首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Among tumors in general, Ehrlich ascites tumor cells are particularly resistant to lipid peroxidation. In this study lipid peroxidation was measured in terms of the formation of malondialdehyde-equivalent material in Ehrlich tumor cells during incubation in vitro. It was shown that the high antioxidant potential of these cells could be overcome by a strong radical-promoting agent like ferrous ion. Various amino acids were tested for their capability to augment the effect of Fe(II). Histidine and its 3-methyl-derivative turned out to be the most effective pro-oxidants, whose action could be ascribed to the presence of the imidazole group. From studies with homogenized and denatured cells it was concluded that lipid peroxidation stimulated by Fe(II)-histidinate is an autoxidation process and that no carrier effect of iron by histidine is predominating. The stimulatory action of Fe(II)-histidinate could be completely suppressed by vitamin C, which was shown to be a potent anti-oxidant under the conditions used. The combined application of Fe(II)-histidinate and vitamin C may offer a means to study lipid peroxidation of Ehrlich tumor cells in a controlled manner.  相似文献   

2.
4-Hydroxynonenal, which is a major product of lipid peroxidation in rat liver microsomes, was detected in native Ehrlich ascites tumor cells. Its formation was stimulated either by ferrous ions or by Fe(II)-histidinate. The identification was based on chromatographic (TLC/HPLC) and ultraviolet-spectroscopic evidence using synthetic 4-hydroxynonenal as reference. Highest values of 4-hydroxynonenal concentration (about 0.1 microM in the cell suspension) after 30 min of incubation were observed with Fe(II)-histidinate as stimulant. Saturation was already reached after an incubation period of 10 min. The results confirm the expectation by Schauenstein and Esterbauer (in Submolecular Biology and Cancer, Ciba Foundation Series 67 (1979) pp. 225-244, Excerpta Medica, Amsterdam) that endogenous lipid peroxidation gives rise to a distinct intracellular level of alpha, beta-unsaturated aldehydes. A simple hypothetical mechanism for the formation of 4-hydroxynonenal from n-6-polyunsaturated fatty acids is presented.  相似文献   

3.
Fe(II)- and Fe(III)-induced lipid peroxidation of rabbit small intestinal microvillus membrane vesicles was studied. Ferrous ammonium sulphate, ferrous ascorbate at a molar ratio of 10:1, and ferric citrate, at molar ratios of 1:1 and 1:20, did not stimulate lipid peroxidation. Ferrous ascorbate, 1:1, induced low stimulation, while ferrous ascorbate, 1:20 gave higher stimulation of lipid peroxidation. These results show that in our experimental system, ascorbate is a promotor rather than an inhibitor of lipid peroxidation. Ferric nitrilotriacetate (at molar ratios of 1:2 and 1:10), at an iron concentration of 200 microM, was by far the most effective in inducing lipid peroxidation. Superoxide dismutase, mannitol and glutathione had no effect, while catalase, thiourea and vitamin E markedly decreased ferrous ascorbate 1:20-induced lipid peroxidation. Ferric nitrilotriacetate-induced lipid peroxidation was slightly reduced by catalase and mannitol, significantly reduced by superoxide dismutase, and completely inhibited by thiourea. Glutathione caused a 100% increase in the ferric nitrilotriacetate-induced lipid peroxidation. These results suggest that Fe(II) in the presence of trace amounts of Fe(III), or an oxidizing agent and Fe(III) in the presence of Fe(II) or a reducing agent, are potent stimulators of lipid peroxidation of microvillus membrane vesicles. Addition of deferoxamine completely inhibited both ferrous ascorbate, 1:20 and ferric nitrilotriacetate-induced lipid peroxidation, demonstrating the requirement for iron for its stimulation. Iron-induced peroxidation of microvillus membrane may have physiological significance because it could already be demonstrated at 2 microM iron concentration.  相似文献   

