首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There has long been interest in the influence of predators on prey populations, although most predator–prey studies have focused on prey species that are targets of directed predator searching. Conversely, few have addressed depredation that occurs after incidental encounters with predators. We tested two predictions stemming from the hypothesis that nest predation on two sympatric freshwater turtle species whose nests are differentially prone to opportunistic detection—painted turtles (Chrysemys picta) and snapping turtles (Chelydra serpentina)—is incidental: (1) predation rates should be density independent, and (2) individual predators should not alter their foraging behavior after encountering nests. After monitoring nest survival and predator behavior following nest depredation over 2 years, we confirmed that predation by raccoons (Procyon lotor), the primary nest predators in our study area, matched both predictions. Furthermore, cryptic C. picta nests were victimized with lower frequency than more detectable C. serpentina nests, and nests of both species were more vulnerable in human-modified areas where opportunistic nest discovery is facilitated. Despite apparently being incidental, predation on nests of both species was intensive (57% for painted turtles, 84% for snapping turtles), and most depredations occurred within 1 day of nest establishment. By implication, predation need not be directed to affect prey demography, and factors influencing prey crypsis are drivers of the impact of incidental predation on prey. Our results also imply that efforts to conserve imperiled turtle populations in human-modified landscapes should include restoration of undisturbed conditions that are less likely to expose nests to incidental predators.  相似文献   

2.
Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous work reproduced microhabitat‐predation patterns experienced by Yellow Warblers (Setophaga petechia) in the Mono Lake basin at experimental nests without parents, suggesting that these patterns were driven by predator ecology rather than predator interactions with parents. In this study, we further explored effects of post‐initiation parental behavior (nest defense and attendance) on predation risk by comparing natural versus experimental patterns related to territory density, seasonal timing of nest initiation, and nest age. Rates of parasitism by Brown‐headed Cowbirds (Molothrus ater) were high in this system (49% nests parasitized), so we also examined parasitism‐predation relationships. Natural nest predation rates (NPR) correlated negatively with breeding territory density and nonlinearly (U‐shaped relationship) with nest‐initiation timing, but experimental nests recorded no such patterns. After adjusting natural‐nest data to control for these differences from experimental nests other than the presence of parents (e.g., defining nest failure similarly and excluding nestling‐period data), we obtained similar results. Thus, parents were necessary to produce observed patterns. Lower natural NPR compared with experimental NPR suggested that parents reduced predation rates via nest defense, so this parental behavior or its consequences were likely correlated with density or seasonal timing. In contrast, daily predation rates decreased with nest age for both nest types, indicating this pattern did not involve parents. Parasitized nests suffered higher rates of partial predation but lower rates of complete predation, suggesting direct predation by cowbirds. Explicit behavioral research on parents, predators (including cowbirds), and their interactions would further illuminate mechanisms underlying the density, seasonal, and nest age patterns we observed.  相似文献   

3.
As saltmarsh habitat continues to disappear, understanding the factors that influence the population dynamics of saltmarsh breeding birds is an important step in the conservation of these declining species. Using 5 yrs (2011–2015) of demographic data, we evaluated and compared apparent adult survival and nest survival of Seaside (Ammodramus maritimus) and Saltmarsh (A. caudacutus) sparrows at the Edwin B. Forsythe National Wildlife Refuge in New Jersey, USA. We determined the effect of site management history (unditched vs. ditched marshes) on adult and nest survival to aid in prioritizing future management or restoration actions. Apparent adult survival (61.6%, 95% CI: 52.5–70.0%) of Seaside Sparrows averaged > 1.5 times greater than that of Saltmarsh Sparrows (39.9%, 95% CI: 34.0–46.2%). Nest survival and predation and flooding rates did not differ between species, and predation was the primary cause of nest failure for both species. Apparent adult survival and nest survival did not differ between unditched and ditched marshes for either species, indicating that marsh ditching history may not affect the quality of breeding habitat for these species. Because predation was the primary cause of nest failure for both species in New Jersey, we suggest that future studies should focus on identifying predator communities in salt marshes and the potential for implementing predator‐control programs to limit population declines.  相似文献   

