首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
AMINO ACID TRANSPORT IN PERIPHERAL NERVE: ENERGY AND SODIUM DEPENDENCE   总被引:1,自引:1,他引:0  
Abstract— The energy and sodium dependence of the several carrier-mediated mechanisms for amino acid uptake have been studied in frog sciatic nerve. The different transport mechanisms are found to be variable in their dependence on sodium and metabolic energy. Saturable uptakes of lysine, phenylalanine and valine are relatively independent of the presence or absence of sodium in the incubation medium, indicating that uptakes by those mechanisms subserving basic, large neutral amino acids, and those amino acids containing aromatic or heterocyclic ring structures are largely sodium independent. Saturable uptakes of glutamic acid, proline, glycine and β-alanine are considerably reduced in the absence of sodium; thus carrier mechanisms for uptake of acidic, small neutral amino acids, β-alanine and proline are highly sodium dependent. The efficacies of several cations in substituting for sodium is variable; greatest inhibitions are found when potassium is used to replace sodium.
With the exception of proline, those mechanisms found to be sodium dependent are also found to be energy dependent, since they are inhibited by both DNP and lowered temperature. Although proline uptake is sodium dependent, proline uptake is stimulated by DNP and relatively insensitive to lowered temperature.  相似文献   

2.
Slowly growing X-ray-induced rat insulinomas and derived cell lines have been used as a model system for glucose-induced insulin release. During perfusions of tumors transplanted under the kidney capsule, the carbohydrates glucose and D-glyceraldehyde increased insulin secretion. These stimuli and the amino acids leucine and alanine also provoked insulin release in freshly isolated tumor cells. Under these conditions, glucose utilization had a Km of 4.6 mM and maximal velocity of 0.9 nmol/min/10(6) cells. A continuous cell line was established from such a preparation. In culture, glucose-induced insulin secretion was no longer detectable while responses to D-glyceraldehyde and amino acids were retained. Glucose metabolism in the cell line showed a decrease in Km to 0.7 mM glucose and an increased maximal velocity of 1.4 nmol/min/10(6) cells. Attempts to revert these alterations were undertaken using glucose-deficient culture medium to diminish glycolytic flux. Basal insulin release was lowered, while the growth pattern of the cells remained unchanged. Another approach involved the use of sodium butyrate which has been demonstrated to promote differentiation in other cell systems. Whereas sodium butyrate markedly increased cellular insulin content, the secretory responses were not improved. These results provide evidence that the loss of glucose-induced insulin secretion is paralleled by alterations in glucose metabolism.  相似文献   

3.
The transport of L-arginine has been characterized in Chinese hamster ovary cells (CHO). In the absence of Na+ the influx of the amino acid decreased. Both in the presence and in the absence of Na+ L-arginine influx was trans-stimulated and cis-inhibited by cationic amino acids. The amino acid entered CHO cells through an apparently non saturable mechanism and a single saturable agency whose Km increased in the absence of Na+. These results indicate that the agency devoted to transport cationic amino acids in CHO cells resembles system y+, the Na+-independent route that transports cationic amino acids in a number of mammalian models, although its activity is lowered by the replacement of extracellular sodium.  相似文献   

4.
1. Diaphragms from 48h-starved rats were incubated in Krebs-Ringer bicarbonate medium at 37degreesC for 30min and then transferred into new medium and incubated for 1, 2 and 3 h. 2. The amount of free amino acids found at the end of each time of incubation was larger than the amount at the beginning of incubation, indicating that in this system proteolysis is prevailing. 3. The diaphragms was releasing mainly alanine and glutamine into the incubation medium. 4. Within the periods of incubation the release and metabolism of free amino acids was proceeding at a constant rate. 5. Addition of sodium DL-3-hydroxybutyrate decreased the tissue content of several amino acids, among which were tyrosine and phenylalanine, suggesting that proteolysis was decreased by ketone bodies. 6. In the presence of glucose (10mM) and branched-chain amino acids (0.5mM), sodium DL-3-hydroxybutyrate at concentrations of 4 or 6 mM resulted in 30% decrease in tissue alanine content and a 20% decline in alanine release. Release of taurine and glutamine was decreased by 19 and 16% respectively with 6 mM-sodium DL-3-hydroxybutyrate. Addition of sodium acetoacetate (1-3mM) also resulted in a 20-35% decrease in tissue content of alanine, glutamine and taurine and in a 15-24% decrease of alanine and glutamine release. Smaller decreases (less than 15%) in the release of glycine, threonine, proline, serine and aspartate were also observed in the presence of sodium DL-3-hydroxybutyrate or sodium acetoacetate. 7. Substitution of pyruvate (1.0mM) for glucose in the presence of acetoacetate restored alanine and glutamine production to control values. In the presence of acetoacetate, pyruvate also increased the tissue content of aspartate by 77% and decreased the tissue content of glutamate by 30%. 8. It is suggested that in diaphragms from starved rats, ketone bodies (a) in the absence of other substrates inhibit protein catabolism and (b) in the presence of glucose and branched-chain amino acids decrease alanine and glutamine production, by inhibiting glycolysis.  相似文献   