4.
Strain OKM-9 is a mesophilic, mixotrophic iron-oxidizing bacterium that absolutely requires ferrous iron as its energy source and L-amino acids (including L-glutamate) as carbon sources for growth. The properties of the L-glutamate transport system were studied with OKM-9 resting cells, plasma membranes, and actively reconstituted proteoliposomes. L-Glutamate uptake into resting cells was totally dependent on ferrous iron that was added to the reaction mixture. Potassium cyanide, an iron oxidase inhibitor, completely inhibited the activity at 1 mM. The optimum pH for Fe2+-dependent uptake activity of L-glutamate was 3.5-4.0. Uptake activity was dependent on the concentration of the L-glutamate. The Km and Vmax for L-glutamate were 0.4 mM and 11.3 nmol x min(-1) x mg(-1), respectively. L-Aspartate, D-aspartate, D-glutamate, and L-cysteine strongly inhibited L-glutamate uptake. L-Aspartate competitively inhibited the activity, and the apparent Ki for this amino acid was 75.9 microM. 2,4-Dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, gramicidin D, valinomycin, and monensin did not inhibit Fe2+-dependent L-glutamate uptake. The OKM-9 plasma membranes had approximately 40% of the iron-oxidizing activity of the resting cells and approximately 85% of the Fe2+-dependent uptake activity. The glutamate transport system was solubilized from the membranes with 1% n-octyl-beta-D-glucopyranoside and reconstituted into a lecithin liposome. The L-glutamate transport activity of the reconstituted proteoliposomes was 8-fold than that of the resting cells. The Fe2+-dependent L-glutamate uptake observed here seems to explain the mixotrophic nature of this strain, which absolutely requires Fe2+ oxidation when using amino acids as carbon sources.  相似文献   

5.
In this report we study the effect of Fe(III) on lipid peroxidation induced by Fe(II)citrate in mitochondrial membranes, as assessed by the production of thiobarbituric acid-reactive substances and antimycin A-insensitive oxygen uptake. The presence of Fe(III) stimulates initiation of lipid peroxidation when low citrate:Fe(II) ratios are used ( 4:1). For a citrate:total iron ratio of 1:1 the maximal stimulation of lipid peroxidation by Fe(III) was observed when the Fe(II):Fe(III) ratio was in the range of 1:1 to 1:2. The lag phase that accompanies oxygen uptake was greatly diminished by increasing concentrations of Fe(III) when the citrate:total iron ratio was 1:1, but not when this ratio was higher. It is concluded that the increase of lipid peroxidation by Fe(III) is observed only when low citrate:Fe(II) ratios were used. Similar results were obtained using ATP as a ligand of iron. Monitoring the rate of spontaneous Fe(II) oxidation by measuring oxygen uptake in buffered medium, in the absence of mitochondria, Fe(III)-stimulated oxygen consumption was observed only when a low citrate:Fe(II) ratio was used. This result suggests that Fe(III) may facilitate the initiation and/or propagation of lipid peroxidation by increasing the rate of Fe(II)citrate-generated reactive oxygen species.  相似文献   

6.
In this report we studied DNA damage and lipid peroxidation in rat liver nuclei incubated with iron ions for up to 2 hrs in order to examine whether nuclear DNA damage was dependent on membrane lipid peroxidation. Lipid peroxidation was measured as thio-barbituric acid-reactive substances (TBARS) and DNA damage was measured as 8-OH-deoxyguanosine (8-OH-dG). We showed that Fe(II) induced nuclear lipid peroxidation dose-dependently but only the highest concentration (1.0 mM) used induced appreciable 8-OH-dG. Fe(II1) up to 1 mM induced minimal lipid peroxidation and negligible amounts of 8-OH-dG. Ascorbic acid enhanced Fe(II)-induced lipid peroxidation at a ratio to Fe(II) of 1:l but strongly inhibited peroxidation at ratios of 2.5:l and 5:l. By contrast, ascorbate markedly enhanced DNA damage at all ratios tested and in a concentration-dependent manner. The nuclear DNA damage induced by 1 niM FeSO4/5 mM ascorbic acid was largely inhibited by iron chelators and by dimethylsulphoxide and manni-tol, indicating the involvement of OH. Hydrogen peroxide and superoxide anions were also involved, as DNA damage was partially inhibited by catalase and, to a lesser extent, by superoxide dismutase. The chain-breaking antioxidants butylated hydroxytoluene and diphenylamine (an alkoxyl radical scavenger) did not inhibit DNA damage. Hence, this study demonstrated that ascorbic acid enhanced Fe(II)-induced DNA base modification which was not dependent on lipid peroxidation in rat liver nuclei.  相似文献   

