首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothesis that endogenous carbon monoxide (CO), produced during the oxidation of heme catalyzed by heme oxygenase (HO), plays a role similar to that of nitric oxide (NO) in the regulation of cardiovascular tone has been criticized because of the low potency of CO compared with NO in relaxing blood vessels and stimulating soluble guanylyl cyclase (sGC). This criticism has been muted by the demonstration that, in the presence of YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole], CO has similar potency to NO in stimulating sGC activity. In this study, we determined that YC-1 potentiated CO-induced relaxation of rat aortic strips (RtAS) by approximately ten-fold. Furthermore, CO-induced relaxation of RtAS was shown to be mediated through stimulation of sGC because vasorelaxation was inhibited by ODQ (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one), a selective sGC inhibitor, in the absence and presence of YC-1. A gas chromatographic-headspace method was used to measure CO concentration in Krebs' solution following the addition of CO-saturated saline solution to the tissue bath, in order to provide an accurate determination of RtAS exposure to CO. The tissue bath concentration of CO was shown to be approximately one-half of that calculated to be present. We conclude that should an endogenous compound exist with properties similar to that of YC-1, then the potency of CO as a vasorelaxant in the presence of this factor would be increased. As a consequence, CO could play a role in the regulation of cardiovascular tone, comparable to that of NO.  相似文献   

2.
A stably transfected soluble guanylate cyclase (sGC, alpha1 and beta1 subunits of the rat lung enzyme)-overexpressing CHO cell line was generated for the characterization of different types of activators of the soluble guanylate cyclase. Polyclonal antibodies directed against both subunits of the rat enzyme were used to detect both subunits in the cytosol of the transfected CHO cells. We studied the effects of different nitric oxide (NO) donors like SNP and DEA/NO and, in particular, the direct, NO-independent stimulator of the soluble guanylate cyclase 3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole (YC-1), on intracellular guanosine 3',5'-cyclic monophosphate (cGMP) production. DEA/NO (0.01-3 microM), SNP (1-10 microM), and YC-1 (1-10 microM) induced a concentration-dependent intracellular cGMP increase with maximal effects of 16-fold (3 microM DEA/NO), 8-fold (10 microM SNP), and 6-fold (10 microM YC-1) stimulation compared to controls, respectively. In addition, a synergistic effect of the combination of the NO donor and YC-1 could be observed with a maximal stimulation of 64-fold by SNP (10 microM) and YC-1 (10 microM). 1H-(1,2,4)-Oxadiazolo-(4,3-a)-6-bromo-quinoxazin-1-one (ODQ, 10 microM), a potent and selective inhibitor of sGC, inhibited both the single effects of NO donors [DEA/NO (3 microM), 77%; SNP (3 microM), 83%] and YC-1 [YC-1 (3 microM), 82%], but moreover the synergistic effects between NO donors and YC-1 [DEA/NO (3 microM) + YC-1 (3 microM), 81%; SNP (3 microM) + YC-1 (3 microM),89%] on intracellular cGMP production. In summary,we have generated a simple, sensitive, and useful bioassay method to characterize all types of sGC activators on the cellular level without the need of primary cell culture, several transfections, or purifying enzyme from biological materials.  相似文献   

3.
Soluble guanylate cyclase (sGC) is a receptor for endogenous and exogenous nitric oxide (NO) and is activated many fold upon its binding, making it a core enzyme in the nitric oxide signal transduction pathway. Much effort has been made to understand the link between binding of NO at the sGC heme and activation of the cyclase activity. We report here the first direct evidence for the role of conformational changes in transmitting the signal between the heme and cyclase domains. Using both circular dichroism (CD) and fluorescence spectroscopies, we have probed the effect that the sGC activators NO and 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl-indazole (YC-1) and the inhibitor 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ) have on the structure of the protein. Surprisingly, binding of either ODQ or YC-1 to NO-bound sGC cause virtually identical changes in the far-UV CD spectra of sGC, reflecting a perturbation in the secondary structure of the enzyme. This change is absent upon binding of NO, YC-1 or ODQ alone. Using this and previous data, we propose a working model for the mechanism of activation of sGC by NO and YC-1 and inhibition by ODQ.  相似文献   

