首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The free-living amoeboflagellate Naegleria fowleri is the causative agent of primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system. In the United States, the disease is generally acquired while swimming and diving in freshwater lakes and ponds. In addition to swimming, exposure to N. fowleri and the associated disease can occur by total submersion in bathwater or small backyard wading pools. In the present study, swipe samples and residual pipe water from homes in Arizona were examined for N. fowleri by nested PCR due to the death of two previously healthy children from PAM. Since neither child had a history of swimming in a freshwater lake or pond prior to the onset of disease symptoms, the domestic water supply was the suspected source of infection. Of 19 samples collected from bathroom and kitchen pipes and sink traps, 17 samples were positive for N. fowleri by PCR. A sample from a Micro-Wynd II filter was obtained by passing water from bathtubs through the filter. Organisms attached to the filter also tested positive by PCR. The two samples that tested negative for N. fowleri were one that was obtained from a kitchen sink trap and a swipe sample from the garbage disposal of one home.  相似文献   

2.
Free-living Naegleria fowleri amoebae cause primary amoebic meningoencephalitis (PAM). Because of the apparent conflict between their ubiquity and the rarity of cases observed, we sought to develop a model characterizing the risk of PAM after swimming as a function of the concentration of N. fowleri. The probability of death from PAM as a function of the number of amoebae inhaled is modeled according to results obtained from animals infected with amoeba strains. The calculation of the probability of inhaling one or more amoebae while swimming is based on a double hypothesis: that the distribution of amoebae in the water follows a Poisson distribution and that the mean quantity of water inhaled while swimming is 10 ml. The risk of PAM for a given concentration of amoebae is then obtained by summing the following products: the probability of inhaling n amoebae x the probability of PAM associated with inhaling these n amoebae. We chose the lognormal model to assess the risk of PAM because it yielded the best analysis of the studentized residuals. Nonetheless, the levels of risk thereby obtained cannot be applied to humans without correction, because they are substantially greater than those indicated by available epidemiologic data. The curve was thus adjusted by a factor calculated with the least-squares method. This provides the PAM risk in humans as a function of the N. fowleri concentration in the river. For example, the risk is 8.5 x 10(-8) at a concentration of 10 N. fowleri amoebae per liter.  相似文献   

3.
Naegleria fowleri, a free-living amoeba, is the causative agent of primary amoebic meningoencephalitis, a fatal human disease of the central nervous system often contracted after swimming in fresh water. Identifying sites contaminated by N. fowleri is important in order to prevent the disease. An Enzyme-Linked ImmunoSorbent Assay (ELISA) has been developed for the specific identification of N. fawleri in primary cultures of environmental water samples. Of 939 samples isolated from artificially heated river water and screened by ELISA, 283 were positive. These results were subsequently confirmed by isoelectric focusing, the established reference method. A sensitivity of 97.4% and a specificity of 97% were obtained. These results indicate that this ELISA method is reliable and can be considered as a powerful tool for the detection of N. fowleri in environmental water samples.  相似文献   

4.
The genus Naegleria is comprised of a group of free-living ameboflagellates found in diverse habitats worldwide. Over 30 species have been isolated from soil and water but only Naegleria fowleri (N. fowleri) has been associated with human disease. Naegleria fowleri causes primary amebic meningoencephalitis (PAM), a fatal disease of the central nervous system. The pathogenesis of PAM and the role of host immunity to N. fowleri are poorly understood. Strategies for combating infection are limited because disease progression is rapid and N. fowleri has developed strategies to evade the immune system. The medical significance of these free-living ameboflagellates should not be underestimated, not only because they are agents of human disease, but also because they can serve as reservoirs of pathogenic bacteria.  相似文献   

