首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Previous studies have demonstrated that certain amino acid substitutions in the alpha two domain at positions 152 and 156 in the alpha two helix of the HLA-A2 molecule can affect presentation of the influenza virus matrix peptide M1 55-73 without abolishing binding of the M1 peptide. HLA-A2.1-restricted M1 55-73 peptide-specific CTL lines obtained from almost all HLA-A2.1+ individuals fail to recognize the M1 peptide presented by site-directed mutants of HLA-A2 that have either a Val----Ala or Val----Gln substitution at position 152 or a Leu----Trp substitution at position 156. Only one HLA-A2+ individual (donor Q66, HLA-A2,-B53,-B63) has been found who is able to generate a unique repertoire of HLA-A2-restricted M1 peptide-specific CTL that can recognize peptide presented by HLA-A2 mutants with either an Ala or Gln substitution at position 152 or a Trp substitution at position 156. These Q66 M1 peptide-specific CTL could be selected by stimulation with M1 peptide-pulsed transfectants that express the mutant HLA-A2 gene with the Trp substitution at 156. To determine if the presence of the unique CTL repertoire could be attributed to a variant HLA-A2 molecule in Q66, sequences were determined from polymerase chain reaction-amplified segments of the HLA-A2 RNA. Two different HLA-A2 genes were found expressed in Q66 cells: one is identical to HLA-A2.1 and the other is identical to HLA-A2.2F (Gln----Arg at position 43, Val----Leu at position 95, and Leu----Trp at position 156). These results demonstrate that a different CTL repertoire specific for HLA-A2 plus the M1 55-73 peptide is generated in an individual that expresses both HLA-A2.1 and HLA-A2.2F compared to individuals who express HLA-A2.1 alone, and that the unique repertoire can be selected by the presence of an HLA-A2 molecule with a single amino acid substitution at position 156.  相似文献   

2.
By using cytolytic T lymphocytes (CTL), the HLA-A2 serologic specificity may be divided into at least four subtypes designated as A2.1 to A2.4. The HLA-A2.4 antigen expressed by donor CLA is not recognized by allogeneic CTL specific for either A2.1, A2.2, or A2.3, but is indistinguishable from HLA-A2.1 by H-Y-specific, HLA-A2-restricted CTL and by isoelectric focusing. The structure of this HLA-A2.4 antigen was compared with the known structure of the main A2.1 subtype expressed on JY cells to establish the molecular basis for the immunologic differences between the two antigens. Comparative peptide mapping and radiochemical sequence analysis were used to establish that they differed by a single amino acid change: Phe at position 9 in HLA-A2.1 was replaced by Tyr in HLA-A2.4 from donor CLA. This position displays the highest variability score among all polymorphic residues of the class I HLA antigens. But its participation in the specific determinants recognized by CTL has not been previously established, because no other known HLA variant or H-2 mutant has been found to vary at this position. In addition, HLA-A2.4 from CLA is the only HLA-A2 subtype antigen that is identical to A2.1 in the segment spanning residues 147 to 157, a region in which all three A2.1, A2.2, and A2.3 antigens are different.  相似文献   