4.
The effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) on responses to sodium nitroprusside (SNP), S-nitroso-N-acetyl-penicillamine (SNAP), the nitroxyl anion donor Angeli's salt, and nitrergic nerve stimulation, as well as the release of NO from nitrergic nerves, were studied in the rat isolated anococcygeus muscle. YC-1 (1-100 microM) produced concentration-dependent relaxations in contracted muscles, which were partially but significantly reduced by the inhibitor of soluble guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 1 and 10 microM). At a concentration that did not affect tissue tension, YC-1 (1 microM) significantly enhanced relaxations to SNP, SNAP, and Angeli's salt but did not affect relaxations to papaverine (10 microM). Nitrergic relaxations elicited by short periods (1 Hz for 10 s, 15 V) and long periods of EFS (5 Hz for 5 min, 15 V) were also enhanced by YC-1. YC-1 (100 microM), in an l-NAME and tetrodotoxin-insensitive manner, also increased the amount of NO detected in the organ bath media after the tissue was field stimulated (5 Hz for 5 min), which may have resulted from the electrolytic degradation of YC-1, as this effect was also seen in the absence of tissue. In summary, YC-1 enhanced relaxations to donors of NO, Angeli's salt, and nitrergic nerve stimulation in the rat anococcygeus muscle; however, the enhanced release of NO by YC-1 following nitrergic nerve stimulation was not a tissue-dependent effect.  相似文献   

5.
Peripheral autonomic neurones release nitric oxide (NO) upon nerve activation. However, the regulation of neuronal NO formation is poorly understood. We used the cyclic guanosine 3',5'-monophosphate (cGMP) analogue 8-Br-cGMP, the soluble guanylyl cyclase (sGC) stimulator YC-1, the phosphodiesterase inhibitor zaprinast and the sGC inhibitor ODQ to study whether the sGC/cGMP pathway is involved in regulation of neuronal NO release in nerve plexus-containing smooth muscle preparations from guinea pig colon. Electrical stimulation of the preparation evoked release of NO/NO(-)(2). In the presence of 8-Br-cGMP, YC-1 and zaprinast (all at 10(-4) M) the NO/NO(-)(2)-release increased to 152 +/- 16% (P < 0.05), 164 +/- 37% (P < 0.05) and 290 +/- 67% (P < 0.05) of controls, respectively. Conversely, ODQ (10(-5) M) decreased the evoked release of NO/NO(-)(2) to 49 +/- 7% (P < 0.05) of controls. Our data suggest that the sGC/cGMP pathway modulates NO release. Thus it is likely that NO exerts a positive feedback on its own release from peripheral autonomic neurones.  相似文献   

6.
Vasorelaxation mediated by peroxynitrite (ONOO-) and 3-morpholinosydnonimine (SIN-1) were investigated in isolated bovine intramammary arteries. Both ONOO- and SIN-1 relaxed U 46619-precontracted rings in a dose-dependent, endothelium-independent manner. Pretreatment with an adenylyl cyclase inhibitor, SQ 22536 [(9-tetrahydro-2-furyl)adenine], resulted in an enhanced ONOO--mediated relaxation, but did not modulate the response to SIN-1. ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), a potent and selective inhibitor of soluble guanylyl cyclase (sGC), did not significantly affect relaxant actions of ONOO-, but ODQ markedly attenuated SIN-1-elicited relaxation with a rightward shift in the dose-response curve and an unaltered maximal response. In the presence of carboxy-PTIO (2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide), a putative nitric oxide scavenger and ONOO- inactivator, the relaxant response to ONOO- was abolished, while relaxant actions of SIN-1 appeared to be unaffected. The results reveal a difference between ONOO- and SIN-1-mediated relaxation with regards to the role of the sGC and suggest that ONOO--evoked relaxation may not be associated with sGC activity, but rather depends on an sGC-independent mechanism triggered by ONOO- and/or NO itself. It also re-emphasizes that SIN-1 induces a vasorelaxant response, in part, via stimulation of sGC.  相似文献   