4.
ABSTRACT The main cause of nest mortality for most bird species is predation and nest survival rates often vary in relation to time‐specific variables. Few investigators have examined time‐specific patterns of nest survival in Neotropical birds, and most such studies have focused on tropical and subtropical species. To better understand age‐related patterns of nest survival, we studied nest survival of Red‐crested Cardinals (Paroaria coronata, Thraupidae) in a south‐temperate forest in Argentina. We modeled daily nest survival rates (DSR) using program MARK. We examined the relationship between nest age and nest survival rate, controlling for the effects of physical characteristics of nest sites and progression of the breeding season. We monitored 367 nests for a total of 4018 exposure days. We found that DSR increased with nest age and was higher in small isolated patches than in large continuous patches of forests. The increase of DSR with nest age could be a consequence of more vulnerable nests being predated early in the nesting cycle or a result of parents defending nests more vigorously as nestlings age because of their increasing reproductive value. Open areas of grassland that surrounded the small isolated patches of forests in our study may have been a barrier to predator movements, possibly explaining the lower predation rates. Nest survival rates in our study were lower than those reported for tropical or Nearctic temperate birds, but similar to those reported in other studies of Neotropical temperate birds. Reasons for the low nest survival rates of Neotropical temperate birds remain unclear, and additional studies of predator communities are needed to help elucidate this topic.  相似文献   

5.
Avian nest success often varies seasonally and because predation is the primary cause of nest failure, seasonal variation in predator activity has been hypothesized to explain seasonal variation in nest success. Despite the fact that nest predator communities are often diverse, recent evidence from studies of snakes that are nest predators has lent some support to the link between snake activity and nest predation. However, the strength of the relationship has varied among studies. Explaining this variation is difficult, because none of these studies directly identified nest predators, the link between predator activity and nest survival was inferred. To address this knowledge gap, we examined seasonal variation in daily survival rates of 463 bird nests (of 17 bird species) and used cameras to document predator identity at 137 nests. We simultaneously quantified seasonal activity patterns of two local snake species (N = 30 individuals) using manual (2136 snake locations) and automated (89,165 movements detected) radiotelemetry. Rat snakes (Pantherophis obsoletus), the dominant snake predator at the site (~28% of observed nest predations), were most active in late May and early June, a pattern reported elsewhere for this species. When analyzing all monitored nests, we found no link between nest predation and seasonal activity of rat snakes. When analyzing only nests with known predator identities (filmed nests), however, we found that rat snakes were more likely to prey on nests during periods when they were moving the greatest distances. Similarly, analyses of all monitored nests indicated that nest survival was not linked to racer activity patterns, but racer‐specific predation (N = 17 nests) of filmed nests was higher when racers were moving the greatest distances. Our results suggest that the activity of predators may be associated with higher predation rates by those predators, but that those effects can be difficult to detect when nest predator communities are diverse and predator identities are not known. Additionally, our results suggest that hand‐tracking of snakes provides a reliable indicator of predator activity that may be more indicative of foraging behavior than movement frequency provided by automated telemetry systems.  相似文献   

6.
Invasive mammalian predators are efficient at driving native animal declines. The red fox (Vulpes vulpes) kills millions of endemic reptiles in Australia each year. In areas of south-eastern Australia, the eastern long-necked turtle (Chelodina longicollis) and Murray River turtle (Emydura macquarii) have declined by more than 50%. High rates of nest predation by foxes limit the recruitment of young turtles in these populations, but previous methods of fox control have been ineffective at protecting turtle nests. Here, we tested the effectiveness of plastic mesh for protecting artificial turtle nests from predation by foxes, in the mid-Murray catchment, Victoria. We also tested whether protecting a large number of artificial nests in a given area encourages foxes to give up foraging following predictions from giving-up density theory. We made a series of plots, each containing 32 artificial turtle nests. In each plot, we covered a percentage (0%, 25%, 50%, 81% or 100%) of the nests with either 1 or 2 sheets of plastic mesh. We used remote cameras to photograph and identify any predator that attacked nests in the plots. The cameras also allowed us to estimate the amount of time a fox was visible on each plot, as a metric of how much effort foxes expended on protected nests. Nest survival rate was not increased by either 1 or 2 sheets of mesh, and increasing the number of protected nests on a plot did not reveal a giving-up density (GUD) value for fox foraging behaviour. Our study demonstrates that plastic mesh is not effective for protecting artificial turtle nests from foxes in this region.  相似文献   

