) Heynh. Guard cells of this species were impaled with double-barrelled microelectrodes, to measure the membrane potential (Em) and the plasma-membrane conductance. Guard cells were found to exhibit two states with respect to their Em, a depolarized and a hyperpolarized state. Apoplastic acidification depolarized Em in both states, though the origin of the depolarization differed for each state. In the depolarized state, the change in Em was the result of a combined pH effect on instantaneously activating conductances and on the slow outward rectifying K+ channel (s-ORC). At a more acidic apoplastic pH, the current through instantaneously activated conductances became more inwardly directed, while the maximum conductance of s-ORC decreased. The effect on s-ORC was accompanied by an acceleration of activation and deactivation of the channel. Experiments with acid loading of guard cells indicated that the effect on s-ORC was due to a lowered intracellular pH, caused by apoplastic acidification. In the hyperpolarized state, the pH-induced depolarization was due to a direct effect of the apoplastic pH on the inward rectifying K+ channel. Acidification shifted the threshold potential of the channel to more positive values. This effect was accompanied by a decrease in activation times and an increase of deactivation times, of the channel. From the changes in Em and membrane conductance, the expected effect of acidification on K+ fluxes was calculated. It was concluded that apoplastic acidification will increase the K+-efflux in the depolarized state and reduce the K+-influx in the hyperpolarized state. Received: 28 April 1997 / Accepted: 10 November 1997  相似文献   

20.
Replacement of an amino acid residue at position 130 -Gly by Cys- in the primary structure of Staphylococcus aureus alpha-toxin decreases the single-channel conductance induced by the toxin in planar lipid bilayers. Concomitantly, the pH value at which the channel becomes unable to discriminate between Cl and K+ ions is also decreased. By contrast, the pH dependence of the efficiency of the mutant toxin to form ion channels in lipid bilayers was unchanged (maximum efficiency at pH 5.5–6.0). The asymmetry and nonlinearity of the current-voltage characteristics of the channel were increased by the point mutation but the diameter of the water pore induced by the mutant toxin, evaluated in lipid bilayers and in erythrocyte membranes, was found to be indistinguishable from that formed by wild-type toxin and equal to 2.4–2.6 nm. Alterations at the ``trans mouth' were found to be responsible for all observed changes of the channel properties. This mouth is situated close to the surface of the second leaflet of a bilayer lipid membrane. The data obtained allows us to propose that the region around residue 130 in fact determines the main features of the ST-channel and takes part in the formation of the trans entrance of the channel. Received: 8 September 1995/Revised: 20 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号