3.
Hemi-exon shuffling and site-directed mutagenesis have been used to determine which amino acid differences between HLA-A2.1 and HLA-A2.2 alter the CTL-defined epitopes on these two molecules. Two genes were constructed that encode novel molecules in which the effect of amino acid differences at residues 9, 43, and 95, or at residue 156 could be separately evaluated. Using both human and murine CTL that were specific for either HLA-A2.1 or HLA-A2.2, four types of epitopes were identified: 1) epitopes that were insensitive to substitutions at either residues 9, 43, and 95, or residue 156 but were lost when all four positions were changed; 2) epitopes that were dependent on the residues 9, 43, 95, but not residue 156; 3) epitopes that were dependent on residue 156, but not amino acid residues 9, 43, and 95; and 4) epitopes that were dependent on residues 9, 43, and 95, as well as amino acid residue 156. Overall, there was a roughly equal distribution of clones recognizing each of these types of epitopes. Additional molecules were constructed by hemi-exon shuffling between the HLA-A2.2 and HLA-A2.3 genes, and by site-directed mutagenesis, to analyze the epitopes recognized by two HLA-A2.2/A2.1 cross-reactive murine CTL that do not recognize HLA-A2.3. Although the epitopes recognized by these CTL were unaffected by changes occurring at residues 9, 43, and 95, or at residues 149, 152, and 156 alone, simultaneous changes in both of these regions acted in concert to destroy the epitopes. Both of the CTL recognized epitopes that were lost when substitutions were made at residues 9, 43, 95, 149, and 152. The epitope recognized by one of the CTL was also destroyed by the substitution of residues 9, 43, 95, 152, and 156. Overall, these results indicate that residues 9, 43, and 95, as well as residues in the alpha-helical region of the molecule, are all capable of contributing to the definition of the epitopes recognized by HLA-A2.1- and HLA-A2.2-specific CTL. They further indicate that some epitopes can be mapped to a particular region of the molecule, whereas other epitopes are formed through a complex interaction of residues in distant regions of the molecule.  相似文献   

4.
Specificity of peptide binding by the HLA-A2.1 molecule   总被引:6,自引:0,他引:6  
The HLA-A2 molecule contains a putative peptide binding site that is bounded by two alpha-helices and a beta-pleated sheet floor. Previous studies have demonstrated that the influenza virus matrix peptide M1 55-73 can sensitize target cells for lysis by HLA-A2.1-restricted virus-immune CTL and can induce CTL that can lyse virus-infected target cells. To assess the specificity of peptide binding by the HLA-A2.1 molecule, we examined the ability of seven variant M1 peptides to be recognized by a panel of M1 55-73 peptide-specific HLA-A2.1-restricted CTL lines. The results demonstrate that five out of the seven variant M1 55-73 peptides could be recognized by A2.1-restricted M1 55-73 peptide-specific CTL lines. The two variant peptides that were not recognized by any CTL could bind to HLA-A2.1 as indicated by their ability to compete for presentation of the M1 55-73 peptide. In addition, 5 of a panel of 24 unrelated peptides tested could also compete for M1 55-73 presentation by HLA-A2.1. One peptide derived from the sequence of a rotavirus protein could sensitize HLA-A2.1+ targets for lysis by M1 55-73 peptide-specific CTL. We conclude from these studies that: 1) the HLA-A2.1 molecule can bind a broad spectrum of peptides; 2) T cells selected for the ability to recognize one peptide plus a class I molecule can actually recognize an unrelated peptide presented by that same class I molecule; and 3) a stretch of three adjacent hydrophobic amino acids may be an important common feature of peptides that can bind to HLA-A2.1.  相似文献   