7.
Nest survival is critical to breeding in birds and plays an important role in life‐history evolution and population dynamics. Studies evaluating the proximate factors involved in explaining nest survival and the resulting temporal patterns are biased in favor of temperate regions. Yet, such studies are especially pertinent to the tropics, where nest predation rates are typically high and environmental conditions often allow for year‐round breeding. To tease apart the effects of calendar month and year, population‐level breeding activity and environmental conditions, we studied nest survival over a 64‐month period in equatorial, year‐round breeding red‐capped larks Calandrella cinerea in Kenya. We show that daily nest survival rates varied with time, but not in a predictable seasonal fashion among months or consistently among years. We found negative influences of flying invertebrate biomass and rain on nest survival and higher survival of nests when nests were more abundant, which suggests that nest predation resulted from incidental predation. Although an increase in nest predation is often attributed to an increase in nest predators, we suggest that in our study, it may be caused by altered predator activity resulting from increased activity of the primary prey, invertebrates, rather than activity of the red‐capped larks. Our results emphasize the need to conduct more studies in Afro‐tropical regions because proximate mechanisms explaining nest predation can be different in the unpredictable and highly variable environments of the tropics compared with the relatively predictable seasonal changes found in temperate regions. Such studies will aid in better understanding of the environmental influences on life‐history variation and population dynamics in birds.  相似文献   

8.
Density‐dependent population regulation is observed in many taxa, and understanding the mechanisms that generate density dependence is especially important for the conservation of heavily‐managed species. In one such system, North American waterfowl, density dependence is often observed at continental scales, and nest predation has long been implicated as a key factor driving this pattern. However, despite extensive research on this topic, it remains unclear if and how nest density influences predation rates. Part of this confusion may have arisen because previous studies have studied density‐dependent predation at relatively large spatial and temporal scales. Because the spatial distribution of nests changes throughout the season, which potentially influences predator behavior, nest survival may vary through time at relatively small spatial scales. As such, density‐dependent nest predation might be more detectable at a spatially‐ and temporally‐refined scale and this may provide new insights into nest site selection and predator foraging behavior. Here, we used three years of data on nest survival of two species of waterfowl, mallards and gadwall, to more fully explore the relationship between local nest clustering and nest survival. Throughout the season, we found that the distribution of nests was consistently clustered at small spatial scales (?50–400 m), especially for mallard nests, and that this pattern was robust to yearly variation in nest density and the intensity of predation. We demonstrated further that local nest clustering had positive fitness consequences – nests with closer nearest neighbors were more likely to be successful, a result that is counter to the general assumption that nest predation rates increase with nest density.  相似文献   

9.
Black‐throated Sparrows (Amphispiza bilineata) are common breeding birds throughout the desert regions of North America and can be considered nest‐site generalists. Information about how spatial (e.g., vegetation) and temporal factors influence nest survival of these sparrows is lacking throughout their range. Our objective was to examine the spatial and temporal factors associated with nest survival of Black‐throated Sparrows at the nest and nest‐patch scales in the predator‐rich environment of the northern Chihuahuan Desert of New Mexico. We used a logistic‐exposure model fit within a Bayesian framework to model the daily survival probability of Black‐throated Sparrow nests. Predation was the leading cause of nest failure, accounting for 86% of failed nests. We found evidence of negative associations between nest survival and both vegetative cover above nests and shrub density within 5 m of nests. We found no support for other habitat covariates, but did find strong evidence that daily survival rate was higher earlier in the breeding season and during the egg‐laying stage. A decline in nest survival later in the breeding period may be due to increased predator activity due to warmer ambient temperatures, whereas lower survival during the incubation and nestling stages could be a result of increased activity at nests. A generalist approach to nest‐site selection may be an adaptive response to the presence of a diverse assemblage of nest predators that results in the reduced influence of spatial factors on nest survival for Black‐throated Sparrows.  相似文献   