7.
Lo YC  Tsou HH  Lin RJ  Wu DC  Wu BN  Lin YT  Chen IJ 《Life sciences》2005,76(8):931-944
The vasorelaxation activities of MCPT, a newly synthesized xanthine derivative, were investigated in this study. In phenylephrine (PE)-precontracted rat aortic rings with intact endothelium, MCPT caused a concentration-dependent relaxation, which was inhibited by endothelium removed. This relaxation was also reduced by the presence of nitric oxide synthase inhibitor Nomega-nitro-L-arginine methylester (L-NAME, 100 microM), soluble guanylyl cyclase (sGC) inhibitors methylene blue (10 microM), 1 H-[1,2,4] oxidazolol [4,3-a] quinoxalin-1-one (ODQ, 1 microM), adenylyl cyclase (AC) blocker SQ 22536 (100 microM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (1 microM), a Ca2+ activated K+ channels blocker tetraethylammonium (TEA, 10 mM) and a voltage-dependent potassium channels blocker 4-aminopyridine (4-AP, 100 microM). The vasorelaxant effects of MCPT together with IBMX (0.5 microM) had an additive action. In PE-preconstricted endothelium-denuded aortic rings, the vasorelaxant effects of MCPT were attenuated by pretreatments with glibenclamide (1 microM), SQ 22536 (100 microM) or ODQ (1 microM), respectively. MCPT enhanced cAMP-dependent vasodilator isoprenaline- and NO donor/cGMP-dependent vasodilator sodium nitroprusside-induced relaxation activities in endothelium-denuded aortic rings. In A-10 cell and washed human platelets, MCPT induced a concentration-dependent increase in intracellular cyclic GMP and cyclic AMP levels. In phosphodiesterase assay, MCPT displayed inhibition effects on PDE 3, PDE 4 and PDE 5. The inhibition % were 52 +/- 3.9, 32 +/- 2.6 and 8 +/- 1.1 respectively. The Western blot analysis on HUVEC indicated that MCPT increased the expression of eNOS. It is concluded that the vasorelaxation by MCPT may be mediated by the inhibition of phosphodiesterase, stimulation of NO/sGC/ cGMP and AC/cAMP pathways, and the opening of K+ channels.  相似文献   

8.
Wang Y  Shi JG  Wang MZ  Che CT  Yeung JH 《Life sciences》2007,81(12):1016-1023
1-Hydroxy-2, 3, 5-trimethoxyxanthone (HM-1) is a xanthone isolated from Halenia elliptica, a Tibetan medicinal herb. HM-1 (0.33-42.1 microM) produced a concentration-dependent relaxation in rat coronary artery rings pre-contracted with 1 microM 5-hydroxytryptamine (5-HT), with an EC(50) of 1.67+/-0.27 microM. Removal of the endothelium significantly affected the vasodilator potency of HM-1, resulting in 46% decrease in E(max) value. The endothelium-dependent effects of HM-1 was confirmed when its vasorelaxant effect was inhibited after addition of nitric oxide synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (100 microM) or the soluble guanylate cyclase inhibitor 1H-[1, 2, 4] oxadiazolo [4,3-alpha] quinoxalin-1-one (ODQ, 10 microM). Atropine (100 nM), flurbiprofen (10 microM), propranolol (100 microM), pyrilamine (10 microM), cimetidine (10 microM) and SQ22536 (100 microM) had no effect on the vasorelaxant activity of HM-1 indicated the non-involvement of other receptor/enzyme systems. In endothelium-denuded coronary artery rings, the vasorelaxant effect of HM-1 was unaffected by potassium channel blockers such as tetraethylammonium (10 mM), iberiotoxin (100 nM), barium chloride (100 microM) and 4-aminopyridine (1 mM). The involvement of Ca(2+) channel in 5-HT-primed artery ring preparations incubated with Ca(2+)-free buffer was confirmed when HM-1 (9.93 microM) partially abolished the CaCl(2)-induced vasoconstriction (87% inhibition in intact-endothelium artery rings; 50% inhibition in endothelium-denuded rings). In the KCl-primed preparations incubated with Ca(2+)-free buffer, HM-1 (9.93 microM) produced a 27.3% inhibition in endothelium-denuded rings. HM-1 (3.31-33.1 microM) had minimal relaxant effects (14.4%-20.3%) on the contractile response generated by 10 microM phorbol 12,13-diacetate (PDA) in Ca(2+)-free solutions, suggesting minimal effects on intracellular Ca(2+) mechanisms. These findings suggest the vasodilator action of HM-1 involved both an endothelium-dependent mechanism involving NO and an endothelium-independent mechanism by inhibiting Ca(2+) influx through L-type voltage-operated Ca(2+) channels; a minor contribution to the effects of HM-1 may be related to inhibition of the protein kinase C-mediated release of intracellular Ca(2+) stores.  相似文献   

