首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 768 毫秒
1.

Background

The abundance of new genomic data provides the opportunity to map the location of gene duplication and loss events on a species phylogeny. The first methods for mapping gene duplications and losses were based on a parsimony criterion, finding the mapping that minimizes the number of duplication and loss events. Probabilistic modeling of gene duplication and loss is relatively new and has largely focused on birth-death processes.

Results

We introduce a new maximum likelihood model that estimates the speciation and gene duplication and loss events in a gene tree within a species tree with branch lengths. We also provide an, in practice, efficient algorithm that computes optimal evolutionary scenarios for this model. We implemented the algorithm in the program DrML and verified its performance with empirical and simulated data.

Conclusions

In test data sets, DrML finds optimal gene duplication and loss scenarios within minutes, even when the gene trees contain sequences from several hundred species. In many cases, these optimal scenarios differ from the lca-mapping that results from a parsimony gene tree reconciliation. Thus, DrML provides a new, practical statistical framework on which to study gene duplication.
  相似文献   

2.
Sayyari  Erfan  Mirarab  Siavash 《BMC genomics》2016,17(10):783-113

Background

Inferring species trees from gene trees using the coalescent-based summary methods has been the subject of much attention, yet new scalable and accurate methods are needed.

Results

We introduce DISTIQUE, a new statistically consistent summary method for inferring species trees from gene trees under the coalescent model. We generalize our results to arbitrary phylogenetic inference problems; we show that two arbitrarily chosen leaves, called anchors, can be used to estimate relative distances between all other pairs of leaves by inferring relevant quartet trees. This results in a family of distance-based tree inference methods, with running times ranging between quadratic to quartic in the number of leaves.

Conclusions

We show in simulated studies that DISTIQUE has comparable accuracy to leading coalescent-based summary methods and reduced running times.
  相似文献   

3.

Background

Horizontal gene transfer (HGT), a process of acquisition and fixation of foreign genetic material, is an important biological phenomenon. Several approaches to HGT inference have been proposed. However, most of them either rely on approximate, non-phylogenetic methods or on the tree reconciliation, which is computationally intensive and sensitive to parameter values.

Results

We investigate the locus tree inference problem as a possible alternative that combines the advantages of both approaches. We present several algorithms to solve the problem in the parsimony framework. We introduce a novel tree mapping, which allows us to obtain a heuristic solution to the problems of locus tree inference and duplication classification.

Conclusions

Our approach allows for faster comparisons of gene and species trees and improves known algorithms for duplication inference in the presence of polytomies in the species trees. We have implemented our algorithms in a software tool available at https://github.com/mciach/LocusTreeInference.
  相似文献   

4.

Motivation

Species tree estimation from gene trees can be complicated by gene duplication and loss, and “gene tree parsimony” (GTP) is one approach for estimating species trees from multiple gene trees. In its standard formulation, the objective is to find a species tree that minimizes the total number of gene duplications and losses with respect to the input set of gene trees. Although much is known about GTP, little is known about how to treat inputs containing some incomplete gene trees (i.e., gene trees lacking one or more of the species).

Results

We present new theory for GTP considering whether the incompleteness is due to gene birth and death (i.e., true biological loss) or taxon sampling, and present dynamic programming algorithms that can be used for an exact but exponential time solution for small numbers of taxa, or as a heuristic for larger numbers of taxa. We also prove that the “standard” calculations for duplications and losses exactly solve GTP when incompleteness results from taxon sampling, although they can be incorrect when incompleteness results from true biological loss. The software for the DP algorithm is freely available as open source code at https://github.com/smirarab/DynaDup.
  相似文献   

5.

Background

Maximum parsimony phylogenetic tree reconciliation is an important technique for reconstructing the evolutionary histories of hosts and parasites, genes and species, and other interdependent pairs. Since the problem of finding temporally feasible maximum parsimony reconciliations is NP-complete, current methods use either exact algorithms with exponential worst-case running time or heuristics that do not guarantee optimal solutions.

Results

We offer an efficient new approach that begins with a potentially infeasible maximum parsimony reconciliation and iteratively “repairs” it until it becomes temporally feasible.

Conclusions

In a non-trivial number of cases, this approach finds solutions that are better than those found by the widely-used Jane heuristic.
  相似文献   

6.

Background

The gene duplication (GD) problem seeks a species tree that implies the fewest gene duplication events across a given collection of gene trees. Solving this problem makes it possible to use large gene families with complex histories of duplication and loss to infer phylogenetic trees. However, the GD problem is NP-hard, and therefore, most analyses use heuristics that lack any performance guarantee.

