首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
The combined effect of X-irradiation and transposon mobility on the frequencies of X-linked recessive lethals and dominant lethals was investigated in female hybrids in the P-M system of hybrid dysgenesis. X-linked lethals were measured in G2 hybrid dysgenic females whose X chromosome was derived from the M X P cross. To test for additivity or synergism, the mutation rate in irradiated dysgenic females was compared to that of unirradiated females as well as to irradiated nondysgenic hybrid females derived from M X M crosses. Eggs collected for 2 days after irradiation, were represented by the more radiation-sensitive A and B oocytes (about 75%) and the least sensitive C oocytes (about 25%). The production of X-linked lethal events in X-irradiated dysgenic females was 8.1%, as compared to 4.5% in dysgenic controls and 3.4% in irradiated, nondysgenic controls, demonstrating an additive effect of radiation and dysgenesis-induced genetic damage. The effect of irradiation on sterility of dysgenic hybrid females was a negative one, resulting in 20% less sterility than expected from an additive effect. The combined effect of radiation and dysgenesis on dominant lethality tested in A, B and C oocytes of the same hybrid females was synergistic. Egg broods collected for 3.5 days after irradiation showed that significantly more damage was induced in the presence of ionizing radiation in dysgenic females than in their nondysgenic counterparts. This effect was most obvious in B and C oocytes. The synergism observed may be related to the inability of cells to repair the increased number of chromosome breaks induced both by radiation and transposon mobility.  相似文献   

2.
The possible interaction between X-ray- and transposon-induced chromosome damage was monitored in the P-M system of hybrid dysgenesis in Drosophila melanogaster. One- to two-day-old F1 dysgenic males originating from a cross between M strain females and P strain males were irradiated with 5.5 Gy (550 rad) or used as controls to monitor X-Y translocations and transmission ratio distortion. Two 3-day sperm broods were sampled for the former and two 4-day broods for the latter to detect damage induced in the most radiosensitive cells. F1 nondysgenic males derived from M female to M male crosses (controls) were treated identically. X-Y chromosome translocations induced by P element mobility alone declined sharply with a decrease in temperature (18 versus 21 degrees C) and they were significantly reduced with aging of hybrid males from brood 2, 4-8 days of age, to brood 3, 7-11 days of age. No significant increase in translocations was observed when X irradiation and P-M dysgenesis were combined, showing no interaction between damages induced by the two mutator systems. In contrast, interaction was observed in transmission ratio distortion which was significantly increased by X irradiation of hybrid males derived from both reciprocal M X P and P x M crosses. The preferential elimination of P element-bearing autosomes occurred when either spermatocytes or spermatids were irradiated. An aging effect was also observed, resulting in less distortion in 9- to 14-day-old dysgenic males compared to 5- to 10-day-old hybrids.  相似文献   

3.
Hybrid dysgenesis-induced response to selection in Drosophila melanogaster   总被引:1,自引:0,他引:1  
In Drosophila melanogaster, the P-M and I-R systems of hybrid dysgenesis are associated with high rates of transposition of P and I elements, respectively, in the germlines of dysgenic hybrids formed by crossing females of strains without active elements to males of strains containing them. Transposition rates are not markedly accelerated in the reciprocal, nondysgenic hybrids. Previous attempts to evaluate the extent to which hybrid dysgenesis-mediated P transposition contributes to mutational variance for quantitative characters by comparing the responses to selection of P-M dysgenic and nondysgenic hybrids have given variable results. This experimental design has been extended to include an additional quantitative trait and the I-R hybrid dysgenesis system. The selection responses of lines founded from both dysgenic and nondysgenic crosses showed features that would be expected from the increase in frequency of initially rare genes with major effects on the selected traits. These results differ from those of previous experiments which showed additional selection response only in lines started from dysgenic crosses, and can be explained by the occasional occurrence of large effect transposable element-induced polygenic mutations in both dysgenic and nondysgenic selection lines. High rates of transposition in populations founded from nondysgenic crosses may account for the apparently contradictory results of the earlier selection experiments, and an explanation is proposed for its occurrence.  相似文献   