10.
The impact of increasing vertebrate predator numbers on bird populations is widely debated among the general public, game managers and conservationists across Europe. However, there are few systematic reviews of whether predation limits the population sizes of European bird species. Views on the impacts of predation are particularly polarised in the UK, probably because the UK has a globally exceptional culture of intensive, high‐yield gamebird management where predator removal is the norm. In addition, most apex predators have been exterminated or much depleted in numbers, contributing to a widely held perception that the UK has high numbers of mesopredators. This has resulted in many high‐quality studies of mesopredator impacts over several decades. Here we present results from a systematic review of predator trends and abundance, and assess whether predation limits the population sizes of 90 bird species in the UK. Our results confirm that the generalist predators Red Fox (Vulpes vulpes) and Crows (Corvus corone and C. cornix) occur at high densities in the UK compared with other European countries. In addition, some avian and mammalian predators have increased numerically in the UK during recent decades. Despite these high and increasing densities of predators, we found little evidence that predation limits populations of pigeons, woodpeckers and passerines, whereas evidence suggests that ground‐nesting seabirds, waders and gamebirds can be limited by predation. Using life‐history characteristics of prey species, we found that mainly long‐lived species with high adult survival and late onset of breeding were limited by predation. Single‐brooded species were also more likely to be limited by predation than multi‐brooded species. Predators that depredate prey species during all life stages (i.e. from nest to adult stages) limited prey numbers more than predators that depredated only specific life stages (e.g. solely during the nest phase). The Red Fox and non‐native mammals (e.g. the American Mink Neovison vison) were frequently identified as numerically limiting their prey species. Our review has identified predator–prey interactions that are particularly likely to result in population declines of prey species. In the short term, traditional predator‐management techniques (e.g. lethal control or fencing to reduce predation by a small number of predator species) could be used to protect these vulnerable species. However, as these techniques are costly and time‐consuming, we advocate that future research should identify land‐use practices and landscape configurations that would reduce predator numbers and predation rates.  相似文献   

11.
Nest predation is the leading cause of nesting failure. Thus it is a crucial area of research needed to inform conservation management and to understand the life history of birds. I surveyed the literature to review the identity of nest predators and the factors affecting nest predation, in Australia using 177 studies. Overall, 94 nest predators were identified when incorporating artificial nests, 69 without. Using only natural nests, the Pied Currawong Strepera graculina was the most frequently reported nest predator. Five nest predators, including Pied Currawong, depredated 40% of the prey measured by the number of prey species taken. Yet, 60% of predation was carried out by the other 64 species, which included by the order of importance birds, mammals, reptiles, frogs and ants. Predation at cup and dome nests was more frequently reported than at burrow, ground and hollow nests. Only 28% of predators were observed at both artificial and natural nests suggesting artificial nests have limited, but not negligible, ability as tools for identifying predators. There was a highly significant and positive correlation between predator and prey masses. The predator prey mass ratio was calculated with a mean 0.25 and a median 0.22, a result closely matching with the proportional size of prey taken by raptors. The finding that predator size is proportional to prey opens a pathway for more life history and conservation research.  相似文献   

12.
Predation strongly influences reproductive behaviours because reproducing individuals must balance mortality risks to themselves and to their offspring. In many freshwater turtles, the nest predation risk decreases with nest distance from water, whereas the predation risk to females increases farther from water. To determine whether predation pressure influences the distance from water at which female turtles nest, we measured predation pressure on nesting females and on nests, as well as the distances of nests to water, in two populations of painted turtles. Using models, we found that female survival in both populations was high and did not vary with distance from water. Nest survival was also uncorrelated with nest distance to water, although it was significantly lower than adult survival in both populations and was only 1.2% in one population. Our results suggest that nest sites are not predictably safe from predators. Instead, turtles may hedge their bets by nesting over a wide range of distances from water because any distance is risky for nests and no distance is particularly risky for the nesting female. We suggest that other factors, such as suitable incubation conditions and/or post‐emergence hatchling survival, probably play a larger role than predation in driving nest‐site choice in painted turtles.  相似文献   

13.

Several alien predator species have spread widely in Europe during the last five decades and pose a potential enhanced risk to native nesting ducks and their eggs. Because predation is an important factor limiting Northern Hemisphere duck nest survival, we ask the question, do alien species increase the nest loss risk to ground nesting ducks? We created 418 artificial duck nests in low densities around inland waters in Finland and Denmark during 2017–2019 and monitored them for seven days after construction using wildlife cameras to record whether alien species visit and prey on the nests more often than native species. We sampled various duck breeding habitats from eutrophic agricultural lakes and wetlands to oligotrophic lakes and urban environments. The results differed between habitats and the two countries, which likely reflect the local population densities of the predator species. The raccoon dog (Nyctereutes procyonoides), an alien species, was the most common mammalian nest visitor in all habitats and its occurrence reduced nest survival. Only in wetland habitats was the native red fox (Vulpes vulpes) an equally common nest visitor, where another alien species, the American mink (Neovison vison), also occurred among nest visitors. Although cautious about concluding too much from visitations to artificial nests, these results imply that duck breeding habitats in Northern Europe already support abundant and effective alien nest predators, whose relative frequency of visitation to artificial nests suggest that they potentially add to the nest predation risk to ducks over native predators.