Results

We describe the first integer linear programming (ILP) formulation to solve instances of the gene duplication problem exactly. With simulations, we demonstrate that the ILP solution can solve problem instances with up to 14 taxa. Furthermore, we apply the new ILP solution to solve the gene duplication problem for the seed plant phylogeny using a 12-taxon, 6, 084-gene data set. The unique, optimal solution, which places Gnetales sister to the conifers, represents a new, large-scale genomic perspective on one of the most puzzling questions in plant systematics.

Conclusions

Although the GD problem is NP-hard, our novel ILP solution for it can solve instances with data sets consisting of as many as 14 taxa and 1, 000 genes in a few hours. These are the largest instances that have been solved to optimally to date. Thus, this work can provide large-scale genomic perspectives on phylogenetic questions that previously could only be addressed by heuristic estimates.
  相似文献   

7.

Background

Long branch attraction (LBA) is a problem that afflicts both the parsimony and maximum likelihood phylogenetic analysis techniques. Research has shown that parsimony is particularly vulnerable to inferring the wrong tree in Felsenstein topologies. The long branch extraction method is a procedure to detect a data set suffering from this problem so that Maximum Likelihood could be used instead of Maximum Parsimony.

Results

The long branch extraction method has been well cited and used by many authors in their analysis but no strong validation has been performed as to its accuracy. We performed such an analysis by an extensive search of the branch length search space under two topologies of six taxa, a Felsenstein-like topology and Farris-like topology. We also examine a long branch shortening method.

Conclusions

The long branch extraction method seems to mask the majority of the search space rendering it ineffective as a detection method of LBA. A proposed alternative, the long branch shortening method, is also ineffective in predicting long branch attraction for all tree topologies.
  相似文献   

8.

Background

Isometric gene tree reconciliation is a gene tree/species tree reconciliation problem where both the gene tree and the species tree include branch lengths, and these branch lengths must be respected by the reconciliation. The problem was introduced by Ma et al. in 2008 in the context of reconstructing evolutionary histories of genomes in the infinite sites model.

Results

In this paper, we show that the original algorithm by Ma et al. is incorrect, and we propose a modified algorithm that addresses the problems that we discovered. We have also improved the running time from \(O(N^2)\) to \(O(N\log N)\), where N is the total number of nodes in the two input trees. Finally, we examine two new variants of the problem: reconciliation of two unrooted trees and scaling of branch lengths of the gene tree during reconciliation of two rooted trees.

Conclusions

We provide several new algorithms for isometric reconciliation of trees. Some questions in this area remain open; most importantly extensions of the problem allowing for imprecise estimates of branch lengths.
  相似文献   

9.

Background

For a combination of reasons (including data generation protocols, approaches to taxon and gene sampling, and gene birth and loss), estimated gene trees are often incomplete, meaning that they do not contain all of the species of interest. As incomplete gene trees can impact downstream analyses, accurate completion of gene trees is desirable.

Results

We introduce the Optimal Tree Completion problem, a general optimization problem that involves completing an unrooted binary tree (i.e., adding missing leaves) so as to minimize its distance from a reference tree on a superset of the leaves. We present OCTAL, an algorithm that finds an optimal solution to this problem when the distance between trees is defined using the Robinson–Foulds (RF) distance, and we prove that OCTAL runs in \(O(n^2)\) time, where n is the total number of species. We report on a simulation study in which gene trees can differ from the species tree due to incomplete lineage sorting, and estimated gene trees are completed using OCTAL with a reference tree based on a species tree estimated from the multi-locus dataset. OCTAL produces completed gene trees that are closer to the true gene trees than an existing heuristic approach in ASTRAL-II, but the accuracy of a completed gene tree computed by OCTAL depends on how topologically similar the reference tree (typically an estimated species tree) is to the true gene tree.

Conclusions

OCTAL is a useful technique for adding missing taxa to incomplete gene trees and provides good accuracy under a wide range of model conditions. However, results show that OCTAL’s accuracy can be reduced when incomplete lineage sorting is high, as the reference tree can be far from the true gene tree. Hence, this study suggests that OCTAL would benefit from using other types of reference trees instead of species trees when there are large topological distances between true gene trees and species trees.
  相似文献   

10.

Background

Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses.

Results

Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions.

Conclusions

Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.
  相似文献   

11.

Background

The history of gene families—which are equivalent to event-labeled gene trees—can be reconstructed from empirically estimated evolutionary event-relations containing pairs of orthologous, paralogous or xenologous genes. The question then arises as whether inferred event-labeled gene trees are biologically feasible, that is, if there is a possible true history that would explain a given gene tree. In practice, this problem is boiled down to finding a reconciliation map—also known as DTL-scenario—between the event-labeled gene trees and a (possibly unknown) species tree.