9.
The enzyme-soluble guanylate cyclase (sGC), which converts GTP to cGMP, is a receptor for the signaling agent nitric oxide (NO). YC-1, a synthetic benzylindazole derivative, has been shown to activate sGC in an NO-independent fashion. In the presence of carbon monoxide (CO), which by itself activates sGC approximately 5-fold, YC-1 activates sGC to a level comparable to stimulation by NO alone. We have used kinetic analyses and resonance Raman spectroscopy (RR) to investigate the interaction of YC-1 and CO with guanylate cyclase. In the presence of CO and 200 microM YC-1, the V(max)/K(m GTP) increases 226-fold. While YC-1 does not perturb the RR spectrum of the ferrous form of baculovirus/Sf9 cell expressed sGC, it induces a shift in the Fe-CO stretching frequency for the CO-bound form from 474 to 492 cm(-1). Similarly, YC-1 has no effect on the RR spectrum of ferrous beta1(1-385), the isolated sGC heme-binding domain, but shifts the nu(Fe-CO) of CO-beta1(1-385) from 478 to 491 cm(-1), indicating that YC-1 binds in heme-binding region of sGC. In addition, the CO-bound forms of sGC and beta1(1-385) in the presence of YC-1 lie on the nu(Fe-CO) vs nu(C-O) correlation curve for proximal ligands with imidazole character, which suggests that histidine remains the heme proximal ligand in the presence of YC-1. Interestingly, YC-1 does not shift nu(Fe-CO) for the CO-bound form of H105G(Im), the imidazole-rescued heme ligand mutant of beta1(1-385). The data are consistent with binding of CO and YC-1 to the sGC heme-binding domain leading to conformational changes that give rise to an increase in catalytic turnover and a change in the electrostatic environment of the heme pocket.  相似文献   

10.
Regulation of soluble guanylate cyclase (sGC), the primary NO receptor, is linked to NO binding to the prosthetic heme group. Recent studies have demonstrated that the degree and duration of sGC activation depend on the presence and ratio of purine nucleotides and on the presence of excess NO. We measured NO dissociation from full-length alpha1beta1 sGC, and the constructs beta1(1-194), beta1(1-385), and beta2(1-217), at 37 and 10 degrees C with and without the substrate analogue guanosine-5'-[(alpha,beta-methylene]triphosphate (GMPCPP) or the activator 3-(5'-hydroxymethyl-3'-furyl)-1-benzylindazole (YC-1). NO dissociation from each construct was complex, requiring two exponentials to fit the data. Decreasing the temperature decreased the contribution of the faster exponential for all constructs. Inclusion of YC-1 moderately accelerated NO dissociation from sGC and beta2(1-217) at 37 degrees C and dramatically accelerated NO dissociation from sGC at 10 degrees C. The presence of GMPCPP also dramatically accelerated NO dissociation from sGC at 10 degrees C. This acceleration is due to increases in the observed rate for each exponential and in the contribution of the faster exponential. Increases in the contribution of the faster exponential correlated with higher activation of sGC by NO. These data indicate that the sGC ferrous-nitrosyl complex adopts two 5-coordinate conformations, a lower activity "closed" form, which releases NO slowly, and a higher activity "open" form, which releases NO rapidly. The ratio of these two species affects the overall rate of NO dissociation. These results have implications for the function of sGC in vivo, where there is evidence for two NO-regulated activity states.  相似文献   