5.
HLA-A2.1 and HLA-A2.3, which differ from one another at residues 149, 152, and 156, can be distinguished by the mAb CR11-351 and many allogeneic and xenogeneic CTL. Site-directed mutagenesis was used to incorporate several different amino acid substitutions at each of these positions in HLA-A2.1 to evaluate their relative importance to serologic and CTL-defined epitopes. Recognition by mAb CR11-351 was completely lost when Thr but not Pro was substituted for Ala149. A model to explain this result based on the 3-dimensional structure of HLA-A2.1 is presented. In screening eight other mAb, only the substitutions of Pro for Val152 or Gly for Leu156 led to the loss of mAb binding. Because other non-conservative substitutions at these same positions had no effect, these results suggest that the loss of serologic epitopes is in many cases due to a more indirect effect on molecular conformation. Specificity analysis using 28 HLA-A2.1-specific alloreactive and xenoreactive CTL clones showed 19 distinct patterns of recognition. The epitopes recognized by alloreactive CTL clones demonstrated a pronounced effect by all substitutions at residue 152, including the very conservation substitution of Ala for Val. Overall, the most disruptive substitution at amino acid residue 152 was Pro, followed by Glu, Gln, and then Ala. In contrast, substitutions at 156 had little or no effect on allogeneic CTL recognition, and most clones tolerated either Gly, Ser, or Trp at this position. Similar results were seen using a panel of murine HLA-A2.1-specific CTL clones, except that substitutions at position 156 had a greater effect. The most disruptive substitution was Trp, followed by Ser and then Gly. In addition, when assessed on the entire panel of CTL, the effects of Glu and Gln substitutions at position 152 demonstrated that the introduction of a charge difference is no more disruptive than a comparable change in side chain structure that does not alter charge. Taken together, these results indicate that the effect of amino acid replacements at positions 152 and 156 on CTL-defined epitopes depends strongly on the nature of the substitution. Thus, considerable caution must be exercised in evaluating the significance of particular positions on the basis of single mutations. Nonetheless, the more extensive analysis conducted here indicates that there are differences among residues in the class I Ag "binding pocket," with residue 152 playing a relatively more important role in formation of allogeneic CTL-defined epitopes than residue 156.  相似文献   

6.
An influenza B virus nucleoprotein (BNP) peptide, residues 82-94, defined by limited sequence homology with an HLA-A2-restricted peptide from influenza A matrix protein, was recognized by HLA-A2-restricted CTL. Reciprocal inhibition of T cell recognition by the two peptides suggest that the BNP peptide may have lower avidity for HLA-A2 molecules than the matrix peptide. The interaction between this peptide and HLA-A2 was explored by studying the CTL recognition of BNP 82-94 presented by mutant HLA-A2 molecules. Mutations at residues 9, 99, 70, 74, 152 and 156 were found to abolish T cell recognition of the BNP peptide. These results were compared with results previously obtained with the influenza A matrix peptide and suggest that the two peptides bind differently in the peptide binding site.  相似文献   

7.
Amino acid substitutions were introduced into the 45 pocket of HLA-A2.1 to determine the potential role of this structurally defined feature of class I molecules in viral peptide and alloantigen presentation. The 45 pocket lies below the alpha 1-domain alpha-helix and is composed of five amino acids, three of which differ between HLA-A2.1 and HLA-B37. These two class I molecules have previously been shown to have largely non-overlapping peptide-binding specificities. Site-directed mutagenesis was used to replace the hydrophobic residues at positions 24, 45, and 67 in the 45 pocket of HLA-A2.1 with the hydrophilic amino acids found in these positions in HLA-B37. Thus, three single amino acid mutants were produced: 24A----S, 45 M----T, and 67V----S. These mutants were transfected into HMy2.C1R cells and assessed for their ability to present influenza virus matrix M1 57-68 peptide and HTLV-I Tax-1 2-25 peptide to HLA-A2.1-restricted, peptide-specific CTL and to present alloantigens to HLA-A2-allospecific CTL lines. Each of these substitutions in the 45 pocket produced a molecule that failed to present the M1 peptide to most M1 peptide-specific CTL lines. In contrast, none of these mutations affected presentation of the Tax-1 peptide to Tax-1-specific CTL lines, which indicates that these mutant HLA-A2 molecules can function in viral peptide presentation. Two of the three substitutions in the 45 pocket resulted in lack of recognition by a subset of HLA-A2 allospecific CTL lines. These results demonstrate that the amino acid side chains in the 45 pocket can strongly influence peptide presentation and suggest that the 45 pocket may play a role in determining peptide-binding specificity.  相似文献   