  相似文献   

14.
Antarctic terns have to co‐exist in a limited space with their major nest predator, the skuas. We conducted artificial nest experiments to evaluate the roles of parental activity, nest location and nest and egg crypsis in this simple predator–prey system. Predation on artificial (inactive) nests was higher in traditional nesting sites than in sites previously not occupied by terns, which suggests that skuas memorized past tern breeding sites. Predation on artificial nests in inactive colonies was higher than in active (defended) colonies. Parental defense reduced predation in colonies to the level observed in artificial nests placed away from colonies. This suggests that communal defense can balance the costs of attracting predators to active colonies. Within colonies, predation was marginally higher on experimental eggs put in real nests than on bare ground. Although it seems that the presence of a nest is costly in terms of increased predation, reductions in nest size might be constrained by the need for protective nest structures and/or balanced by opposing selection on nest size. Predation did not differ markedly between artificial (quail) and real tern eggs. A simultaneous prey choice experiment showed that the observed predation rates reflected egg/nest detectability, rather than discrimination of egg types. In summary, nesting terns probably cannot avoid being detected, and they cannot defend their nest by attending them. Yet, by temporarily leaving the nest, they can defend it through communal predator mobbing, and at the same time, they can benefit from crypsis of unattended nest and eggs.  相似文献   

15.
In Europe, lowland wet grasslands have become increasingly fragmented, and populations of waders in these fragments are subject to unsustainably high levels of nest predation. Patches of taller vegetation in these landscapes can support small mammals, which are the main source of prey for many predators. Providing such patches of habitat could potentially reduce levels of nest predation if predators preferentially target small mammals. However, predator attraction to patches of taller vegetation for foraging, shelter, perching and/or nesting could also result in local increases in predation rates, as a consequence of increased predator densities or spill‐over foraging into the surrounding area. Here we assess the influence of taller vegetation on wader nest predation rates, and the feasibility of managing vegetation structure to alter predator impacts. Between 2005 and 2011, the nest distribution and hatching success of Northern Lapwings Vanellus vanellus, which nest in the open, and Common Redshanks Tringa totanus, which conceal their nests in vegetation, were measured on a 487‐ha area of wet grassland in eastern England that is primarily managed for breeding waders. Predation rates of Lapwing nests increased significantly with distance from patches of taller vegetation, and decreased with increasing area of taller vegetation within 1 km of the nest, whereas neither variable influenced Redshank nest predation probability. These findings suggest that the distribution and activity of nest predators in lowland wet grassland landscapes may be influenced by the presence and distribution of areas of taller vegetation. For Lapwings at least, there may therefore be scope for landscape‐scale management of vegetation structure to influence levels of predation in these habitats.  相似文献   

16.
1. Predation plays an integral role in many community interactions, with the number of predators and the rate at which they consume prey (i.e. their functional response) determining interaction strengths. Owing to the difficulty of directly observing predation events, attempts to determine the functional response of predators in natural systems are limited. Determining the forms that predator functional responses take in complex systems is important in advancing understanding of community interactions. 2. Prey survival has a direct relationship to the functional response of their predators. We employed this relationship to estimate the functional response for bald eagle Haliaeetus leucocepalus predation of Canada goose Branta canadensis nests. We compared models that incorporated eagle abundance, nest abundance and alternative prey presence to determine the form of the functional response that best predicted intra-annual variation in survival of goose nests. 3. Eagle abundance, nest abundance and the availability of alternative prey were all related to predation rates of goose nests by eagles. There was a sigmoidal relationship between predation rate and prey abundance and prey switching occurred when alternative prey was present. In addition, predation by individual eagles increased as eagle abundance increased. 4. A complex set of interactions among the three species examined in this study determined survival rates of goose nests. Results show that eagle predation had both prey- and predator-dependent components with no support for ratio dependence. In addition, indirect interactions resulting from the availability of alternative prey had an important role in mediating the rate at which eagles depredated nests. As a result, much of the within-season variation in nest survival was due to changing availability of alternative prey consumed by eagles. 5. Empirical relationships drawn from ecological theory can be directly integrated into the estimation process to determine the mechanisms responsible for variation in observed survival rates. The relationship between predator functional response and prey survival offers a flexible and robust method to advance our understanding of predator-prey interactions in many complex natural systems where prey populations are marked and regularly visited.  相似文献   

