首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The purpose of the study was to investigate the effect of flaxseed oil (FO), rich in alpha-linolenic acid (ALA) (18:3 n-3) on growth parameters and lipid metabolism of rats fed with high fat diet. High fat diet (HFD) resulted in significant alterations in hepatic lipids, increase in body weight gain and negative effect on lipoprotein metabolism. FO supplementation significantly lowered the increase in body weight gain, liver weight, plasma cholesterol, triglycerides, phospholipids, free fatty acids, high-density lipoprotein (HDL), low-density lipoprotein-cholesterol (LDL-C), very low-density lipoprotein (VLDL), LDL/HDL and TC/HDL ratio in HFD fed rats. FO significantly reduced the hepatic and plasma lipid levels indicating its hypolipidemic activity. On the other hand, oral administration of FO exhibited lower plasma lipoprotein profile as compared to HFD rats. Hepatic protection by FO is further substantiated by the normal liver histological findings in HFD fed rats. These data suggest that FO participate in the normal regulation of plasma lipid concentration and cholesterol metabolism in liver. No adverse effect of FO on growth parameters and plasma lipids in rats fed with fat-free diet. The results of the present study demonstrate that FO may be developed as a useful therapy for hyperlipidemia through reducing hepatic lipids, thereby proving its hypolipidemic activity.  相似文献   

2.
The effects on lipid metabolism of long-term feeding of large amounts of ethanol or glucose differed from those that have been reported in short-term experiments. Three groups of male rats were investigated. The first was fed lab chow and 15% (v/v) ethanol ad lib.; the second was pair-fed with the first and given isocaloric amounts of glucose in lieu of ethanol; the third was fed lab chow and water ad lib. All three groups consumed nearly the same number of calories, and about 30% of the calories in the first group were derived from ethanol. Neither glucose nor ethanol added to a nutritionally adequate diet promoted the development of a fatty liver, although both stimulated acetate-(14)C utilization for hepatic lipid synthesis. In all three groups more than 80% of the label in hepatic lipid was found in fatty acids, and the distribution of label amongst the fatty acids of different chain lengths was virtually the same. Ethanol decreased while glucose increased the quantity of lipid in fat depots, and each altered the fatty acid composition of the lipids in adipose tissue, kidney, liver, and hepatic subcellular fractions in a different manner. The most striking of these changes was the relative increase in monounsaturated fatty acids and the decrease in essential fatty acids produced by glucose.  相似文献   

3.
Obesity is critically related with the development of metabolic and pathophysiological alterations among which non-alcoholic fatty liver disease (NAFLD) is of especial relevance. Although there are numerous strategies to successfully treat obesity, the prevention of weight regain still remains challenging for individuals who have undergone weight loss programs. In such context, diet and physical activity are considered essential for the regulation of body weight and lipid metabolism. In this study, rats were fed a high-fat diet (HFD) to induce obesity and alterations in hepatic lipid metabolism. Obese rats were then treated with single or combined strategies of caloric restriction, physical exercise, and/or pharmacological treatment with an appetite suppressant, to lose weight, reverse the obesity-related alterations in hepatic morphology and lipid metabolism and maintain the beneficial effects of the interventions used. HFD induced excess body weight, hepatic steatosis, altered fatty acid profile, dysregulated gene expression of lipogenic and lipolytic enzymes, as well as plasma markers of liver damage, and modifications in liver antioxidant enzyme activity. Such alterations were ameliorated by caloric restriction in combination with a mixed training protocol and/or food-intake inhibitor administration during a weight loss intervention period of 3 weeks, and the beneficial effects remained after 6 weeks of weight maintenance, with some interesting interactions observed. In conclusion, weight loss strategies assayed were efficient at correcting the obesogenic action of a HFD and related alterations in hepatic functionality through different molecular mechanisms. The beneficial effects were also evident along the post-intervention maintenance period to avoid body weight regain.  相似文献   