7.
Reticulocytes suspended in low ionic strength media such as isotonic sucrose solution efficiently take up non-transferrin-bound iron and utilize it for heme synthesis. The present study was undertaken to determine how such media facilitate iron utilization by the cells. The effects of changes in membrane surface potential, membrane permeability, cell size, transmembrane potential difference, oxidation state of the iron, and lipid peroxidation were investigated. Iron uptake to heme, cytosol, and stromal fractions of cells was measured using rabbit reticulo-cytes incubated with 59Fe-labelled Fe(II) in 0.27 M sucrose, pH 6.5. Suspension of the cells in sucrose led to increased membrane permeability, loss of intracellular K+, decreased cell size, and increased transmembrane potential difference. However, none of these changes could account for the high efficiency of iron uptake which was observed. The large negative membrane surface potential which occurs in sucrose was modified by the addition of mono-, di-, tri-, and polyvalent cations to the solution. This inhibited iron uptake to a degree which for many cations varied with their valency. Other cations (Mn2+, Co2+, Ni2+, Zn2+) were also very potent inhibitors, probably due to direct action on the transport process. Ferricyanide inhibited iron uptake, while ferrocyanide and ascorbate increased the uptake of Fe(III) but not Fe(II). It is concluded that the high negative surface potential of reticulocytes suspended in sucrose solution facilitates iron uptake by aiding the approach of iron to the transport site on the cell membrane. The iron is probably transported into the cell in the ferrous form. © 1994 wiley-Liss, Inc.  相似文献   

8.
《Free radical research》2013,47(1):153-159
Ceruloplasmin (CP) effectively inhibited superoxide and ferritin-dependent peroxidation of phospholipid liposomes, using xanthine oxidase or gamma irradiation of water as sources of superoxide. In addition, CP inhibited superoxide-dependent mobilization of iron from ferritin. suggesting that CP inhibited lipid peroxidation by decreasing the availability of iron from ferritin. CP also exhibited some superoxide scavenging activity as evidenced by its inhibition of superoxide-dependent cytochrome c reduction. However, superoxide scavenging by CP did not quantitatively account for its inhibitory effects on iron release. The effects of CP on iron-catalyzed lipid peroxidation in systems containing exogenously added ferrous iron was also investigated. CP exhibited prooxidant and antioxidant effects; CP stimulated at lower concentrations, reached a maximum. and inhibited at higher concentrations. However. the addition of apoferritin inhibited CP and Fe(II)-catalyzed lipid peroxidation at all concentrations of CP. In addition, CP catalyzed the incorporation of Fe(II) into apoferritin. Collectively these data suggest that CP inhibits superoxide and ferritin-dependent lipid peroxidation via its ability to incorporate reductively-mobilized iron into ferritin.  相似文献   

9.
Oxidation of glycated polylysine, a model compound of glycated protein, caused O2- production even at physiological pH, which could be accelerated by Fe3(+)-ADP. An enediol structure in glycated polylysine and related compounds, which could be confirmed by I2 uptake, was related to their oxidizability. Glycated polylysine was easily coordinated with Fe3+ even in the presence of phosphate at pH 7.4 and the formation of the iron complex was prevented by desferrioxamine. The exposure of unsaturated phospholipid liposomes to glycated polylysine-Fe3(+)-ADP system caused the production of a thiobarbituric acid-reacting substance, which was completely inhibited by 5 microM alpha-tocopherol or 150 microM desferrioxamine and slightly by 0.5 microM SOD. Catalase (20 micrograms/ml) and 10 mM sodium-benzoate did not affect the iron-glycated polylysine-induced lipid peroxidation, indicating no participation of an OH. in this reaction. A ferrous ion-coordinated glycated polylysine may act as an initiator of phospholipid peroxidation in the presence of oxygen. A possible mechanism of the iron-glycated polylysine-induced lipid peroxidation was discussed.  相似文献   