4.
Two manifestations of hybrid dysgenesis were studied in flies with chromosomes derived from two different P strains. In one set of experiments, the occurrence of recessive X-linked lethal mutations in the germ cells of dysgenic males was monitored. In the other, the behavior of an X-linked P-element insertion mutation, snw, was studied in dysgenic males and also in dysgenic females. The chromosomes of one P strain were more proficient at causing dysgenesis in both sets of experiments. However, there was variation among the chromosomes of each strain in regard to the ability to induce lethals or to destabilize snw. The X chromosome, especially when it came from the stronger P strain, had a pronounced effect on both measures of dysgenesis, but in combination with the major autosomes, these effects were reduced. For the stronger P strain, the autosomes by themselves contributed significantly to the production of X-linked lethals and also had large effects on the behavior of snw, but they did not act additively on these two characters. For this strain, the effects of the autosomes on the X-linked lethal mutation rate suggest that only 1/100 P element transpositions causes a recessive lethal mutation. For the weaker P strain, the autosomes had only slight effects on the behavior of snw and appeared to have negligible effects on the X-linked lethal mutation rate. Combinations of chromosomes from either the strong or the weak P strain affected both aspects of dysgenesis in a nonadditive fashion, suggesting that the P elements on these chromosomes competed with each other for transposase, the P-encoded function that triggers P element activity. Age and sex also influenced the ability of chromosomes and combinations of chromosomes to cause dysgenesis.  相似文献   

5.
The impact of hybrid dysgenesis on the chromosome structure of Drosophila melanogaster ovarian nurse cells was studied. In the examined lines and interlinear hybrids (including those yielded by dysgenic crosses in the P-M and I-R systems of hybrid dysgenesis), disturbed chromosome synapsis was revealed. The disturbance was somewhat similar to that observed in interspecific hybrids. Quantitative analysis showed that the mean frequency of nuclei with defective chromosome pairing ranged from 60.4 to 76%. FISH analysis of ovarian nurse chromosomes of Canton S x Berlin hybrids showed differences in the label localization in asynaptic homologs of arm 2L, which probably results in disrupted homolog pairing and reveal interlinear differences in localization of mobile genetic elements. Our results conform to Sved's model stating that hybrid dysgenesis is based on disorganization of the germline nuclear space.  相似文献   

6.
C. Lai  TFC. Mackay 《Genetics》1990,124(3):627-636
To determine the ability of the P-M hybrid dysgenesis system of Drosophila melanogaster to generate mutations affecting quantitative traits, X chromosome lines were constructed in which replicates of isogenic M and P strain X chromosomes were exposed to a dysgenic cross, a nondysgenic cross, or a control cross, and recovered in common autosomal backgrounds. Mutational heritabilities of abdominal and sternopleural bristle score were in general exceptionally high-of the same magnitude as heritabilities of these traits in natural populations. P strain chromosomes were eight times more mutable than M strain chromosomes, and dysgenic crosses three times more effective than nondysgenic crosses in inducing polygenic variation. However, mutational heritabilities of the bristle traits were appreciable for P strain chromosomes passed through one nondysgenic cross, and for M strain chromosomes backcrossed for seven generations to inbred P strain females, a result consistent with previous observations on mutations affecting quantitative traits arising from nondysgenic crosses. The new variation resulting from one generation of mutagenesis was caused by a few lines with large effects on bristle score, and all mutations reduced bristle number.  相似文献   

7.
We present results demonstrating that the hobo family of transposable elements can promote high rates of chromosomal instability. Using strains with a hobo element inserted within the decapentaplegic gene complex (DPP-C), we have recovered numerous DPP-C mutations involving chromosomal rearrangements and deletions with one endpoint in the vicinity of the pre-existing hobo element. This hypermutability occurred in the germ lines of hybrid progeny from crosses involving strains containing hobo elements to strains lacking them. In some crosses, the offspring had rudimentary gonads, reminiscent of GD sterility. The germline hypermutability and infertility are similar to those produced by P-element-mediated hybrid dysgenesis. Given the many genetic and molecular similarities of the P and hobo systems, we propose that a system analogous to P-M hybrid dysgenesis has been activated in the hobo+ X hobo- crosses.  相似文献   

8.
We have shown previously that four of five white mutant alleles arising in P-M dysgenic hybrids result from the insertion of strongly homologous DNA sequence elements. We have named these P elements. We report that P elements are present in 30–50 copies per haploid genome in all P strains examined and apparently are missing entirely from all M strains examined, with one exception. Furthermore, members of the P family apparently transpose frequently in P-M dysgenic hybrids; chromosomes descendant from P-M dysgenic hybrids frequently show newly acquired P elements. Finally, the strain-specific breakpoint hotspots for the rearrangement of the π2 P X chromsome occurring in P-M dysgenic hybrids are apparently sites of residence of P elements. These observations strongly support the P factor hypothesis for the mechanistic basis of P-M hybrid dysgenesis.  相似文献   