11.
The nitric oxide (NO)/cGMP pathway plays a key role in the regulation of pulmonary vascular tone during the transition from the fetal to the neonatal circulation, and it is impaired in pathophysiological conditions such as pulmonary hypertension. In the present study, we have analyzed the changes in the function and expression of soluble guanylyl cyclase (sGC) in pulmonary arteries during early postnatal maturation in isolated third-branch pulmonary arteries from newborn (3-18 h of age) and 2-wk-old piglets. The expression of sGC beta(1)-subunit in pulmonary arteries increased with postnatal age both at the level of mRNA and protein. The catalytic region of porcine sGC beta(1) was sequenced, showing a 92% homology with the human sequence. This age-dependent increase in sGC expression correlated with increased vasorelaxant responses to the physiological sGC activator NO and to the exogenous sGC activator YC-1, but not to the membrane-permeable cGMP analog 8-bromoguanosine 3',5'-cyclic monophosphate. In conclusion, an increased expression of sGC in pulmonary conduit arteries from 2-wk-old compared with newborn piglets explains, at least partly, the age-dependent increase in the vasorelaxant response of NO and other activators of sGC.  相似文献   

12.
Inappropriate signaling conditions within bone marrow stromal cells (BMSCs) can lead to loss of BMSC survival, contributing to the loss of a proper micro-environmental niche for hematopoietic stem cells (HSCs), ultimately causing bone marrow failure. In the present study, we investigated the novel role of endogenous atrial natriuretic peptide (ANP) and the nitric oxide (NO)/cGMP/protein kinase G type-Iα (PKG-Iα) signaling pathway in regulating BMSC survival and proliferation, using the OP9 BMSC cell line commonly used for facilitating the differentiation of HSCs. Using an ANP-receptor blocker, endogenously produced ANP was found to promote cell proliferation and prevent apoptosis. NO donor SNAP (S-nitroso-N-acetylpenicillamine) at low concentrations (10 and 50 μM), which would moderately stimulate PKG activity, protected these BMSCs against spontaneous apoptosis. YC-1, a soluble guanylyl cyclase (sGC) activator, decreased the levels of apoptosis, similar to the cytoprotective effects of low-level NO. ODQ (1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one), which blocks endogenous NO-induced activation of sGC and thus lowers endogenous cGMP/PKG activity, significantly elevated apoptotic levels by 2.5- and three-fold. Pre-incubation with 8-Bromo-cGMP or ANP, which bypass the ODQ block, almost completely prevented the ODQ-induced apoptosis. A highly-specific PKG inhibitor, DT-3, at 20, and 30 μM, caused 1.5- and two-fold increases in apoptosis, respectively. ODQ and DT-3 also decreased BMSCs proliferation and colony formation. Small Interfering RNA gene knockdown of PKG-Iα increased apoptosis and decreased proliferation in BMSCs. The data suggest that basal NO/cGMP/PKG-Iα activity and autocrine ANP/cGMP/PKG-Iα are necessary for preserving OP9 cell survival and promoting cell proliferation and migration.  相似文献   