4.
Effects of ethanol feeding on hepatic lipid synthesis   总被引:3,自引:0,他引:3  
Rats were fed a high-fat, liquid diet containing either 36% of total calories as ethanol or an isocaloric amount of sucrose, for a period up to 35 days. At different time intervals we measured the effects of ethanol administration on the activities of a number of key enzymes involved in hepatic lipid synthesis. At the start of the experimental period the activities of acetyl-CoA carboxylase and fatty acid synthase, measured in liver homogenates, increased in the control as well as in the ethanol-fed group. After 35 days these enzyme activities were still elevated but there were no significant differences between the two groups. In hepatocytes isolated from controls as well as from ethanol-fed rats, short-term incubations with ethanol induced an increase in the rate of fatty acid synthesis and in the activities of acetyl-CoA carboxylase and fatty acid synthase. However, no alterations in the regulation of these enzymes by short-term modulators of lipogenesis were apparent in hepatocytes isolated from alcohol-treated animals. The results do not indicate a major role for the enzymes of de novo fatty acid synthesis in the development of the alcoholic fatty liver. The amount of liver triacylglycerols increased in ethanol-fed rats during the entire treatment period, whereas the hepatic levels of phosphatidylcholine and phosphatidylethanolamine were not affected by ethanol ingestion. Ethanol administration for less than 2 weeks increased the activities of phosphatidate phosphohydrolase, diacylglycerol acyltransferase, and microsomal phosphocholine cytidylyltransferase, whereas the cytosolic activity of phosphocholine cytidylyltransferase was slightly decreased. Upon prolonged ethanol administration the activities of these enzymes were slowly restored to control values after 35 days, suggesting development of some kind of adaptation. It is interesting that, although the activities of phosphatidate phosphohydrolase and diacylglycerol acyltransferase were restored to the levels found in the control rats, this effect was not accompanied by a stabilization or decrease of the concentration of hepatic triacylglycerols.  相似文献   

5.
A low protein diet affects amounts of linoleic and arachidonic acids in hepatic microsomal phospholipids of growing rats. Are the changes related to modifications in microsomal delta 6- and delta 5- linoleic acid desaturase activities? Two groups of Wistar rats weighing 80 +/- 5 g at the beginning of the experiment were used: Control group (T) was fed on a 16% gluten + 4% casein diet for 53 days; Experimental group (E) was fed on a 4% gluten + 1% casein diet for 26 days (MP) then Control diet for 27 days (RE). After 2, 14 and 26 days of MP and 2, 15 and 27 days of RE, rats of each group were sacrificed. Protein and water contents of liver, quantitative fatty acid, composition of total lipids in liver and hepatic microsomes were determined. delta 6- and delta 5- linoleic acid desaturase activities were estimated from incubation of liver microsomes with [1-14C] C 18: 2 n-6 or [2(14)C] C 20: 3 n-6 respectively. The low protein diet stops practically ponderal growth. The fatty-acid compositions of microsomal total lipids of E rats were affected in comparison with values of T rats. These modifications persist after 27 days of RE. The C 20: 4 n-6/C 18: 2 n-6 ratio in microsomal total lipids was slightly different between T and E rats but increased strongly during refeeding. Same modifications take place in the fatty-acid composition of hepatic total lipids. After two days of MP, delta 6- and delta 5- desaturase activities were depressed, phenomenon that not persist in the course of MP. These enzyme activities increase to higher values than those of the T after two days of RE.  相似文献   