10.
The kinetics of iron binding by deferrioxamine B mesylate and the ramifications of this process upon iron-catalyzed lipid peroxidation were assessed. The relative rates of Fe(III) binding by deferrioxamine varied for the chelators tested as follows: ADP greater than AMP greater than citrate greater than histidine greater than EDTA. The addition of a fivefold molar excess of deferrioxamine to that of Fe(III) did not result in complete binding (within 10 min) for any of the Fe(III) chelates tested except ADP:Fe(III). The rates of Fe(III) binding by deferrioxamine were greater at lower pH and when the competing chelator concentration was high in relationship to iron. The relatively slow binding of Fe(III) by deferrioxamine also affected lipid peroxidation, an iron-dependent process. The addition of deferrioxamine to an ascorbate- and ADP:Fe(III)-dependent lipid peroxidation system resulted in a time-dependent inhibition or stimulation of malondialdehyde formation (i.e., lipid peroxidation), depending on the ratio of deferrioxamine to iron. Converse to Fe(III), the rates of Fe(II) binding by deferrioxamine from the chelators tested above were rapid and complete (within 1 min), and resulted in the oxidation of Fe(II) to Fe(III). Lipid peroxidation dependent on Fe(II) autoxidation was stimulated by the addition of deferrioxamine. Malondialdehyde formation in this system was inhibited by the addition of catalase, and a similar extent of lipid peroxidation was achieved by substituting hydrogen peroxide for deferrioxamine. Collectively, these results suggest that the kinetics of Fe(III) binding by deferrioxamine is a slow, variable process, whereas Fe(II) binding is considerably faster. The binding of either valence of iron by deferrioxamine may result in variable effects on iron-catalyzed processes, such as lipid peroxidation, either via slow binding of Fe(III) or the rapid binding of Fe(II) with concomitant Fe(II) oxidation.  相似文献   

11.
The ability of chelators and ascorbic acid to mobilize iron from crocidolite, amosite, medium- and short-fiber chrysotile, and tremolite was investigated. Ferrozine, a strong Fe(II) chelator, mobilized Fe(II) from crocidolite (6.6 nmol/mg asbestos/h) and amosite (0.4 nmol/mg/h) in 50 mM NaCl, pH 7.5. Inclusion of ascorbate increased these rates to 11.4 and 4.9 nmol/mg/h, respectively. Ferrozine mobilized Fe(II) from medium-fiber chrysotile (0.6 nmol/mg/h) only in the presence of ascorbate. Citrate and ADP mobilized iron (ferrous and/or ferric) from crocidolite at rates of 4.2 and 0.3 nmol/mg/h, respectively, which increased to 4.8 and 1.0 nmol/mg/h in the presence of ascorbate. Since ascorbate alone mobilized iron from crocidolite (0.5 nmol/mg/h), the increase appeared to result from additional chelation by ascorbate. Citrate also mobilized iron from amosite (1.4 nmol/mg/h) and medium-fiber chrysotile (1.6 nmol/mg/h). Mobilization of iron from asbestos appeared to be a function not only of the chelator, but also of the surface area, crystalline structure, and iron content of the asbestos. These results suggest that iron can be mobilized from asbestos in the cell by low-molecular-weight chelators. If this occurs, it may have deleterious effects since this could result in deregulation of normal iron metabolism by proteins within the cell resulting in iron-catalyzed oxidation of biomolecules.  相似文献   

12.
A novel histamine-containing peptidomimetic, L-glutamyl-histamine (L-Glu-Hist), has been synthesized and characterized as a possible cytokine mimic which might lead to cellular responses of improved specificity. The energy-minimized 3-D conformations of L-Glu-Hist derived from its chemical structure stabilize Fe2+-chelating complexes. L-Glu-Hist concentration-dependently accelerates a decrease in ferrous iron in ferrous sulfate solution and shows ferroxidase-like activity at concentrations less than 3 mM in the phenanthroline assay, whereas in the concentration range 3-20 mM it restricts the availability of Fe2+ to phenanthroline by chelation of iron ions. At low concentrations (less than or about 1 mM), L-Glu-Hist stimulates peroxidation of phosphatidylcholine in liposomes catalyzed by a superoxide anion radical (O2)-generating system (Fe2+ + ascorbate) and, at high concentrations (*10 mM), it suppresses lipid peroxidation (LPO) in liposomes. The stimulation of LPO by L-Glu-Hist is related to its ability at low concentrations (*0.05 mM) to release O2 free radicals as determined by the superoxide dismutase-inhibitable reduction of cytochrome c. The release of O2 by L-Glu-Hist might result from its ferroxidase-like activity, while its inhibition of LPO is due to chelation of Fe2+, prevention of the formation of free radicals, and degradation of lipid hydroperoxides at 5-20 mM L-Glu-Hist concentrations. L-Glu-Hist releases O2 at concentrations which stimulate [3H]thymidine incorporation into DNA and proliferation of mouse spleen lymphocytes and also of mononuclear cells from human blood. The induction of lymphocyte proliferation by L-Glu-Hist is dose-dependent in the 0.01-0.05 mM concentration range, although the maximal stimulation of LPO in the O2-dependent system is observed at higher L-Glu-Hist concentrations (*1 mM). Thus, low concentrations of oxygen free radicals released by L-Glu-Hist may provide a very fast, specific, and sensitive trigger for lymphocyte proliferation and immunoregulation.  相似文献   