17.
MASAOKI TAKAGI 《Ibis》2012,154(3):621-625
Appropriate nest‐site selection is one of the most important ways to minimize loss of reproductive investment due to predation. We determined the environmental characteristics associated with nest predation during the incubation and nestling periods of arboreal nesting Bull‐headed Shrikes on the oceanic Minami‐Daito Island where the predator community has low species diversity and includes only three introduced mammals: Ship Rat Rattus rattus, Japanese Weasel Mustela itatsi and Feral Cat Felis catus. Egg predation declined with increasing grassland cover around nests, whereas nestling predation declined with increasing nest concealment and nest height. Our results suggest that effective nest‐site characteristics for avoiding nest predation differ during the incubation and nestling periods and are dependent on the predator species and their search strategies, at least in habitats with low predator species diversity.  相似文献   

18.
Apparent competition between prey is hypothesized to occur more frequently in environments with low densities of preferred prey, where predators are forced to forage for multiple prey items. In the arctic tundra, numerical and functional responses of predators to preferred prey (lemmings) affect the predation pressure on alternative prey (goose eggs) and predators aggregate in areas of high alternative prey density. Therefore, we hypothesized that predation risk on incidental prey (shorebird eggs) would increase in patches of high goose nest density when lemmings were scarce. To test this hypothesis, we measured predation risk on artificial shorebird nests in quadrats varying in goose nest density on Bylot Island (Nunavut, Canada) across three summers with variable lemming abundance. Predation risk on artificial shorebird nests was positively related to goose nest density, and this relationship was strongest at low lemming abundance when predation risk increased by 600% as goose nest density increased from 0 to 12 nests ha?1. Camera monitoring showed that activity of arctic foxes, the most important predator, increased with goose nest density. Our data support our incidental prey hypothesis; when preferred prey decrease in abundance, predator mediated apparent competition via aggregative response occurs between the alternative and incidental prey items.  相似文献   

19.
Mistletoes are preferred nesting sites for many bird species in a range of habitats. However, no studies have examined the use of mistletoes by nesting birds in the semi‐arid savannah. We studied nesting in mistletoe and its role in determining nesting success in the Grey Go‐away‐bird in south‐west Zimbabwe. We modelled the effects of mistletoe, mistletoe abundance, nest microclimate, concealment and nest height on daily survival rates (DSR) using program MARK. A constant survival model was best fitted for the Grey Go‐away‐bird suggesting a constant nest survival rate across the nesting period. Mistletoe nests had lower DSR than nests placed elsewhere in the canopy. Mistletoe abundance and nest height had a positive association with DSR whereas visibility distance, microclimate and concealment were negatively associated with DSR. Overall, survival for nests in mistletoe was 22.1% compared with 90.5% for nests in other substrates over the 50‐day nesting period. In conclusion, the low nest survival in mistletoe suggests either that the factors used to select mistletoe as nest sites by these birds are poor predictors of nest success or that nesting in mistletoe may be maladaptive.  相似文献   

20.
Nest predation is a major limiting factor for songbird productivity, including the federally endangered black-capped vireo (Vireo atricapilla). However, nest predator information is limited across the range of the black-capped vireo in central and southwest Texas. We monitored nests in 3 counties within the breeding range of black-capped vireos in Texas in 2008 and 2009 and used continuous recording digital video cameras to record predation events. We video-monitored 115 nests and documented 39 predation events by at least 9 predator species. Overall, we observed avian species (51%, n = 39), specifically brown-headed cowbirds (Molothrus ater; n = 12), and snakes (26%, n = 39) as the most frequent nest predators. The estimated daily nest survival rate during the laying and incubation stage was 0.985 (95% CI = 0.967–0.993) and 0.944 (95% CI = 0.921–0.961) during the nestling stage. In addition, we analyzed models of predator-specific nest predation using multinomial logistic regression. Effect of nest height on predation rate was significant for snakes; nest stage was significant for nests depredated by avian predators. By identifying and increasing our knowledge of nest predators and vegetation characteristics associated with greater risk of predation in multiple locations within the black-capped vireo's range, we can effectively manage habitat to benefit recovery efforts of the species. © 2012 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号