6.
Feeding of a threonine-deficient diet to rats weighing approximately 53 g or 99 g caused a significant rise in liver lipids compared to the control diet containing 7% amino acid mixture. Whereas, when rats weighing approximately 155 g were fed either the control diet or the threonine-deficient diet, liver lipid content was essentially the same for both groups. Therefore, in the present paper, young rats were used to clarify the mechanism of liver lipid accumulation in threonine-deficiency. The increase in dietary fat content of the threonine-deficient diet did not prevent the lipid accumulation in rat liver. The rates of in vivo incorporation from radioactive acetate into liver lipids, body lipids and respiratory CO2 of rats fed either the control diet or the threonine-deficient diet were measured. The threonine-deficient group tended to be lower in total activity of both the liver lipids and body lipids than those of the control group. Thus, these results suggest that the development of this type of fatty liver might not be due to the stimulation of lipid synthesis in the liver. In the serum of rats fed the threonine-deficient diet, the protein content of β-lipoproteins was significantly lower and free fatty acid level tended to be lower than the values of the control animals, respectively. From these results, decreased trasport of lipids from the liver may thus be considered a potential major factor responsible for the excessive lipid accumulation in the liver of rats fed the threonine-deficient diet.  相似文献   

7.
We report the effects of Traditional Chinese Medicine (TCM) on alcohol-induced fatty liver in rats. TCM consists of Astragalus membranaceus, Morus alba, Crataegus pinnatifida, Alisma oriental, Salvia miltiorrhiza and Pueraria lobata. The rats were separated randomly into five groups; the CD group (n=10), which was fed a control diet for 10 weeks, the ED group (n=10), which was fed an isocaloric liquid diet containing ethanol for 10 weeks and given daily oral doses of TCM (0.222 g/kg/day; TCM222, 0.667 g/kg/day; TCM667, and 2.000 g/kg/day; TCM2000, n=10, respectively) over the last four weeks of the study. The ED group developed fatty livers, as determined by their lipid profiles and liver histological findings. Compared with the control group, liver/body weight, plasma triglyceride (TG) and total cholesterol (TC), liver TG and TC, plasma alanine aminotransferase (ALT) and aspartic aminotransferase (AST) significantly increased in the ED group. Also, free fatty acids (FFA) levels increased in both plasma and liver during the administration of ethanol. On the other hand, when rats were administrated with TCM, their liver/body weight, plasma TG, TC and FFA, liver TG, TC and FFA, plasma ALT and AST decreased significantly and the degree of hepatic lipid droplets was markedly improved compared with those in the ED group. Proper function of the peroxisome proliferator-activated receptor alpha (PPARalpha) is essential for the regulation of hepatic fatty acid metabolism. Microsomal triglyceride transfer protein (MTP) is essential for the secretion of triglycerides from the liver. mRNAs for PPARalpha and MTP were reduced in the livers of ethanol-fed rats. TCM restored the mRNA levels of PPARalpha and MTP, and prevented development of fatty livers in ethanol-fed rats. Impairment of PPARalpha and MTP function during ethanol consumption contributes to the development of alcohol-induced fatty liver, which can be overcome by TCM.  相似文献   

8.
Feeding of ethanol in a liquid diet to male Wistar rats caused decreases in the hepatic cytosolic and mitochondrial [NAD+]/[NADH] ratios. This redox-state change was attenuated after 16 days of feeding ethanol as 36% of the total energy intake. Supplementation of the ethanol-containing liquid diet with Methylene Blue largely prevented the ethanol-induced redox state changes, but did not significantly decrease the severity of the hepatic lipid accumulation that resulted from ethanol ingestion. Methylene Blue did not affect body-weight gain, ethanol intake or serum ethanol concentrations in ethanol-fed rats, nor did the compound influence the hepatic redox state or liver lipid content of appropriate pair-fed control animals. These findings suggest that the altered hepatic redox state that results from ethanol oxidation is not primarily responsible for the production of fatty liver after long-term ethanol feeding in the rat.  相似文献   