13.
Pyridoxal isonicotinoyl hydrazone (PIH) and many of its analogs are effective iron chelators in vivo and in vitro, and are of interest for the treatment of secondary iron overload. Because previous work has implicated the Fe(3+)-chelator complexes as a determinant of toxicity, the role of iron-based oxidative stress in the toxicity of PIH analogs was assessed. The Fe(3+) complexes of PIH analogs were reduced by K562 cells and the physiological reductant, ascorbate. Depletion of the antioxidant, glutathione, sensitized Jurkat T lymphocytes to the toxicity of PIH analogs and their Fe(3+) complexes, and toxicity of the chelators increased with oxygen tension. Fe(3+) complexes of pyridoxal benzoyl hydrazone (PBH) and salicyloyl isonicotinoyl hydrazone (SIH) caused lipid peroxidation and toxicity in K562 cells loaded with eicosapentenoic acid (EPA), a readily oxidized fatty acid, whereas Fe(PIH)(2) did not. The lipophilic antioxidant, vitamin E, completely prevented both the toxicity and lipid peroxidation caused by Fe(PBH)(2) in EPA-loaded cells, indicating a causal relationship between oxidative stress and toxicity. PBH also caused concomitant lipid peroxidation and toxicity in EPA-loaded cells, both of which were reversed as its concentration increased. In contrast, PIH was inactive, while SIH was equally toxic toward control and EPA-loaded cells, without causing lipid peroxidation, indicating a much smaller contribution of oxidative stress to the mechanism of toxicity of these analogs. In summary, PIH analogs and their Fe(3+) complexes are redox active in the intracellular environment. The contribution of oxidative stress to the overall mechanism of toxicity varies across the series.  相似文献   

14.
When rat liver microsomes were incubated with NADPH, the major products were hydroperoxides which increased with time indicating that endogenous iron content is able to promote lipid peroxidation. The addition of either 5 microM Fe2+ or Fe3+ ions strongly enhanced the hydroperoxide formation rate. However, due to the hydroperoxide breakdown, hydroperoxide concentration decreased with time in this case. Higher ferrous or ferric iron concentration did not change the situation much, in that both hydroperoxide breakdown and formation were similar to those when NADPH only was present in the incubation medium. After lipid peroxidation, analysis of fatty acids indicated that the highest amount of peroxidized PUFA occurred in the presence of 5 microM of either Fe2+ or Fe3+. This analysis also showed that after 8 min incubation with low iron concentration, PUFA depletion was about 77% of that observed after 20 min, whereas without any iron addition or in the presence of 30 microM of either Fe3+, PUFA decrease was only about 37% of that observed after 20 min. As far as the optimum Fe2+/Fe3+ ratio required to promote the initiation of microsomal lipid peroxidation in rat liver is concerned, the highest hydroperoxide formation was observed with a ratio ranging from 0.5 to 2. These results indicate that microsomal lipid peroxidation induced by endogenous iron is speeded up by the addition of low concentrations of either Fe2+ or Fe3+ ions, probably because free radicals generated by hydroperoxide breakdown catalyze the propagation process. In experimental conditions unfavourable to hydroperoxide breakdown the principal process is that of the initiation of lipid peroxidation.  相似文献   

15.
Oxidation of ferrous iron during peroxidation of lipid substrates   总被引:3,自引:0,他引:3  
Oxidation of Fe2+ in solution was dependent upon medium composition and the presence of lipid. The complete oxidation of Fe2+ in 0.9% saline was markedly accelerated in the presence of phosphate or EDTA and the ferrous oxidation product formed was readily recoverable as Fe2+ by ascorbate reduction. In contrast, in the presence of either brain synaptosomal membranes, phospholipid liposomes, fatty acid micelles or H2O2, less than 50% of the Fe2+ oxidized during an incubation could be recovered as Fe2+ via reduction with ascorbate. In the presence of unsaturated lipid, oxidation of Fe2+ was associated with peroxidation of lipid, as assessed by the uptake of O2 and formation of thiobarbituric acid-reactive products during incubations. Although relatively little Fe2+ oxidation or lipid peroxidation occurred in saline with synaptosomes or linoleic acid micelles during an incubation with Fe2+ alone, significant Fe2+ oxidation and lipid peroxidation occurred in incubations containing a 1:1 ratio of Fe2+ and Fe3+. Extensive Fe2+ oxidation and lipid peroxidation also occurred with Fe2+ alone in saline incubations with either linolenic or arachidonic acid acid micelles or liposomes prepared from dilinoleoylphosphatidylcholine. While a 1:1 ratio of Fe2+ and Fe3+ enhanced thiobarbituric acid-reactive product formation in incubations containing linolenic or arachidonic micelles, it reduced the rate of O2 consumption as compared with Fe2+ alone. The results demonstrate that oxidation of Fe2+ in incubations containing lipid substrates is linked to and accelerated by peroxidation of those substrates. Furthermore, the results suggest that oxidation of Fe2+ in the presence of lipid or H2O2 creates forms of iron which differ from those formed during simple Fe2+ autoxidation.  相似文献   