5.
The free-living amoeboflagellate Naegleria fowleri is the only species infects humans world widely distributed. N. fowleri is the causative agent of very rare but severe brain infection called primary amoebic meningo-encephalitis (PAM), a rapidly fatal disease of the central nervous system mainly in immuno-compromised individuals. N. fowleri infects human through the entry of the nose, and it happens when human swimming or diving in warm freshwater, such as lakes, rivers and swimming pools. The disease is acute, and patients often die within 5–10 days and before the infectious agent can be diagnosed. Limited information is available about the existence of pathogenic N. fowleri, in Egypt, so the present of N. fowleri is an important public health. In the present study, we examined hundred water, dust and swap samples collected from 5 swimming pools in Cairo, Egypt. Based on morphological characteristics of trophozoite and cyst, flagellation test 56% of thermo-tolerant Naegleria like amoeba was detected. The incidence of thermo-tolerant free-living amoebae reached 84, 80and 70% from water, cotton swap and dust samples, respectively at cultivation temperature of 45 °C. The highest occurrence of thermo-tolerant amoebae were recorded in summer (100 & 87.5%) while the lowest one were recorded in winter (58 & 37.5%) in both water and dust samples, respectively. In swap samples, the highest occurrence of thermo-tolerant free-living amoeba was recorded in both summer and spring (100%), while the lowest one was recorded in winter (40%). N. fowleri was performed on 24 samples from a total of 56 (42.2%) samples which are positive by culture. Nested PCR using Mp2Cl5 gene primers that is unique to N. fowleri was carried out. The N. fowleri specific primer showed band at 166 bp against 24 of 56 (42.2%) samples. The majority of positive samples unique to N. fowleri was detected in water samples followed by swap samples and finally dust samples 14 of 24 (58%), 7 of 24 (29%), 3 of 24 (13%), respectively. In conclusion, swimming pools water may be the source of Naegleria invasion. The use of molecular methods to identify free-living amoebae N. fowleri could provide a more rapid means to diagnose infections caused by those amoebae.  相似文献   

6.
Abstract In this study we tried to detect DNA Naegleria fowleri in artificially contaminated environmental samples, with or without sediments, containing 104 cysts of this pathogenic amoeba. We used two assays to extract DNA from samples: first, direct DNA extraction, which gave positive results only for water samples without sediment; second, DNA extraction after sample incubation on agar plates, which allowed us to remove amoeba growing out of the sediments, and which gave positive results for all samples, even those initially with sediments (5, 500 or 500 mg). Thus, this molecular identification appears as a powerful tool to investigate N. fowleri growth in environmental samples.  相似文献   

7.
Serum samples of 1,054 inhabitants of Bohemia (Czechoslovakia) were examined by means of indirect haemagglutination test with antigens from Naegleria fowleri and Acanthamoeba culbertsoni. With N. fowleri antigen the frequency of positive reactions did not exceed 3.5 per cent in lowest serum dilutions only. N. fowleri could not be identified as a possible causative agent in any chronic form of disease in man. Significant accumulation of positive findings with A. culbertsoni antigen was observed in hepatitis A patients and convalescents (52 per cent). The potential interpretations of this phenomenon are discussed.  相似文献   

8.
A species-specific PCR for the identification of Naegleria fowleri was developed. In sensitivity studies, 10 trophozoites or cysts and 1 trophozoite or cyst could be detected after 35 and 45 cycles, respectively. In conjunction with a rapid DNA isolation method, this PCR was used to identify N. fowleri directly from primary cultures of environmental samples.  相似文献   

9.
The destructive action of chlorine on the pathogenic Naegleria fowleri and Acanthamoeba culbertsoni, the nonpathogenic N. gruberi, and an avirulent Acanthamoeba isolate was investigated. N fowleri is somewhat more sensitive to chlorine than N. gruberi, whereas the two Acanthamoeba strains are very resistant. This study yields information needed for the destruction of amoebic cysts in drinking water and swimming pools. It also gives some explanation for the occurence of Acanthamoeba strains in these waters.  相似文献   

10.
To determine whether artificial heating of water by power plant discharges facilitates proliferation of the pathogenic free-living amoebae that cause primary amoebic meningoencephalitis, water samples (250 ml) were taken from discharges within 3,000 feet (ca. 914.4 m) of power plants and were processed for amoeba culture. Pathogenic Naegleria fowleri grew out of water samples from two of five lakes and rivers in Florida and from one of eight man-made lakes in Texas. Pathogenic N. fowleri did not grow from water samples taken from cooling towers and control lakes, the latter of which had no associated power plants. The identification of N. fowleri was confirmed by pathogenicity in mice and by indirect immunofluorescence analyses, by using a specific antiserum.  相似文献   