9.
G V Pokholkova  I V Solov'eva 《Genetika》1989,25(10):1776-1785
19 new mutations in the 9F12-10A7 region of Drosophila melanogaster X chromosome was obtained in the system of P-M hybrid dysgenesis. They appeared to be lethals, as judged from viability of homo- or hemizygous females. In situ hybridization of P DNA with polytene chromosomes revealed P-element insertion in the 10A1-2 band in the majority of the mutants. As a result of complementation analysis, all these mutations were localized at previously known loci: l(1)BP1, l(1)BP5, l(1)BP8, l(1)BP7. No insertion mutations were found at the vermilion locus. This can imply for non-random distribution of insertion mutations in the region studied. Further comparison of these mutations with previously EMS-induced ones revealed that insertion mutations are predominantly hypomorph lethals which do not influence the viability, morphology and fertility of homozygous males and females, but drastically reduce viability of hemizygous females.  相似文献   

10.
The interaction of X-ray-induced and transposon-induced damage was investigated in P-M hybrid dysgenesis in Drosophila melanogaster. The X-ray dose-response of 330-1320 rad was monitored for sterility, fecundity and partial X/Y chromosome loss among F2 progeny derived from the dysgenic cross of M strain females xP strain males (cross A) and its reciprocal (cross B), using a weaker and the standard Harwich P strain subline. The synergistic effect of P element activity and X-rays on sterility was observed only in cross A hybrids and the dose-response was nonlinear in hybrids derived from the strong standard reference Harwich subline, Hw. This finding suggests that the lesions induced by both mutator systems which produce the synergistic effect are two-break events. The effect of increasing dose on the decline of fecundity was synergistic, but linear, in hybrids of either subline. There was no interaction evident and thus no synergism in X/Y nondisjunction and in partial Y chromosome loss measured by the loss of the Bs marker alone or together with the y+ marker. Interaction was detected in the loss of the y+ marker alone from the X and Y chromosomes. The possible three-way interaction of X-rays (660 rad), post-replication repair deficiency and P element mobility was assessed by measuring transmission distortion in dysgenic males derived from the II2 P strain. X-Irradiation of spermatids significantly increased the preferential elimination of the P-element-bearing second chromosome in mei-41, DNA-repair-deficient dysgenic males, but had no effect in their DNA-repair-proficient brothers. These findings indicate that the post-replication repair pathway is required for processing lesions induced by the combined effect of P element mobility and X-rays, and that the unrepaired lesions ultimately lead to chromosome loss.  相似文献   

11.
Genetic traits associated with P-M hybrid dysgenesis in Drosophila melanogaster were synergistically affected by X-rays. The interaction between damages induced by these two mutator systems was evident when sterility and X/Y chromosome loss were used as endpoints. No interaction was detected in partial chromosome loss, monitored by the loss of BS and y+ markers. The synergism in sterility, measured either as all-or-none or premature sterility (fecundity) was observed when male hybrids derived from different P strains fathers, namely Harwich or II2, were X-irradiated and the effects compared relative to similarly treated non-dysgenic hybrids. Brooding of sperm showed that the effects of ionizing radiation were ionizing radiation were dependent upon the stage of spermatogenesis during which cells were irradiated. The highly synergistic effect on sterility was found when either spermatids or spermatocytes, but not mature sperm, were irradiated with 550 rad of X-rays. These findings were consistent with the higher radiosensitivity of spermatocytes and spermatids to genetic damage and with the correlation between the incidence of sterility and aging of dysgenic hybrids. The latter observation was particularly evident in the case of Harwich P strain-derived male hybrids whose fertility was greatly reduced due to P element mobility. The synergistic effect of X-rays in these dysgenic hybrids resulted in the virtual abolition of the germ line, increasing the sterility from 50% of the untreated 9-10-day old males, to 85% of the treated males when spermatocytes were irradiated. The synergism observed between transposon mobility and ionizing radiation can best the attributed to an interaction between X-ray-induced and P element-induced chromosome breaks. This interpretation is consistent with the more than additive increase in X or Y chromosome loss in irradiated, Harwich P strain-derived hybrid sons. The induction of these events was 1.164% in dysgenic irradiated males as compared to 0.234% in X-irradiated nondysgenic hybrids and 0.40% in dysgenic untreated males. No synergism was observed in X/Y loss in hybrids derived from II2 P strain fathers where the frequency of the events due to P element mobility alone was only one tenth (0.037%) of that found in Harwich-derived hybrids.  相似文献   