8.
HLA-A2 antigens are divided into four subtypes, designated A2.1 to A2.4, by the use of cytolytic T lymphocytes (CTL). The A2.4 subtype consists of a functionally heterogeneous group of variants that are not recognized by A2.1-, A2.2-, or A2.3-specific CTL lines while it is indistinguishable from A2.1 by isoelectric focusing. The structure of an A2.4 variant expressed on donor KNE has been established by comparative peptide mapping with A2.1 and radiochemical sequencing. It was found to differ from A2.1 by a single amino acid change of Cys to Tyr at position 99. This position is only moderately polymorphic and has not previously been found to vary in any other HLA or H-2 variants. The nature of the change is compatible with its generation by one-point mutation from A2.1. The only other previously characterized A2.4 variant, CLA, differs from A2.1 by a single amino acid replacement at position 9. Both residues 9 and 99 are located in homologous positions within the 1 and 2 domains, respectively. The results shown contribute to the molecular interpretation of the heterogeneity of CTL recognition within the HLA-A2.4 group of antigens.Abbreviations used in this paper CTL cytotoxic T lymphocytes - HPLC high performance liquid chromatography  相似文献   

9.
Site-directed mutagenesis of HLA-A2.1 has been used to identify the amino acid substitutions in HLA-A2.3 that are responsible for the lack of recognition of the latter molecule by the HLA-A2/A28 specific antibody, CR11-351, and by HLA-A2.1 specific CTL. Three genes were constructed that encoded HLA-A2 derivatives containing one of the amino acids known to occur in HLA-A2.3: Thr for Ala149, Glu for Val152, and Trp for Leu156. Three additional genes were constructed that encoded the different possible combinations of two amino acid substitutions at these residues. Finally, a gene encoding all three substitutions and equivalent to HLA-A2.3 was constructed. These genes were transfected into the class I negative, human cell line Hmy2.C1R. Analysis of this panel of cells revealed that recognition by the antibody CR11-351 was completely lost when Thr was substituted for Ala149, whereas substitutions at amino acids 152 and 156, either singly or in combination, had no effect on the binding of this antibody. The epitopes recognized by the allogeneic and xenogeneic HLA-A2.1 specific CTL clones used in this study were all affected by either one or two amino acid substitutions. Of those epitopes sensitive to single amino acid changes, none were affected by the substitution of Thr for Ala149, whereas all of them were affected by at least one of the substitutions of Glu for Val 152 or Trp for Leu156. Overall, amino acid residue 152 exerted a stronger effect on the epitopes recognized by HLA-A2.1 specific CTL than did residue 156. Of those epitopes affected only by multiple amino acid substitutions, double substitutions at residues 149 and 152 or at 152 and 156 resulted in a loss of recognition, whereas a mutant with substitutions at residues 149 and 156 was recognized normally. This reemphasizes the importance of residue 152 and indicates that residue 149 can affect epitope formation in conjunction with another amino acid substitution. These results are discussed in the context of current models for the recognition of alloantigens and in light of the recently published three-dimensional structure of the HLA-A2.1 molecule.  相似文献   

10.
The Wilms' tumor gene WT1 is overexpressed in most types of leukemias and various kinds of solid tumors, including lung and breast cancer, and participates in leukemogenesis and tumorigenesis. WT1 protein has been reported to be a promising tumor antigen in mouse and human. In the present study, a single amino-acid substitution, M-->Y, was introduced into the first anchor motif at position 2 of the natural immunogenic HLA-A*2402-restricted 9-mer WT1 peptide (CMTWNQMNL; a.a. 235-243). This substitution increased the binding affinity of the 9-mer WT1 peptide to HLA-A*2402 molecules from 1.82 x 10(-5) to 6.40 x 10(-7) M. As expected from the increased binding affinity, the modified 9-mer WT1 peptide (CYTWNQMNL) elicited WT1-specific cytotoxic T lymphocytes (CTL) more effectively than the natural 9-mer WT1 peptide from peripheral blood mononuclear cells (PBMC) of HLA-A*2402-positive healthy volunteers. CTL induced by the modified 9-mer WT1 peptide killed the natural 9-mer WT1 peptide-pulsed CIR-A*2402 cells, primary leukemia cells with endogenous WT1 expression and lung cancer cell lines in a WT1-specific HLA-A*2402-restricted manner. These results showed that this modified 9-mer WT1 peptide was more immunogenic for the induction of WT1-specific CTL than the natural 9-mer WT1 peptide, and that CTL induced by the modified 9-mer WT1 peptide could effectively recognize and kill tumor cells with endogenous WT1 expression. Therefore, cancer immunotherapy using this modified 9-mer WT1 peptide should provide efficacious treatment for HLA-A*2402-positive patients with leukemias and solid tumors.  相似文献   