11.
Inhalation of water contaminated with Naegleria fowleri may lead to a potentially fatal infection of the central nervous system known as primary amebic meningoencephalitis (PAM). Amphotericin B (AMB), an antifungal drug, is the only agent with established clinical efficacy in the treatment of PAM, though therapy with this drug is not always effective and has been associated with adverse effects on the kidneys and other organs. We investigated the activity of various therapeutic agents against N. fowleri in an attempt to identify other useful agents for treating PAM. Several of these agents exhibited in vitro activity against the Lee (M67) strain of N. fowleri. The minimum inhibitory concentrations of these agents were 0.1 microg/ml (ketoconazole), 1 microg/ml (liposomal AMB), and 10 microg/ml (minocycline, quinupristin-dalfopristin, and trifluoperazine). Other agents had a minimum inhibitory concentration > 10 microg/ml (linezolid) or > 100 microg/ml (rifampin). In a mouse model of PAM, none of the untreated control mice survived, whereas the survival of treated animals was 50% (quinupristin-dalfopristin), 30% (ketoconazole and liposomal AMB), 20% (trifluoperazine), and 10% (linezolid and minocycline). Further studies are needed to ascertain whether these agents have synergistic activity with AMB in vitro and in vivo.  相似文献   

12.
In order to estimate the rate of microsporidia, cryptosporidia and giardia contamination of swimming pools, sequential samples of water were collected during a one-year period in six different swimming pools in Paris, France. Fourty-eight samples were submitted to filtrations. Eluates were examined for microsporidia using polymerase chain reaction (PCR) and for cryptosporidia and giardia using immunofluorescence staining. One of 48 specimens was positive for microsporidia. Using DNA sequence analysis, unknown microsporidia species were identified, which were close to an insect microsporidia Endoreticulatus schubergi. One sample was positive for cryptosporidia and none were positive for giardia. This study shows a low level of swimming pool water contamination by microsporidia, cryptosporidia or giardia, demonstrating the efficacy of cleaning filtration and disinfection procedures used in French swimming pools.  相似文献   

13.
Naegleria fowleri is the etiologic agent of primary amoebic meningoencephalitis (PAM). Proteases have been suggested to be involved in tissue invasion and destruction during infection. We analyzed and compared the complete protease profiles of total crude extract and conditioned medium of both pathogenic N. fowleri and non-pathogenic Naegleria gruberi trophozoites. Using SDS-PAGE, we found differences in the number and molecular weight of proteolytic bands between the two strains. The proteases showed optimal activity at pH 7.0 and 35 degrees C for both strains. Inhibition assays showed that the main proteolytic activity in both strains is due to cysteine proteases although serine proteases were also detected. Both N. fowleri and N. gruberi have a variety of different protease activities at different pH levels and temperatures. These proteases may allow the amoebae to acquire nutrients from different sources, including those from the host. Although, the role of the amoebic proteases in the pathogenesis of PAM is not clearly defined, it seems that proteases and other molecules of the parasite as well as those from the host, could be participating in the damage to the human central nervous system.  相似文献   

14.
Samples from therapeutic swimming pools and mud basins were cultured for free-living amoebae. Seven strains of pathogenic Naegleria species were isolated. Although some of the strains were as virulent as Naegleria fowleri, the etiological agent of primary amoebic meningoencephalitis, they were identified as Naegleria australiensis with the indirect fluorescent-antibody technique. The virulence of the isolates for mice corresponded with the cytopathic effect for Vero cells. The N. australiensis strains were isolated from swimming pools with water temperatures ranging from 32 to 35 degrees C and from mud with temperatures from 25 to 43 degrees C. The presence of pathogenic N. australiensis in the swimming pools did not correlate with bacterial indicators.  相似文献   

15.
Samples from therapeutic swimming pools and mud basins were cultured for free-living amoebae. Seven strains of pathogenic Naegleria species were isolated. Although some of the strains were as virulent as Naegleria fowleri, the etiological agent of primary amoebic meningoencephalitis, they were identified as Naegleria australiensis with the indirect fluorescent-antibody technique. The virulence of the isolates for mice corresponded with the cytopathic effect for Vero cells. The N. australiensis strains were isolated from swimming pools with water temperatures ranging from 32 to 35 degrees C and from mud with temperatures from 25 to 43 degrees C. The presence of pathogenic N. australiensis in the swimming pools did not correlate with bacterial indicators.  相似文献   