Results

In this contribution, we first characterize whether there is a valid reconciliation map for binary event-labeled gene trees T that contain speciation, duplication and horizontal gene transfer events and some unknown species tree S in terms of “informative” triples that are displayed in T and provide information of the topology of S. These informative triples are used to infer the unknown species tree S for T. We obtain a similar result for non-binary gene trees. To this end, however, the reconciliation map needs to be further restricted. We provide a polynomial-time algorithm to decide whether there is a species tree for a given event-labeled gene tree, and in the positive case, to construct the species tree and the respective (restricted) reconciliation map. However, informative triples as well as DTL-scenarios have their limitations when they are used to explain the biological feasibility of gene trees. While reconciliation maps imply biological feasibility, we show that the converse is not true in general. Moreover, we show that informative triples neither provide enough information to characterize “relaxed” DTL-scenarios nor non-restricted reconciliation maps for non-binary biologically feasible gene trees.
  相似文献   

12.

Aims

Our goals were (1) to determine whether tree species diversity affects nutrient (N, P and K) cycling, and (2) to assess whether there is competition for these nutrients between microbial biomass and trees.

Methods

We measured nutrient resorption efficiency by trees, nutrient contents in leaf litterfall, decomposition rates of leaf litter, nutrient turnover in decomposing leaf litter, and plant-available nutrients in the soil in mono-species stands of beech, oak, hornbeam and lime and in mixed-species stands, each consisting of three of these species.

Results

Cycling of nutrients through leaf litter input and decomposition were influenced by the types of tree species and not simply by tree species diversity. Trees and microbial biomass were competing strongly for P, less for K and only marginally for N. Such competition was most pronounced in mono-species stands of beech and oak, which had low nutrient turnover in their slow decomposing leaf litter, and less in mono-species stands of hornbeam and lime, which had high nutrient turnover in their fast decomposing leaf litter.

Conclusions

The low soil P and K availability in beech stands, which limit the growth of beech at Hainich, Germany, were alleviated by mixing beech with hornbeam and lime. These species-specific effects on nutrient cycling and soil nutrient availability can aid forest management in improving productivity and soil fertility.
  相似文献   

13.
14.

Background

Several methods have been developed for the accurate reconstruction of gene trees. Some of them use reconciliation with a species tree to correct, a posteriori, errors in gene trees inferred from multiple sequence alignments. Unfortunately the best fit to sequence information can be lost during this process.

Results

We describe GATC, a new algorithm for reconstructing a binary gene tree with branch length. GATC returns optimal solutions according to a measure combining both tree likelihood (according to sequence evolution) and a reconciliation score under the Duplication-Transfer-Loss (DTL) model. It can either be used to construct a gene tree from scratch or to correct trees infered by existing reconstruction method, making it highly flexible to various input data types. The method is based on a genetic algorithm acting on a population of trees at each step. It substantially increases the efficiency of the phylogeny space exploration, reducing the risk of falling into local minima, at a reasonable computational time. We have applied GATC to a dataset of simulated cyanobacterial phylogenies, as well as to an empirical dataset of three reference gene families, and showed that it is able to improve gene tree reconstructions compared with current state-of-the-art algorithms.

Conclusion

The proposed algorithm is able to accurately reconstruct gene trees and is highly suitable for the construction of reference trees. Our results also highlight the efficiency of multi-objective optimization algorithms for the gene tree reconstruction problem. GATC is available on Github at: https://github.com/UdeM-LBIT/GATC.
  相似文献   

15.

Background

Recent coevolutionary analysis has considered tree topology as a means to reduce the asymptotic complexity associated with inferring the complex coevolutionary interrelationships that arise between phylogenetic trees. Targeted algorithmic design for specific tree topologies has to date been highly successful, with one recent formulation providing a logarithmic space complexity reduction for the dated tree reconciliation problem.

Methods

In this work we build on this prior analysis providing a further asymptotic space reduction, by providing a new formulation for the dynamic programming table used by a number of popular coevolutionary analysis techniques. This model gives rise to a sub quadratic running time solution for the dated tree reconciliation problem for selected tree topologies, and is shown to be, in practice, the fastest method for solving the dated tree reconciliation problem for expected evolutionary trees. This result is achieved through the analysis of not only the topology of the trees considered for coevolutionary analysis, but also the underlying structure of the dynamic programming algorithms that are traditionally applied to such analysis.