11.
Antagonism of allospecific CTL by altered MHC ligands is a potential approach to specific immunomodulation of allogeneic T cell responses in acute graft rejection and graft-vs-host disease. In this study we have analyzed the capacity of peptide analogs of a natural HLA-B27-allospecific CTL epitope to antagonize direct alloreactivity. Alanine scanning demonstrated that positions 4, 5, and 7 of the peptide epitope were critical for allorecognition. A number of relatively conservative substitutions at each of these positions were then tested for their effect on allorecognition and antagonism. All substitutions at position 5 abrogated cytotoxicity. In contrast, a few changes at positions 4 and 7 were tolerated, indicating a limited flexibility of the allospecific CTL in recognition of peptide epitope variants. Most of the substitutions impairing cytotoxicity actually induced antagonism. However, whereas epitope variants with changes at positions 4 and 7 behaved as weak or intermediate antagonists, some of the variants with changes at position 5 antagonized CTL alloreactivity almost completely. The results in this study demonstrate for the first time that antagonism of direct class I-mediated alloreactivity can be achieved by variants of a natural allospecific peptide epitope.  相似文献   

12.
The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla_bind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be the first identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-gamma stimulation of blood CD8+ T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS.  相似文献   

13.
Multiple amino acid sequence differences distinguish individual HLA antigens. Those residues important in immune recognition events have not been defined. Recent studies have identified HLA-A2 structural variants that, although serologically indistinguishable from other HLA-A2 antigens, are recognized poorly, if at all, by HLA-A2-restricted, influenza virus-immune, or HLA-A2-specific alloimmune CTL. In this study we utilize double-label tryptic peptide comparisons performed by both reverse-phase HPLC and cation exchange chromatography, in conjunction with conventional and microsequence analysis, to characterize the HLA-A2 heavy chains derived from variant DK1. We detect a single tryptic peptide that distinguishes DK1 HLA-A2 from the predominant HLA-A2 heavy chain species. This peptide spans residues 147 to 157 in the second heavy chain domain, and carries substitutions at positions 149, 152, and 156. Residues in this segment of the polypeptide are also altered in another HLA-A2 variant, as well as one H-2Kb mutant. Thus, this segment appears to be critical in forming determinants important in CTL recognition of class I antigens in general. On the basis of these and other results, we suggest that in contrast to recognition by alloantibodies, a discrete region of class I antigens may be crucial for CTL recognition.  相似文献   

14.
HLA-A2.1-associated peptides, extracted from human melanoma cells, were used to study epitopes for melanoma-specific HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs) by epitope reconstitution, active peptide sequence characterization and synthetic peptide verification. CTL were generated from tumor-involved nodes by in vitro stimulation, initially with autologous melanoma cells and subsequently with allogeneic HLA-A2.1 positive melanoma cells. The CTLs could lyse autologous and aUogeneic HLA-A2. 1 positive melanomas, but not HLA-A2.1 negative melanomas or HLA-A2.1 positive non-melanomas. The lysis of melanomas could be inhibited by anti-CD3, anti-HLA class I and anti-HLA-A2.1 monoclonal antibodies. HLA-A2.1 molecules were purified from detergent-solubilized human melanoma cells by immunoaffinity column chromatography and further fractionated by reversed phase high performance liquid chromatography. The fractions were assessed for their ability to reconstitute melanoma-specific epitopes with HLA-A2.1 positive antigen-processing mutant T2 cells. Three reconstitution peaks were observed in lactate dehydrogenase release assay. Mass spectrometry and ion-exchange high performance liquid chromatography analysis were used to identify peptide epitopes. Peptides with a mass-to-charge ratio of 948 usually consist of nine amino acid residues. The data from reconstitution experiments confirmed that the synthetic peptides contained epitopes and that the peptides associated with HLA-A2.1 and recognized by melanoma-specific CTL were present in these different melanoma cells. These peptides could be potentially exploited in novel peptide-based antitumor vaccines in immunotherapy for CTL.  相似文献   