16.
Aims: To evaluate the feasibility of identifying viruses from aircraft cabin air, we evaluated whether respiratory viruses trapped by commercial aircraft air filters can be extracted and detected using a multiplex PCR, bead‐based assay. Methods and Results: The ResPlex II assay was first tested for its ability to detect inactivated viruses applied to new filter material; all 18 applications of virus at a high concentration were detected. The ResPlex II assay was then used to test for 18 respiratory viruses on 48 used air filter samples from commercial aircraft. Three samples tested positive for viruses, and three viruses were detected: rhinovirus, influenza A and influenza B. For 33 of 48 samples, internal PCR controls performed suboptimally, suggesting sample matrix effect. Conclusion: In some cases, influenza and rhinovirus RNA can be detected on aircraft air filters, even more than 10 days after the filters were removed from aircraft. Significance and Impact of the Study: With protocol modifications to overcome PCR inhibition, air filter sampling and the ResPlex II assay could be used to characterize viruses in aircraft cabin air. Information about viruses in aircraft could support public health measures to reduce disease transmission within aircraft and between cities.  相似文献   

17.
Free-living Naegleria fowleri amoebae cause primary amoebic meningoencephalitis (PAM). Because of the apparent conflict between their ubiquity and the rarity of cases observed, we sought to develop a model characterizing the risk of PAM after swimming as a function of the concentration of N. fowleri. The probability of death from PAM as a function of the number of amoebae inhaled is modeled according to results obtained from animals infected with amoeba strains. The calculation of the probability of inhaling one or more amoebae while swimming is based on a double hypothesis: that the distribution of amoebae in the water follows a Poisson distribution and that the mean quantity of water inhaled while swimming is 10 ml. The risk of PAM for a given concentration of amoebae is then obtained by summing the following products: the probability of inhaling n amoebae × the probability of PAM associated with inhaling these n amoebae. We chose the lognormal model to assess the risk of PAM because it yielded the best analysis of the studentized residuals. Nonetheless, the levels of risk thereby obtained cannot be applied to humans without correction, because they are substantially greater than those indicated by available epidemiologic data. The curve was thus adjusted by a factor calculated with the least-squares method. This provides the PAM risk in humans as a function of the N. fowleri concentration in the river. For example, the risk is 8.5 × 10−8 at a concentration of 10 N. fowleri amoebae per liter.  相似文献   

18.
The present study is an attempt to investigate the presence of Naegleria fowleri in Indian population. A total of 307 patients were enrolled and water samples were collected from both residential and surrounding areas of patients found positive for N. fowleri. The different species of Naegleria from both clinical and water samples were identified taxonomically. Recommended microbiological conventional techniques were used to identify different Naegleria stages and other free-living amoebae from the samples. PCR assays, using both genus and species specific primers were also optimized. None of the samples were positive by conventional microbiological examinations. However, PCR assays detected only three samples positive for N. fowleri. A total of 10 water bodies (ponds), that were used by Naegleria positive patients were examined. The pH and temperature of the water samples collected from water bodies ranged between 5.6–7.2 and 25–32 °C respectively. Among all the 10 water samples tested, four samples were positive for genus Naegleria by PCR assay, of which only two samples, showed positive amplification for N. fowleri. The sequence analysis of N. fowleri strain belonged to genotype II.  相似文献   

19.
Ryan  Shanna M.  Dodson  Stanley I. 《Hydrobiologia》1998,384(1-3):111-118
Our study documents individual swimming behavior of Daphnia pulicaria over a yearly cycle in a temperate lake. We collected D. pulicaria, a common freshwater zooplankton, from Lake Mendota on 10 dates between July 1994 and June 1995 from two depths, 2 m and 10 m. The Daphnia were rushed to the laboratory and video-taped as they swam in lake water under lake-ambient temperature and light conditions. Five-second swimming tracks of individual Daphnia were filmed and digitized using a motion analysis system. We measured average turning angle, swimming speed and sinking rate for each track. D. pulicaria swimming behavior varied over the annual cycle. We found significant differences in turning angle between depths and among months. Sinking rate and swimming speed were significantly different among months but not depths. Sinking rate and swimming speed were not significantly correlated with water temperature. Our results were contrary to Stokes' Law predictions, in that D. pulicaria had the slowest sinking speed in June, not in the winter when water temperatures were lowest and viscosity was highest. Body length was significantly correlated with all three swimming variables. We also studied swimming behavior in clonal populations of D. pulicaria in different concentrations of the alga, Chlamydomonas reinhardtii. D. pulicaria did not change swimming speed, turning angle or sinking rate over a range of food concentrations. Finally, swimming behavior in a D. pulicaria clone, tested at two temperatures in the laboratory, confirmed the results from our seasonal study; Daphnia did not sink as predicted by changes in viscosity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号