13.
Inhibition of soluble guanylate cyclase by ODQ   总被引:6,自引:0,他引:6  
The heme in soluble guanylate cyclases (sGC) as isolated is ferrous, high-spin, and 5-coordinate. [1H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one] (ODQ) has been used extensively as a specific inhibitor for sGC and as a diagnostic tool for identifying a role for sGC in signal transduction events. Addition of ODQ to ferrous sGC leads to a Soret shift from 431 to 392 nm and a decrease in nitric oxide (NO)-stimulated sGC activity. This Soret shift is consistent with oxidation of the ferrous heme to ferric heme. The results reported here further define the molecular mechanism of inhibition of sGC by ODQ. Addition of ODQ to the isolated sGC heme domain [beta1(1-385)] gave the same spectral changes as when sGC was treated with ODQ. EPR and resonance Raman spectroscopy was used to show that the heme in ODQ-treated beta1(1-385) is indeed ferric. Inhibition of the NO-stimulated sGC activity by ODQ is due to oxidation of the sGC heme and not to perturbation of the catalytic site, since the ODQ-treated sGC has the same basal activity as untreated sGC (68 +/- 12 nmol min(-)(1) mg(-)(1)). In addition, ODQ-oxidized sGC can be re-reduced by dithionite, and this re-reduced sGC has identical NO-stimulated activity as the original ferrous sGC. Oxidation of the sGC heme by ODQ is fast with a second-order rate constant of 8.5 x 10(3) M(-)(1) s(-)(1). ODQ can also oxidize hemoglobin, indicating that the reaction is not specific for the heme in sGC versus that in other hemoproteins.  相似文献   

14.
The effects of authentic nitric oxide (NO, 10(-6) M) and NO-donors such as sodium nitroprusside (SNP, 10(-5) M) and glyceryl trinitrate (GTN, 10(-4) M) on contractile force and free intracellular calcium level ([Ca2+]i) were studied on precontracted with high potassium chloride (KCl, 70 mM) isolated rings of rat tail artery. The sensitivity of contractile myofilaments to Ca2+ was measured using chemically permeabilized (alpha-toxin, beta-escin, Triton X-100) vascular rings. [Ca2+]i and contractile activity were measured simultaneously. The relationship of [Ca2+]i and tension developed was studied in endothelium-denuded rings and controlled calcium response was evaluated in both endothelium-denuded and permeabilized vascular rings. Both authentic NO and NO-donors decreased [Ca2+]i and high potassium-induced tension with a different time course. Inhibitor of soluble guanylyl cyclase (sGC) LY83583 (10(-5) M) did not affect SNP-induced relaxation whereas the other sGC inhibitor ODQ (10(-6) M) attenuated SNP-induced relaxation. Both inhibitors had no effect on NO- and SNP-induced reduction in [Ca2+]i. On the contrary, GTN induced neither relaxation nor decrease in [Ca2+]i on application of both LY83583 and ODQ. Tail artery rings permeabilized with alpha-toxin, beta-escin, but not with Triton X-100 were relaxed by authentic NO and NO-donors, but to a less extent than non-permeabilized rings. Dithioerythritol (DTE, 5 x 10(-3) M) that maintains sulfhydryl (SH) groups in reduced state preventing their nitrosylation attenuated NO-induced relaxation in both non-permeabilized and permeabilized tail artery rings. The cyclic heptapeptide mycrocystin-LR (MC-LR) (10(-5) M), an inhibitor of type 1 and 2A phosphatases, induced sustained increase in tension of beta-escin permeabilized rings in low Ca2+ (10(-8) M) solution. The tension was not affected by authentic NO and SNP. We conclude that authentic NO and SNP relax rat tail artery smooth muscle (SM) in the presence of inhibitors of sGC via cyclic guanosine monophosphate (cGMP)-independent pathway, whereas relaxation induced by GTN is inhibited. The data demonstrate that cGMP-dependent pathway in vascular smooth muscle is ubiquitous, but not the only way of relaxation induced by NO. NO can modulate vascular tone directly by reducing sensitivity of contractile myofilaments to [Ca2+]i and may involve activation of protein phosphatase(s).  相似文献   