16.
The reactivity of iron on crocidolite asbestos with dioxygen was determined and compared with iron mobilized from crocidolite. Ferrozine, a strong Fe(II) chelator, was used to demonstrate that iron on crocidolite was redox active. More Fe(II) was mobilized from crocidolite (1 mg/ml) by ferrozine anaerobically (11.2 nmol/mg crocidolite/h) than aerobically (6.6 nmol/mg/h) in 50 mM NaCl, pH 7.5, suggesting that Fe(II) on crocidolite reacts with O2 upon aqueous suspension. However, suspension of crocidolite in 50 mM NaCl, pH 7.5, did not result in a measurable amount of O2 consumption. The addition of reducing agents (1 mM) increased the amount of Fe(II) on crocidolite, and addition of ascorbate resulted in 0.4 nmol O2 consumed/mg crocidolite/min. Therefore, iron on crocidolite had limited redox activity in the presence of ascorbate. However, mobilization of iron from crocidolite increased its redox activity. Citrate, nitrilotriacetate (NTA), or EDTA (1 mM) mobilized 79, 32, or 58 microM iron, respectively, in preincubations up to 76 h, and increased O2 consumption upon addition of ascorbate to 2.8, 7.6, or 22.0 nmol O2 consumed/mg/min, respectively. This activity depended only upon the presence of a component(s) mobilized from crocidolite by the chelators. Pretreatment of crocidolite with the iron chelator desferrioxamine B (10 mM) inhibited O2 consumption. The results of the present study suggest that iron on or in crocidolite is responsible for the redox activity of crocidolite, but that mobilization of iron by chelators such as citrate, NTA, or EDTA greatly enhances its redox activity. Thus, iron mobilization from crocidolite in vivo by low-molecular-weight chelators may lead to the increased production of reactive oxygen species which may damage biomolecules, such as DNA.  相似文献   

17.
Liver slices were used to measure lipid peroxidation induced by bromotrichloromethane, tert-butyl hydroperoxide (t-BOOH), or ferrous iron. The responses of liver homogenates and microsomes to oxidative conditions were compared with the response of tissue slices. Lipid peroxidation was evaluated by the production of thiobarbituric acid-reactive substances (TBARS). As was observed in homogenates and microsomes, TBARS production by liver slices depended upon the amount of tissue, the incubation time, inducer, the amount of inducer, and the presence of antioxidant. Control liver slices incubated at 37 degrees C for 2 h produced 19 nmol of TBARS per g of liver. When slices were incubated in the presence of 1 mM BrCCl3, 1 mM t-BOOH, or 50 microM ferrous iron, TBARS production increased 4.6-, 8.2-, or 6.7-fold over the control value, respectively. Comparable induction of TBARS by liver homogenates and microsomes was observed when these preparations were incubated with the same inducers. Addition of 5 microM butylated hydroxytoluene (BHT) prevented the induction of TBARS by 50 microM ferrous iron by liver slices. The results indicate the usefulness of tissue slices to measure lipid peroxidation. The usefulness of tissue slices is emphasized when a number of compounds or tissues are studied and tissue integrity is desired as in toxicological, pharmacological, and nutritional studies where reduced numbers of experimental animals is a relevant issue.  相似文献   