12.
13.
Gail M. Simmons 《Genetics》1986,114(3):897-918
Three populations of Drosophila melanogaster from northern California were surveyed for the ability to produce and resist gonadal dysgenesis in the P-M system of hybrid dysgenesis. Males from all three populations produced low to moderate levels of gonadal dysgenesis in crosses to Oregon-R M females. Most females had the P cytotype, but the M cytotype occurred occasionally. The three populations could not be statistically differentiated from one another, but were easily distinguished from populations from Australia and Wisconsin on the basis of gonadal dysgenesis potential. The California populations had higher levels of M cytotype than did the Wisconsin population. Thirteen X chromosomes and 11 pairs of autosomes were extracted from one of the California populations, using a modification of the standard balancer chromosome technique to suppress hybrid dysgenesis during extraction. All lines produced strongly skewed sterility distributions in crosses to M-strain females, and mean levels of sterility were less than 50%. There was evidence of nonadditive interactions between the autosomes. Most extraction lines had the P cytotype, but M and intermediate cytotypes were observed. Some of the intermediate cytotypes were stable over time. Lines were tested at two different times after extraction. Some lines evolved higher sterility potential as they were kept in the laboratory, even in the presence of P cytotype. The results point out a number of deficiencies in current genetic and population genetic models of hybrid dysgenesis and imply that gonadal dysgenesis is unlikely to be an important evolutionary force in this population.  相似文献   

14.
Hybrid females from Drosophila simulans females X Drosophila melanogaster males die as embryos while hybrid males from the reciprocal cross die as larvae. We have recovered a mutation in melanogaster that rescues the former hybrid females. It was located on the X chromosome at a position close to the centromere, and it was a zygotically acting gene, in contrast with mhr (maternal hybrid rescue) in simulans that rescues the same hybrids maternally. We named it Zhr (Zygotic hybrid rescue). The gene also rescues hybrid females from embryonic lethals in crosses of Drosophila mauritiana females X D. melanogaster males and of Drosophila sechellia females X D. melanogaster males. Independence of the hybrid embryonic lethality and the hybrid larval lethality suggested in a companion study was confirmed by employing two rescue genes, Zhr and Hmr (Hybrid male rescue), in doubly lethal hybrids. A model is proposed to explain the genetic mechanisms of hybrid lethalities as well as the evolutionary pathways.  相似文献   

15.
Inbred wild strains of Drosophila melanogaster derived from the central and eastern United States were used to make dysgenic hybrids in the P-M system. These strains possessed P elements and the P cytotype, the condition that represses P element transposition. Their hybrids were studied for the mutability of the P element insertion mutation, snw, and for the incidence of gonadal dysgenesis (GD) sterility. All the strains tested were able to induce hybrid dysgenesis by one or both of these assays; however, high levels of dysgenesis were rare. Sets of X chromosomes and autosomes from the inbred wild strains were more effective at inducing GD sterility than were sets of Y chromosomes and autosomes. In two separate analyses, GD sterility was positively correlated with snw mutability, suggesting a linear relationship. However, one strain appeared to induce too much GD sterility for its level of snw destabilization, indicating an uncoupling of these two manifestations of hybrid dysgenesis.  相似文献   

16.
Hybrid breakdown is a type of reproductive failure that appears after the F2 generation of crosses between different species or subspecies. It is caused by incompatibility between interacting genes. Genetic analysis of hybrid breakdown, particularly in higher animals, has been hampered by its complex nature (i.e., it involves more than two genes, and the phenotype is recessive). We studied hybrid breakdown using a new consomic strain, C57BL/6J-X(MSM), in which the X chromosome of C57BL/6J (derived mostly from Mus musculus domesticus) is substituted by the X chromosome of the MSM/Ms strain (M. m. molossinus). Males of this consomic strain are sterile, whereas F1 hybrids between C57BL/6J and MSM/Ms are completely fertile. The C57BL/6J-X(MSM) males showed reduced testis weight with variable defects in spermatogenesis and abnormal sperm head morphology. We conducted quantitative trait locus (QTL) analysis for these traits to map the X-linked genetic factors responsible for the sterility. This analysis successfully detected at least three distinct loci for the sperm head morphology and one for the testis weight. This study revealed that incompatibility of interactions of X-linked gene(s) with autosomal and/or Y-linked gene(s) causes the hybrid breakdown between the genetically distant C57BL/6J and MSM/Ms strains.  相似文献   