15.
We have determined that the methanolic extract of L. caulescens (MELc) produced a significant vasodilator effect in a concentration-dependent and endothelium-dependent manner. This relaxation was blocked by N(omega)-nitro-L-arginine methylester (L-NAME), indicating that MELc vasodilator properties are endothelium mediated due to liberation of nitric oxide (NO). In this paper we aimed to corroborate its mode of action. MELc effects on noradrenaline (NA)-induced contraction in isolated rat aortic thoracic rings with endothelium (+E), in the presence of atropine (0.1 microM) and 1-H-[1,2,4]-oxadiazolo-[4,3a]-quinoxalin-1-one (ODQ, 1 microM) were conducted. MELc relaxation curve was significantly shifted to the right in the presence of ODQ and atropine, thus confirming that its mode of action is related with activation of nitric oxide synthase (NOS) and the consequent increment in NO formation. Bio-guided study of MELc allowed the isolation of ursolic acid (UA, 50 mg) and ursolic-oleanolic acids mixture [UA/OA (7:3), 450 mg]. The relaxant effect of UA (0.038-110 microM) was evaluated in functional experiments. UA induced a significant relaxation in a concentration- and endothelium-dependent manner (IC(50)=44.15 microM) and did not produce a vasorelaxant effect on contraction evoked by KCl (80 mM). In addition, NA-induced contraction was significantly displaced to the right by UA (30 microM). In order to determine its mode of action, UA-induced relaxant effect was evaluated in the presence of atropine (0.1 microM), indomethacin (10 microM), L-NAME (100 microM) and ODQ (1 microM). Relaxation was blocked by L-NAME and ODQ. On the other hand, UA (3 microM) provoked a significant displacement to the left in the relaxation curve induced by sodium nitroprusside (SNP, 0.32 nM to 0.1 microM), but it was not significant in the presence of Carbamoyl choline (carbachol, 1 nM to 10 microM). These results indicate that UA-mediated relaxation is endothelium dependent, probably due to NO release, and the consequent activation of vascular smooth muscle soluble guanylate cyclase (sGC), a signal transduction enzyme that forms the second messenger cGMP.  相似文献   

16.
The use of exogenous nitric oxide (NO) has been shown to alter the regulation of other endothelially derived mediators of vascular tone, such as endothelin-1 (ET-1). However, the interaction between NO and ET-1 appears to be complex and remains incompletely understood. One of the major actions of NO is the activation of soluble guanylate cyclase (sGC) with the subsequent generation of cGMP. Therefore, we undertook this study to test the hypothesis that NO regulates ET-1 production via the activation of the sGC/cGMP pathway. The results obtained indicated that the exposure of primary cultures of 4-wk-old ovine pulmonary arterial endothelial cells (4-wk PAECs) to the long-acting NO donor DETA NONOate induced both a dose- and time-dependent decrease in secreted ET-1. This decrease in ET-1 secretion occurred in the absence of changes in endothelin-converting enzyme-1 or sGC expression but in conjunction with a decrease in prepro-ET-1 mRNA. The changes in ET-1 release were inversely proportional to the cellular cGMP content. Furthermore, the NO-independent activator of sGC, YC-1, or treatment with a cGMP analog also produced significant decreases in ET-1 secretion. Conversely, pretreatment with the sGC inhibitor ODQ blocked the NO-induced decrease in ET-1. Therefore, we conclude that exposure of 4-wk PAECs to exogenous NO decreases secreted ET-1 resulting from the activation of sGC and increased cGMP generation.  相似文献   

17.
Cyclic nucleotides are relaxants of the airway smooth muscle, yet most of the available data were obtained in adult animals. The expression and activity of cyclases have been reported to be developmentally regulated in the lung, and little is known about the age-related changes in their bronchial muscle relaxation potential. We evaluated and compared the newborn and adult rat bronchial smooth muscle response to cyclic AMP- and GMP-dependent agonists in isometric mounted bronchial rings. In acetylcholine-precontracted bronchial muscle, the relaxant response to the cAMP agonist forskolin was not age dependent, but the relaxant response to the nitric oxide (NO) donor sodium nitroprusside (SNP) was significantly greater (P<0.01) in the newborn. To further evaluate the cGMP pathway, we stimulated the soluble guanylate cyclase (sGC) with the specific agonists BAY 41-2272 and YC-1. In keeping with the SNP dose-response curves, the sGC agonists significantly relaxed the newborn, but not the adult bronchial muscle. Protein expression of the sGC alpha1- and beta1-subunits were significantly lower (P<0.01) in the adult compared with the newborn bronchial tissue. Consistent with these results, the NO-stimulated sGC activity was significantly greater in the newborn compared with the adult (P<0.01). In conclusion, the bronchial smooth muscle cGMP-, but not cAMP-dependent, relaxant response is developmentally regulated and significantly reduced in the adult rat.  相似文献   