18.
Iron is the most abundant transition metal in the earth's crust. It cycles easily between ferric (oxidized; Fe(III)) and ferrous (reduced; Fe(II)) and readily forms complexes with oxygen, making this metal a central player in respiration and related redox processes. However, 'loose' iron, not within heme or iron-sulfur cluster proteins, can be destructively redox-active, causing damage to almost all cellular components, killing both cells and organisms. This may explain why iron is so carefully handled by aerobic organisms. Iron uptake from the environment is carefully limited and carried out by specialized iron transport mechanisms. One reason that iron uptake is tightly controlled is that most organisms and cells cannot efficiently excrete excess iron. When even small amounts of intracellular free iron occur, most of it is safely stored in a non-redox-active form in ferritins. Within nucleated cells, iron is constantly being recycled from aged iron-rich organelles such as mitochondria and used for construction of new organelles. Much of this recycling occurs within the lysosome, an acidic digestive organelle. Because of this, most lysosomes contain relatively large amounts of redox-active iron and are therefore unusually susceptible to oxidant-mediated destabilization or rupture. In many cell types, iron transit through the lysosomal compartment can be remarkably brisk. However, conditions adversely affecting lysosomal iron handling (or oxidant stress) can contribute to a variety of acute and chronic diseases. These considerations make normal and abnormal lysosomal handling of iron central to the understanding and, perhaps, therapy of a wide range of diseases.  相似文献   

19.
Studies of ascorbate-dependent, iron-catalyzed lipid peroxidation   总被引:5,自引:0,他引:5  
We have previously observed that both Fe(II) and Fe(III) are required for lipid peroxidation to occur, with maximal rates of lipid peroxidation observed when the ratio of Fe(II) to Fe(III) is approximately one (J. R. Bucher et al. (1983) Biochem. Biophys. Res. Commun. 111, 777-784; G. Minotti and S. D. Aust (1987) J. Biol. Chem. 262, 1098-1104). Consistent with the requirement for both Fe(II) and Fe(III), ascorbate, by reducing Fe(III) to Fe(II), stimulated iron-catalyzed lipid peroxidation but when the ascorbate concentration was sufficient to reduce all of the Fe(III) to Fe(II), ascorbate inhibited lipid peroxidation. The rates of lipid peroxidation were unaffected by the addition of catalase, superoxide dismutase, or hydroxyl radical scavengers. Exogenously added H2O2 also either stimulated or inhibited ascorbate-dependent, iron-catalyzed lipid peroxidation apparently by altering the ratio of Fe(II) to Fe(III). Thus, it appears that the prooxidant effect of ascorbate is related to the ability of ascorbate to promote the formation of a proposed Fe(II):Fe(III) complex and not due to oxygen radical production. The antioxidant effect of ascorbate on iron-catalyzed lipid peroxidation may be due to complete reduction of iron.  相似文献   

20.
Previously we had demonstrated the presence of transferrin receptor (TfR) on the plasma membrane of cultured rat cortical astrocytes. In this study, we investigated the roles of TfR in transferrin-bound iron (Tf-Fe) as well as transferrin-free iron (Fe II) uptake by the cells. The cultured rat astrocytes were incubated with 1 microM of double-labelled transferrin (125I-Tf-59Fe) in serum- free DMEM F12 medium or 59Fe II in isotonic sucrose solution at 37 degrees C or 4 degrees C for varying times. The cellular Tf-Fe, Tf and Fe II uptake was analyzed by measuring the intracellular radioactivity with gamma counter. The result showed that Tf-Fe uptake kept increasing in a linear manner at least in the first 30-min. In contrast to Tf-Fe uptake, the internalization of Tf into the cells was rapid initially but then slowed to a plateau level after 10 min. of incubation. The addition of either NH4Cl or CH3NH2, the blockers of Tf-Fe uptake via inhibiting iron release from Tf within endosomes, decreased the cellular Tf-Fe uptake but had no significant effect on Tf uptake. Pre-treated cells with trypsin inhibited significantly the cellular uptake of Tf-Fe as well as Tf. These findings suggested that Tf-Fe transport across the membrane of astrocytes is mediated by Tf-TfR endocytosis. The results of transferrin-free iron uptake indicated that the cultured rat cortical astrocytes had the capacity to acquire Fe II. The highest uptake of Fe II occurred at pH 6.5. The Fe II uptake was time and temperature dependent, iron concentration saturable, inhibited by several divalent metal ions, such as Co2+, Zn2+, Mn2+ and Ni2+ and not significantly affected by phenylarsine oxide treatment. These characteristics of Fe II uptake by the cultured astrocytes suggested that Fe II uptake is not mediated by TfR and implied that a carrier-mediated iron transport system might be present on the membrane of the cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号