9.
The energy balance and hepatic fatty acid-supported respiration were studied in rats fed a control or an energy-dense diet. In addition, state 3 and 4 respiratory rates as well as ketone body production with palmitoylcarnitine as substrate were determined in isolated mitochondria. Metabolizable energy intake and energy expenditure increased in rats fed an energy-dense diet, but the gain in body weight and lipid content remained unchanged. No variation occurred in the mitochondrial palmitoylcarnitine utilization rate and ketone body production, but a significant increase in the mitochondrial content of ketone bodies and the serum levels was found in rats fed an energy-dense diet. Furthermore, we have shown a significant increase in fatty acid-stimulated respiration in hepatocytes from rats fed an energy-dense diet. The enhanced hepatic fatty acid utilization as an energy substrate found in rats fed an energy-dense diet may contribute to reduce the availability of lipids for storage, thus counteracting the development of obesity.  相似文献   

10.
The involvement of oxidative stress in the pathogenesis of alcoholic diseases in the liver has been repeatedly confirmed. Resveratrol, a natural phytoalexin present in grape skin and red wine possesses a variety of biological activities including antioxidant. This study was conducted to evaluate whether resveratrol has a preventive effect on the main indicators of hepatic oxidative status as an expression of the cellular damage caused by free radicals, and on antioxidant defence mechanism during chronic ethanol treatment. Wistar rats were treated daily with 35% ethanol solution (3 g/kg/day i.p.) during 6 weeks and fed basal diet or basal diet containing 5 g/kg resveratrol. Control rats were treated with i.p. saline and fed basal diet. Experimentally, chronic ethanol administration leads to hepatotoxicity as monitored by the increase in the level of hepatic marker enzymes and the appearance of fatty change, necrosis, fibrosis and inflammation in liver sections. Ethanol also enhanced the formation of MDA in the liver indicating an increase in lipid peroxidation, a major end-point of oxidative damage, and caused drastic alterations in antioxidant defence systems. Particularly the activities of hepatic superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were found reduced by ethanol treatment while glutathione reductase (GR) activity was unchanged. Dietary supplementation with resveratrol during ethanol treatment inhibited hepatic lipid peroxidation and ameliorated SOD, GPx and CAT activities in the liver. Conclusively, we can suggest that resveratrol could have a beneficial effect in inhibiting the oxidative damage induced by chronic ethanol administration, which was proved by the experiments that we conducted on rats.  相似文献   

11.
The effect of methotrexate on lipids in serum and liver and key enzymes involved in esterification and oxidation of long-chain fatty acids were investigated in rats fed a standard diet and a defined choline-deficient diet. Hepatic metabolism of long-chain fatty acids were also studied in rats fed the defined diet with or without choline. When methotrexate was administered to the rats fed the standard diet there was a slight increase in hepatic lipids and a moderate reduction in the serum level. The palmitoyl-CoA synthetase activity and the microsomal glycerophosphate acyltransferase activity in the liver of rats were increased by methotrexate. The data are consistent with those where the liver may fail to transfer the newly formed triacylglycerols into the plasma with a resultant increase in liver triacylglycerol content and a decrease in serum lipid levels. Fatty liver of methotrexate-exposed rats can not be attributed simply to a reduction of fatty acid oxidation as the carnitine palmitoyltransferase activity was increased. The methotrexate response in the rats fed the defined choline-deficient diet was different. There was a reduction in both serum and hepatic triacylglycerol and the glycerophosphate acyltransferase and palmitoyl-CoA synthetase activities. The carnitine palmitoyltransferase activity was unchanged. Hepatomegaly and increased hepatic fat content, but decreased serum triacylglycerol, total cholesterol and HDL cholesterol were found to be related to the development of choline deficiency as the pleiotropic responses were almost fully prevented by addition of choline to the choline-deficient diet. Addition of choline to the choline-deficient diet normalized the total palmitoyl-CoA synthetase and carnitine palmitoyltransferase activities. In contrast to methotrexate exposure, choline deficiency increased the mitochondrial glycerophosphate acyltransferase activity. The data are consistent with those of where fatty liver induction of choline deficiency may be related to an enhanced esterification of long-chain fatty acids concomitant with a reduction of their oxidation.  相似文献   