15.
The structure of an HLA-A2.4 functional variant (A2.4c) expressed on donor KLO has been examined by comparative peptide mapping with other HLA-A2 antigens of known structure and radiochemical sequencing. All the peptide differences between A2.4c and A2.1 could be accounted for by five amino acid changes at positions 9, 43, 66, 95, and 156. The nature of residues 9, 43, and 95 in A2.4c was determined by sequencing to be identical to those in A2.2Y. The nature of residue 156 in A2.4c was also assigned as identical to that in A2.2Y on the basis of the identity of the corresponding peptide in its chromatographic comparison with A2.2Y. Position 66 was unique to A2.4c. It was determined to be an Asn residue instead of the Lys present in all other HLA-A2 antigens of known structure. This was the only detected amino acid difference between A2.4c and A2.2Y. The results indicate that, from a structural point of view, A2.4c is most closely related to the A2.2 subtype antigens and not to other A2.4 antigens. The data are compatible with the assumption that A2.4c was derived from A2.2Y by a single point mutation event.  相似文献   

16.
The structure-function relationships in human class I HLA molecules have been examined by the analysis of two T cell-defined subtypes of HLA-A3 (A3.1 and A3.2). These subtypes differ by two amino acid residues that are located at positions 152 (GluA3.1 vs ValA3.2) and 156 (LeuA3.1 vs GlnA3.2). By the methods of site-directed mutagenesis and DNA-mediated gene transfer, mammalian cell transfectants have been produced that express only one of the above A3.2 amino acid residues at either position 152 or position 156. Previous studies using murine transfectants have shown that A3.1- and A3.2-expressing cells can be distinguished by A3.1-restricted type A influenza virus-specific CTL and A3.2-allospecific CTL and have implied that amino acid position 152 plays a key role in this specificity. To test whether these results were a function of the virus specificity, the alloantigen, or the cell type expressing the class I molecules, we have tested the recognition of human and murine cell transfectants by A3.1-restricted, A/JAP/305/57 and B/Ann Arbor-specific CTL and by A3.1- and A3.2-allospecific CTL. The results indicate that the Glu at position 152 is critical for recognition by all of the A3.1-restricted CTL populations tested and 15 of 16 of the A3.1-allospecific CTL populations tested. The A3.1 Leu at position 156 was sufficient for recognition by only one A3.1-allospecific CTL line. Substitution of the charged Glu residue for the polar Gln at position 156 of A3.2 affected recognition of some but not all A3.2-alloreactive CTL. These data demonstrate that the structural basis for epitopes that are recognized by almost all CTL that discriminate between A3.1 and A3.2 is primarily the amino acid at position 152. The implications of these data for Ag presentation and CTL recognition are discussed.  相似文献   