5.
A recent study filling the gap in the genome sequence in the left arm of chromosome 2 of Schizosaccharomyces pombe revealed a homolog of budding yeast Vba2p, a vacuolar transporter of basic amino acids. GFP-tagged Vba2p in fission yeast was localized to the vacuolar membrane. Upon disruption of vba2, the uptake of several amino acids, including lysine, histidine, and arginine, was impaired. A transient increase in lysine uptake under nitrogen starvation was lowered by this mutation. These findings suggest that Vba2p is involved in basic amino acid transport in S. pombe under diverse conditions.  相似文献   

6.
The actions of excitatory amino acids on the release of previously incorporated gamma-[3H]aminobutyric acid ([3H]GABA) were examined in purified (greater than 93%) striatal neurons derived from the fetal mouse brain and differentiated in primary culture. Glutamate, KCl, and veratrine evoked a dose-dependent, saturable, and reversible release of [3H]GABA from striatal neurons. Glutamate actions were not reduced in the absence of calcium, and were insensitive to tetrodotoxin. The dose-response relationships of excitatory amino acids demonstrated the following rank order of potency: glutamate greater than aspartate = N-methyl-D-aspartate greater than kainate much greater than quisqualate. Kainate, however, was the most effective agonist, evoking an eightfold increase over baseline levels of [3H]GABA release. Aspartate- and N-methyl-D-aspartate-evoked release was abolished in the presence of either 2-aminophosphonovaleric acid or gamma-D-glutamylglycine. Release due to glutamate and kainate was partially or ineffectively attenuated by these agents. Glutamate-, aspartate-, and N-methyl-D-aspartate-evoked GABA releases were augmented when calcium was omitted from the bathing medium and reduced when sodium was replaced with choline or lithium. Kainate-evoked release was unaffected when calcium was omitted, virtually unchanged when choline replaced sodium, and markedly potentiated when lithium was substituted for sodium. These findings suggest that at least two distinct receptor systems for excitatory amino acids mediate the evoked release of [3H]GABA from striatal neurons in primary culture. These two systems, aspartate/N-methyl-D-aspartate- and kainate-preferring, are distinguishable on the basis of their pharmacological and ionic properties.  相似文献   

7.
The interactive effects of salinity stress (40, 80, 120 and 160 mM NaCl) and ascorbic acid (0.6 mM), thiamin (0.3 mM) or sodium salicylate (0.6 mM) were studied in wheat (Triticum aestivum L.). The contents of cellulose, lignin of either shoots or roots, pectin of root and soluble sugars of shoots were lowered with the rise of NaCl concentration. On the other hand, the contents of hemicellulose and soluble sugars of roots, starch and soluble proteins of shoots, proline of either shoots or roots, and amino acids of roots were raised. Also, increasing NaCl concentration in the culture media increased Na+ and Ca2+ accumulation and gradually lowered K+ and Mg2+ concentration in different organs of wheat plant. Grain soaking in ascorbic acid, thiamin or sodium salicylate could counteract the adverse effects of NaCl salinity on the seedlings of wheat plant by suppression of salt stress induced accumulation of proline.  相似文献   

8.
The effect of p -chloromercuribenzenesulfonic acid (PCMBS), carbonylcyanide- m -chlorophenylhydrazone (CCCP) and a high apoplastic pH (pH 7.5 compared with pH 5.5) on the release of sugars (sucrose and glucose) and amino acids from attached and detached seed coats of Pisum sativum L. cv. Marzia into a bathing solution was measured by means of the 'empty seed coat technique'. PCMBS reduced the release of sugars and amino acids from attached as well as from detached seed coats, suggesting that carrier-mediated transport might be involved. CCCP reduced sugar release from attached seed coats while amino acid release was hardly affected. In experiments with detached seed coats CCCP had no effect on release of either sugar or amino acids, suggesting that it is not energy-dependent. Raising the pH of the bathing solution from pH 5.5 to pH 7.5 slightly increased sugar release from both attached and detached seed coats while amino acid release was not affected. This might indicate a role of the apoplastic pH in regulating sugar release from the seed coat via a retrieval mechanism. The presented data indicate that there are important differences between sugars and amino acids with respect to transport processes in the seed coat. This is supported by the observation that the rate of amino acid release from the seed coat was higher than the rate of sugar release. The release data of detached seed coats were subjected to compartmental analysis in order to calculate rate constants for release from cell compartments. In the case of sugars, the half-times for emptying the cytoplasmic and vacuolar compartment were 0.8 h and 12.5 h. respectively. For amino acids the half-times were 0.5 h for emptying the cytoplasmic and 3.8 h for emptying the vacuolar compartment.  相似文献   