12.
Oral administration of vitamin A (30,000 IU daily for 2 days) to young rats caused a marked increase in hepatic glycogen, cholesterol, and glycerides, while hepatic phospholipid content remained almost unaltered. In an examination of the pathogenesis of the lipid accumulation, it was found that more glucose-(14)C was incorporated into liver lipids in vitamin A-fed rats, whereas incorporation of glucose-(14)C and dl-glycine-(14)C into liver protein remained unaltered. The increase in glucose-(14)C incorporation was confined to the glyceride-glycerol portion of the lipids; incorporation into liver fatty acids was inhibited. Plasma free fatty acid concentrations were elevated. It is postulated that in the vitamin A-fed rats, increased accumulation of lipids in the liver is caused by a stimulation of fatty acid mobilization from adipose tissue and enhanced formation of glycerophosphate through glycolysis, with consequent increase in the glyceride synthesis in the liver. The weight of the adrenals was increased, whereas cholesterol concentration in the gland was decreased, after administration of vitamin A to rats. This indicates adrenocortical stimulation. Interestingly enough, vitamin A feeding did not affect either the level of liver lipids or of plasma FFA in adrenalectomized rats.  相似文献   

13.
Thyroid hormone mimetics are alluring potential therapies for diseases like dyslipidemia, nonalcoholic fatty liver disease (NAFLD), and insulin resistance. Though diiodothyronines are thought inactive, pharmacologic treatment with 3,5- Diiodo-L-Thyronine (T2) reportedly reduces hepatic lipid content and improves glucose tolerance in fat-fed male rats. To test this, male Sprague Dawley rats fed a safflower-oil based high-fat diet were treated with T2 (0.25 mg/kg-d) or vehicle. Neither 10 nor 30 days of T2 treatment had an effect on weight, adiposity, plasma fatty acids, or hepatic steatosis. Insulin action was quantified in vivo by a hyperinsulinemic-euglycemic clamp. T2 did not alter fasting plasma glucose or insulin concentration. Basal endogenous glucose production (EGP) rate was unchanged. During the clamp, there was no difference in insulin stimulated whole body glucose disposal. Insulin suppressed EGP by 60% ± 10 in T2-treated rats as compared with 47% ± 4 suppression in the vehicle group (p = 0.32). This was associated with an improvement in hepatic insulin signaling; insulin stimulated Akt phosphorylation was ~2.5 fold greater in the T2-treated group as compared with the vehicle-treated group (p = 0.003). There was no change in expression of genes thought to mediate the effect of T2 on hepatic metabolism, including genes that regulate hepatic lipid oxidation (ppara, carnitine palmitoyltransferase 1a), genes that regulate hepatic fatty acid synthesis (srebp1c, acetyl coa carboxylase, fatty acid synthase), and genes involved in glycolysis and gluconeogenesis (L-pyruvate kinase, glucose 6 phosphatase). Therefore, in contrast with previous reports, in Sprague Dawley rats fed an unsaturated fat diet, T2 administration failed to improve NAFLD or whole body insulin sensitivity. Though there was a modest improvement in hepatic insulin signaling, this was not associated with significant differences in hepatic insulin action. Further study will be necessary before diiodothyronines can be considered an effective treatment for NAFLD and dyslipidemia.  相似文献   