17.
Alloreactive CTL raised against HLA-A2 Ag often display heterogeneous recognition of HLA-A2+ target cells. This heterogeneity has been found to reflect structural polymorphism among the corresponding target Ag, thus defining HLA-A2 subtypes. A previous study (van der Poel et al. 1986. Human Immunol. 16:247) established the existence of a new HLA-A2.4 variant, A2-SCHU, that was distinguished from A*0206 (A2.4a) by HLA-A2-specific alloreactive CTL. The same CTL subdivided HLA-A2.1 Ag into two subgroups. In the present study, the molecular basis of this heterogeneity has been examined by double-label comparative peptide mapping analysis of differentially recognized A2.1 and A2.4 Ag. In addition, we have determined the complete sequence of polymerase chain reaction-amplified full length cDNA from A2-SCHU. The results show that: 1) A2-SCHU is indistinguishable from A*0206 by peptide mapping; 2) the cDNA sequence of A2-SCHU is identical to that of A*0206; and 3) two differentially recognized A2.1 Ag are both indistinguishable from A*0201 by comparative peptide mapping. These results indicate that differential recognition by alloreactive CTL can occur among structurally identical class I HLA Ag and suggest that allorecognition by such CTL may involve corecognition of endogenous peptides, presumably derived from polymorphic proteins.  相似文献   

18.
We report on molecular dynamics simulations of major histocompatibility complex (MHC)-peptide complexes. Class I MHC molecules play an important role in cellular immunity by presenting antigenic peptides to cytotoxic T cells. Pockets in the peptide-binding groove of MHC molecules accommodate anchor side chains of the bound peptide. Amino acid substitutions in MHC affect differences in the peptide-anchor motifs. HLA-A*0217, human MHC class I molecule, differs from HLA-A*0201 only by three amino acid residues substitutions (positions 95, 97, and 99) at the floor of the peptide-binding groove. A*0217 showed a strong preference for Pro at position 3 (p3) and accepted Phe at p9 of its peptide ligands, but these preferences have not been found in other HLA-A2 ligands. To reveal the structural mechanism of these observations, the A*0217-peptide complexes were simulated by 1000 ps molecular dynamics at 300 K with explicit solvent molecules and compared with those of the A*0201-peptide complexes. We examined the distances between the anchor side chain of the bound peptide and the pocket, and the rms fluctuations of the bound peptides and the HLA molecules. On the basis of the results from our simulations, we propose that Pro at p3 serves as an optimum residue to lock the dominant anchor residue (p9) tightly into pocket F and to hold the peptide in the binding groove, rather than a secondary anchor residue fitting optimally the complementary pocket. We also found that Phe at p9 is used to occupy the space created by replacements of three amino acid residues at the floor within the groove. These findings would provide a novel understanding in the peptide-binding motifs of class I MHC molecules.  相似文献   

19.
20.
The structures of alphabeta TCRs bound to complexes of class I MHC molecules and peptide show that the TCRs make multiple contacts with the alpha1 and alpha2 helixes of the MHC. Previously we have shown that the A6 TCR in complex with the HLA-A2/Tax peptide has 15 contact sites on HLA-A2. Single amino acid mutagenesis of these contact sites demonstrated that mutation of only three amino acids clustered on the alpha1 helix (R65, K66, A69) disrupted recognition by the A6 TCR. In the present study we have asked whether TCRs that recognize four other peptides presented by HLA-A2 interact with the MHC in identical, similar, or different patterns as the A6 TCR. Mutants K66A and Q155A had the highest frequency of negative effects on lysis. A subset of peptide-specific CTL also selectively recognized mutants K66A or Q155A in the absence of exogenous cognate peptides, indicating that these mutations affected the presentation of endogenous peptide/HLA-A2 complexes. These findings suggest that most HLA-A2-restricted TCRs recognize surfaces on the HLA-A2/peptide complex that are dependent upon the side chains of K66 and Q155 in the central portion of the peptide binding groove. Crystallographic structures of several peptide/HLA-A2 structures have shown that the side chains of these critical amino acids that make contact with the A6 TCR also contact the bound peptide. Collectively, our results indicate that the generalized effects of changes at these critical amino acids are probably due to the fact that they can be directly contacted by TCRs as well as influence the binding and presentation of the bound peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号