17.
The Triplo-lethal locus (Tpl) is unique in its dosage sensitivity; no other locus in Drosophila has been identified that is lethal when present in three doses. Tpl is also haplo-lethal, and its function is still a mystery. Previous workers have found it nearly impossible to mutationally inactive Tpl other than by completely deleting the chromosomal region in which Tpl resides (83DE). We have utilized P-M hybrid dysgenesis in an effort to obtain new mutations of Tpl. We recovered 19 new duplications of Tpl, 15 hypomorphic mutations of Tpl (a previously rare class of mutation), and no null mutations. Surprisingly, 14 of the 15 hypomorphic alleles have no detectable P element sequences at the locus. The difficulty in recovering null mutations in Tpl suggests that it may be a complex locus, perhaps consisting of several genes with redundant functions. The relative ease with which we recovered hypomorphic alleles is in sharp contrast to previous attempts by others to mutagenize Tpl. A higher mutation rate with hybrid dysgenesis than with radiation or chemicals also suggests a peculiar genetic organization for the locus.  相似文献   

18.
We have attempted interspecific hybridizations among six species of rhabditid nematodes: Caenorhabditis elegans, Caenorhabditis briggsae, Caenorhabditis remanei, Caenorhabditis sp. v, Rhabditis sp., and Pelodera teres. Copulation was observed in all crosses between Caenorhabditis species; however, none resulted in the generation of stable hybrid populations. No copulation was observed in crosses between Caenorhabditis males and Rhabditis or Pelodera females, even when congeneric females were present, suggesting that Caenorhabditis males are able to selectively recognize congeneric females by a short-range stimulus. All pairwise combinations of Caenorhabditis species were isolated to some degree by gametic mechanisms; 7 of 12 combinations were cross infertile and 5 of 12 were cross-fertile but had low brood sizes. In cross-fertile combinations, most hybrid embryos were inviable and arrested prior to gastrulation. Only in crosses of C. briggsae males to C. sp. v females did any hybrids survive embryogenesis. Most of these C. briggsae/C. sp. v hybrids arrested during larval development, and the few that reached adulthood invariably were female. These results are consistent with the presence of at least two lethal factors in the C. briggsae-C. sp. v combination: a maternal lethal factor in the cytoplasm of C. briggsae and a recessive lethal factor on the X chromosome of C. sp. v.  相似文献   

19.
H. Roiha  G. M. Rubin    K. O''Hare 《Genetics》1988,119(1):75-83
DNA from the singed gene of Drosophila melanogaster was isolated using an inversion between a previously cloned P element at cytological location 17C and the hypermutable allele singed-weak. Five out of nine singed mutants examined have alterations in their DNA maps in this region. The singed locus is a hotspot for mutation during P-M hybrid dysgenesis, and we have analyzed 22 mutations induced by P-M hybrid dysgenesis. All 22 have a P element inserted within a 700-bp region. The precise positions of 10 P element insertions were determined and they define 4 sites within a 100-bp interval. During P-M hybrid dysgenesis, the singed-weak allele is destabilized, producing two classes of phenotypically altered derivatives at high frequency. In singed-weak, two defective P elements are present in a "head-to-head" or inverse tandem arrangement. Excision of one element results in a more extreme singed bristle phenotype while excision of the other leads to a wild-type bristle phenotype.  相似文献   

20.
Pal Bhadra M  Bhadra U  Birchler JA 《Genetics》2006,174(3):1151-1159
A major model system for the study of evolutionary divergence between closely related species has been the unisexual lethality resulting from reciprocal crosses of Drosophila melanogaster and D. simulans. Sex-lethal (Sxl), a critical gene for sex determination, is misregulated in these hybrids. In hybrid males from D. melanogaster mothers, there is an abnormal expression of Sxl and a failure of localization of the male-specific lethal (MSL) complex to the X chromosome, which causes changes in gene expression. Introduction of a Sxl mutation into this hybrid genotype will allow expression of the MSL complex but there is no sequestration to the X chromosome. Lethal hybrid rescue (Lhr), which allows hybrid males from this cross to survive, corrects the SXL and MSL defects. The reciprocal cross of D. simulans mothers by D. melanogaster males exhibits underexpression of Sxl in embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号