14.
15.
Previous studies have shown that the presence of oats in the diet contributes to formation of I-compounds (age-dependent covalent DNA modifications detected by 32P-postlabeling assay) in female Sprague-Dawley rat liver DNA. The current study explored the possible ingredients in oats responsible for the observed effects on DNA. Feeding AIN-76A diet containing 5% oat lipids (obtained by methanol extraction and dissolved in trioctanoin) in place of corn oil for 2 months successfully induced the formation of 3 oats-specific (spots 2-4) and 4 natural ingredient diet-specific I-compounds (spots 6-9) in liver DNA. Barley, an oatlike cereal, induced 3 of these spots at very low intensities but not the 3 oats-specific I-spots. Oral administration of oat lipids to weanling rats of both sexes for 7 days elicited trace amounts of the oats-specific spots and spot 9 in liver DNA. However, when oat lipids were given at 6 or 9 weeks of age, the oats-specific spots were detected at high levels in female but not in male rats. These oats-related DNA modifications were also present in 6-week-old female rats which had received oat lipids p.o. for 2 or 3 days or i.p. for 4 days. Rats given trioctanoin or extracts from natural ingredient Wayne diet (lacking oats) did not show any of these spots. On the other hand, rats treated with extracts from an oats-containing Teklad diet displayed a trace amount of one of these I-compounds. Oat lipids did not induce any extra spots in rat kidney DNA. Feeding of AIN diet supplemented with oats to female Syrian hamsters did not elicit any renal or hepatic DNA alterations, as detected by 32P-postlabeling. Rats fed oat lipids-supplemented AIN diet or Purina diet showed the highest levels of I-compounds overall in liver among all dietary groups and these two groups also had significantly higher hepatic DNA synthesis rates. Oat lipids enhanced kidney DNA synthesis also. The total hepatic or renal cytochrome P-450 contents were not significantly affected by different diets. These results demonstrate a novel link between a natural dietary ingredient and covalent DNA modifications and shed light on the origins of certain I-compounds.  相似文献   

16.
Two experiments were conducted to determine the effects of dehydroepiandrosterone (DHEA) on de novo fatty acid synthesis and oxygen consumption in BHE rats fed a 65% glucose diet. In Experiment 1, starved glucose-refed rats were injected ip with 120 mg of DHEA/kg body wt and hepatic de novo fatty acid synthesis was measured. DHEA-treated rats synthesized less fatty acid in response to starvation refeeding than nontreated rats. In Experiment 2, weanling rats were fed the glucose diet for 4 weeks. One-hundred twenty milligrams of DHEA/kg were injected daily for 3 weeks. Body weight gain, epididymal fat pad weight, and carcass lipid were less in the DHEA-treated rats than in the control rats. Mitochondrial respiration was less and liver size was greater in DHEA-treated rats compared with control rats. Whole body oxygen consumption was increased in DHEA-treated rats, suggesting that this steroid might be stimulating futile energy cycles involving lipid and protein turnover possibly through its effect on glucocorticoid and thyroid hormone function.  相似文献   

17.
Effect of realimentation was studied on the structure and function of liver tissue of carp,Cyprinus carpio. Yearling carp, after a 3-month starvation period, were renourished at a feeding rate of 1% body weight per day. Samples were taken at refeeding days 0, 1, 2, 5, 22 and 78. Analyses were made of blood metabolites, liver RNA, DNA, lipids, glycogen and protein and of liver enzyme activities. Additionally, liver cytology was examined by means of qualitative and quantitative electron microscopy. The early refeeding period (up to day 5) was characterized by a fast recovery of plasma metabolite concentrations (protein, total lipids, free fatty acids, glucose), a drastic augmentation of hepatic glycogen reserves, and a pronounced increase of total liver weight and liver-somatic index. Constant values of total hepatic DNA showed that liver weight augmentation was not due to cell proliferation, but to a pronounced enlargement of the existing hepatocytes. Major hunger-related structural modifications of carp hepatocytes such as enlarged mitochondria or prominence of the lysosomal compartment were reversed. A significant volume increase of cell nuclei, together with a particularly strong elevation of hepatic RNA concentrations during initial realimentation suggest an immediate stimulation of protein synthesis. Since the cisternae of the endoplasmic reticulum were not reconstituted during that early phase, protein synthesis may have been executed mainly by free ribosomes. With prolonged realimentation, the volume of the endoplasmic reticulum as well as total and relative contents of liver soluble protein continuously increased, whereas RNA concentrations decreased again. An enforcement of liver oxidative capacity was indicated by the augmentation of cellular number and volume of mitochondria. The activities of the enzymes glucose-6-phosphate dehydrogenase and malic enzyme, which convert excess energy into NADPH, increased steadily. Concomitantly, hepatic lipid accumulation was enhanced. In conclusion, liver metabolism during the early recovery phase seems to be dominated both by repair processes and by intensive protein and glycogen synthesis. The liver slows down these processes during prolonged refeeding and directs an increasing percentage of energy and metabolites toward the generation of reducing equivalents and lipid reserves.Abbreviations BW body weight - ER endoplasmic reticulum - FFA free fatty acids - G6PDH glucose-6-phosphate dehydrogenase - LSI liver somtic index - LW liver weight - ME malic enzyme Presented in part as poster abstract at the International Congress on Research in Aquaculture: Fundamental and Applied Aspects. Antibes, France, 6–10 October, 1991  相似文献   