18.
Kandilci HB  Gumusel B  Lippton H 《Peptides》2008,29(8):1321-1328
The present study was designed to investigate the effects of rat intermedin/adrenomedullin2 (rIMD), an agonist for calcitonin-like calcitonin receptors (CRLR), on the isolated rat pulmonary arterial rings (PA). When PA were precontracted with 9,11-dideoxy-11alpha,9alpha-epoxymethanoprostaglandin F2alpha (U-46619), rIMD (10(-11) to 10(-6)M) induced concentration-dependent relaxation. The pulmonary vasorelaxant response (PVR) to rIMD in PA were completely inhibited by endothelium removal, NG-nitro-L-arginine-methyl-ester (L-NAME), l-N5-(1-iminoethyl)-ornithine hydrochloride (l-NIO) or 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). The PVR to rIMD were also significantly attenuated by a protein kinase inhibitor, Rp-8-bromo-beta-phenyl-1,N2-ethenoguanosine 3':5'-cyclic monophosphorothioate sodium salt hydrate (Rp-8-Br-PETcGMPs), cholera toxin and abolished by tetraethylammonium chloride (TEA), iberiotoxin and precontraction with KCl. The relaxant effect was not affected by 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536), (9S,10S,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy 1H diindolo [1,2,3fg:3',2',1'kl] pyrrolo [3,4-i] [1,6] benzodiazocine-10-carboxylic acid hexyl ester (KT5720), meclofenamate, glybenclamide or apamin. In parallel with SQ22536 and KT5720 results rolipram pretreatment did not alter the rIMD-induced PVR. The PVR to rIMD was potentialized either in the presence of zaprinast or sildenafil. Since the PVR to rIMD was also significantly reduced by rCGRP(8-37) and hADM(22-52) and rIMD(17-47), the present data suggest that rIMD produces PVR by acting in an indiscriminant manner on functional, and possibly different, endothelial CRLR. In conclusion, rIMD stimulates endothelial CRLR are coupled to release of nitric oxide, activation of guanylate cyclases, and promotion of hyperpolarization through large conductance calcium-activated K(+) channels in rat main PA.  相似文献   

19.
20.
胍丁胺对离体大鼠主动脉张力的影响及其受体机制   总被引:2,自引:1,他引:1  
Li Q  He RR 《生理学报》2001,53(2):133-136
采用离体血管环灌流方法,观察了胍丁胺(agmatine,Agm)对大鼠胸主动脉张力的影响,并探讨其受体机制,实验结果如下:(1)在苯肾上腺素PE,10^-6mol/L)引起血管预收缩的 基础上,Agm(10^-7-10^-2mol/L)剂量依赖性地舒张大鼠胸主动脉。(2)上述舒张反应在去除内皮和应用NOS抑制剂N^-G-mnitro-L-arginine methyl ester(L-NAME,0.5mmol/L)后依然存在,提示Agm的舒血管作用为非内皮依赖性,并无NO的参与。(3)在高Ca^2 (3mmol/L)引起血管预收缩的基础上,Agm也可剂量依赖性地舒张大鼠主动脉。(4)预先应用α2-肾上腺素能受体(α2-adrenergic receptor,α2-AR)和咪唑啉受体(IR)阻断剂idazoxan(10^-4mol/L)则可完全阻断Agm的上述作用。(5)应用α2-AR拮抗剂yohimbine(10^-4mol/L)可部分阻断Agm对大鼠主动脉的舒张反应,以上结果表明,Agm对大鼠主动脉血管的舒张作用是由α2-AR和IR共同介导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号