Conclusion

The newly inferred theoretical complexity bounds introduced herein are then validated using a combination of synthetic and biological data sets, where the proposed model is shown to provide an \(O(\sqrt{n})\) space saving, while it is observed to run in half the time compared to the fastest known algorithm for solving the dated tree reconciliation problem. What is even more significant is that the algorithm derived herein is able to guarantee the optimality of its inferred solution, something that algorithms of comparable speed have to date been unable to achieve.
  相似文献   

16.
17.

Background

Why do some groups of physically linked genes stay linked over long evolutionary periods? Although several factors are associated with the formation of gene clusters in eukaryotic genomes, the particular contribution of each feature to clustering maintenance remains unclear.

Results

We quantify the strength of the proposed factors in a yeast lineage. First we identify the magnitude of each variable to determine linkage conservation by using several comparator species at different distances to Saccharomyces cerevisiae. For adjacent gene pairs, in line with null simulations, intergenic distance acts as the strongest covariate. Which of the other covariates appear important depends on the comparator, although high co-expression is related to synteny conservation commonly, especially in the more distant comparisons, these being expected to reveal strong but relatively rare selection. We also analyze those pairs that are immediate neighbors through all the lineages considered. Current intergene distance is again the best predictor, followed by the local density of essential genes and co-regulation, with co-expression and recombination rate being the weakest predictors. The genome duplication seen in yeast leaves some mark on linkage conservation, as adjacent pairs resolved as single copy in all post-whole genome duplication species are more often found as adjacent in pre-duplication species.

Conclusion

Current intergene distance is consistently the strongest predictor of synteny conservation as expected under a simple null model. Other variables are of lesser importance and their relevance depends both on the species comparison in question and the fate of the duplicates following genome duplication.
  相似文献   

18.

Background

The continuous flow of EST data remains one of the richest sources for discoveries in modern biology. The first step in EST data mining is usually associated with EST clustering, the process of grouping of original fragments according to their annotation, similarity to known genomic DNA or each other. Clustered EST data, accumulated in databases such as UniGene, STACK and TIGR Gene Indices have proven to be crucial in research areas from gene discovery to regulation of gene expression.

Results

We have developed a new nucleotide sequence matching algorithm and its implementation for clustering EST sequences. The program is based on the original CLU match detection algorithm, which has improved performance over the widely used d2_cluster. The CLU algorithm automatically ignores low-complexity regions like poly-tracts and short tandem repeats.

Conclusion

CLU represents a new generation of EST clustering algorithm with improved performance over current approaches. An early implementation can be applied in small and medium-size projects. The CLU program is available on an open source basis free of charge. It can be downloaded from http://compbio.pbrc.edu/pti
  相似文献   

19.

Background

Measuring similarities between tree structured data is important for analysis of RNA secondary structures, phylogenetic trees, glycan structures, and vascular trees. The edit distance is one of the most widely used measures for comparison of tree structured data. However, it is known that computation of the edit distance for rooted unordered trees is NP-hard. Furthermore, there is almost no available software tool that can compute the exact edit distance for unordered trees.

Results

In this paper, we present a practical method for computing the edit distance between rooted unordered trees. In this method, the edit distance problem for unordered trees is transformed into the maximum clique problem and then efficient solvers for the maximum clique problem are applied. We applied the proposed method to similar structure search for glycan structures. The result suggests that our proposed method can efficiently compute the edit distance for moderate size unordered trees. It also suggests that the proposed method has the accuracy comparative to those by the edit distance for ordered trees and by an existing method for glycan search.

Conclusions

The proposed method is simple but useful for computation of the edit distance between unordered trees. The object code is available upon request.
  相似文献   

20.

Background and aims

Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. We aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat microtopography, and changes in environmental conditions across the growing season and throughout the peat profile.

Methods

We quantified fine-root peak standing crop and growth using non-destructive minirhizotron technology over a two-year period, focusing on the dominant woody species in the bog: Picea mariana, Larix laricina, Rhododendron groenlandicum, and Chamaedaphne calyculata.

Results

The fine roots of trees and shrubs were concentrated in raised hummock microtopography, with more tree roots associated with greater tree densities and a unimodal peak in shrub roots at intermediate tree densities. Fine-root growth tended to be seasonally dynamic, but shallowly distributed, in a thin layer of nutrient-poor, aerobic peat above the growing season water table level.

Conclusions

The dynamics and distribution of fine roots in this forested ombrotrophic bog varied across space and time in response to biological, edaphic, and climatic conditions, and we expect these relationships to be sensitive to projected environmental changes in northern peatlands.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号