18.
The effects of one-time ethanol intoxication on ascorbic acid and lipid metabolism and on drug-metabolizing enzymes in liver of rats were investigated. Male Donryu rats that had been fed semi-purified feed were given 5 g/kg ethanol solution (25%, w/v) via a stomach tube and killed 16 h after intubation. The amount of ascorbic acid excreted in the urine after ethanol administration increased, but renal and adrenal concentrations of ascorbic acid decreased. The serum levels of total cholesterol, high-density-lipoprotein cholesterol, triglycerides, phospholipids, and non-esterified fatty acids were elevated in rats given ethanol, but hepatic level of total lipids, cholesterol, triglycerides, phospholipids were not. The hepatic concentrations of cytochrome P-450 and cytochrome b5 did not increase, but this large dose of ethanol increased the activities of aminopyrine N-demethylase and cytochrome c reductase.

These results indicated that the single dose of ethanol affected the ascorbic acid and lipid metabolism of rats, and induced drug-metabolizing enzymes in their liver.  相似文献   

19.
An evident fatty liver, corroborated morphologically and chemically, was produced in CD-1 mice after five daily doses of simvastatin 75 mg/Kg body weight, a hypercholesterolemic diet and 20 percent ethanol in the drinking water. After treating the animals, they presented serum triacylglycerols levels five times higher than the control mice, total lipids, cholesterol and triacylglycerols in the liver were 2, 2 and 1.5 times higher, respectively, than in control animals. When Arthrospira maxima was given with diet two weeks prior the onset of fatty liver induction, there was a decrement of liver total lipids (40%), liver triacylglycerols (50%) and serum triacylglycerols (50%) compared to the animals with the same treatment but without Arthrospira maxima. In addition to the mentioned protective effect, the administration of this algae, produced a significant increase (45%) in serum high density lipoproteins. The mechanism for this protective effect was not established in these experiments.  相似文献   

20.
Excessive lipid accumulation within hepatocytes, or hepatic steatosis, is the pathognominic feature of nonalcoholic fatty liver disease (NAFLD), a disease associated with insulin resistance and obesity. Low-carbohydrate diets (LCD) improve these conditions and were implemented in this study to potentially attenuate hepatic steatosis in hypercholesterolemic guinea pigs. Male guinea pigs (n = 10 per group) were randomly assigned to consume high cholesterol (0.25 g/100 g) in either a LCD or a high-carbohydrate diet (HCD) for 12 wk. As compared with HCD, plasma LDL cholesterol was lower and plasma triglycerides were higher in animals fed the LCD diet, with no differences in plasma free fatty acids or glucose. The most prominent finding was a 40% increase in liver weight in guinea pigs fed the LCD diet despite no differences in hepatic cholesterol or triglycerides between the LCD and the HCD groups. Regardless of diet, all livers had severe hepatic steatosis on histologic examination. Regression analysis suggested that liver weight was independent of body weight and liver mass was independent of hepatic lipid content. LCD livers had more proliferating hepatocytes than did HCD livers, suggesting that in the context of cholesterol-induced hepatic steatosis, dietary carbohydrate restriction enhances liver cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号