9.
Abstract The intracellular development of chlamydiae in McCoy cells incubated in Eagle's minimal essential medium lacking all 13 amino acids was examined both by fluorescence and electron microscopy and by infectivity titration. Aberrant development occurred in almost all inclusions of strains of Chlamydia trachomatis and C. psittaci with the production of abnormal forms which differed in size, shape and internal structure from normal reticulate and elementary body forms. Detailed analysis of the response of C. trachomatis L2 strain 434 to graded reductions in amino acid level showed that infectivity was reduced and morphological abnormality increased as amino acid concentrations were lowered from 33 to 0% of amino acids present in minimal essential medium. Reversion of inclusions to normal and reappearance of infectious forms occured on restoration of amino acids and further incubation. It is suggested that aberrant development may account for the presence in vivo of non-cultivable chlamydiae and that such development can arise via tryptophan deprivation mediated by local release of interferon gamma.  相似文献   

10.
Actions of Tremorgenic Fungal Toxins on Neurotransmitter Release   总被引:17,自引:15,他引:2  
The neurochemical effects of the tremorgenic mycotoxins Verruculogen and Penitrem A, which produce a neurotoxic syndrome characterised by sustained tremors, were studied using sheep and rat synaptosomes. The toxins were administered in vivo, either by chronic feeding (sheep) or intraperitoneal injection 45 min prior to killing (rat), and synaptosomes were subsequently prepared from cerebrocortical and spinal cord/medullary regions of rat, and corpus striatum of sheep. Penitrem A (400 mg mycelium/kg) increased the spontaneous release of endogenous glutamate, GABA (gamma-aminobutyric acid), and aspartate by 213%, 455%, and 277%, respectively, from cerebrocortical synaptosomes. Verruculogen (400 mg mycelium/kg) increased the spontaneous release of glutamate and aspartate by 1300% and 1200%, respectively, but not that of GABA from cerebrocortical synaptosomes. The spontaneous release of the transmitter amino acids or other amino acids was not increased by the tremorgens in spinal cord/medullary synaptosomes. Penitrem A pretreatment reduced the veratrine (75 microM) stimulated release of glutamate, aspartate, and GABA from cerebrocortical synaptosomes by 33%, 46%, and 11%, respectively, and the stimulated release of glycine and GABA from spinal cord/medulla synaptosomes by 67% and 32% respectively. Verruculogen pretreatment did not alter the veratrine-induced release of transmitter amino acids from cerebrocortex and spinal cord/medulla synaptosomes. Penitrem A pretreatment increased the spontaneous release of aspartate, glutamate, and GABA by 68%, 62%, and 100%, respectively, from sheep corpus striatum synaptosomes but did not alter the synthesis and release of dopamine in this tissue. Verruculogen was shown to cause a substantial increase (300-400%) in the miniature-end-plate potential (m.e.p.p.) frequency at the locust neuromuscular junction. The response was detectable within 1 min, rose to a maximum within 5-7 min, and declined to the control rate over a similar period. No change in the amplitude of the m.e.p.p.'s was observed. These effects of the tremorgens on transmitter release are interpreted in terms of their mode of action.  相似文献   

11.
Slices of mammalian brain accumulate amino acids contained in physiological medium. When such tissues were subjected to mild electrical stimulation of short duraation capable of depolarizing neural membranes, there occurred a striking increase in the efflux of exogenous amino acids. The effects on representative acidic, neutral, and basic amino acids were similar. Elevated levels of potassium chloride evoked release of amino acids comparable to electrical stimulation. Electrically stimulated release of [3H]γ-aminobutyric acid was not inhibited by the presence of reduced concentrations of calcium ions. Although amino acids are actively accumulated by liver and kidney slices, electrical stimulation of these tissues failed to release these compounds. Stimulation-induced release was significantly diminished by the presence of small amounts of lithium in the perfusing medium.  相似文献   

12.
13.
A recent study filling the gap in the genome sequence in the left arm of chromosome 2 of Schizosaccharomyces pombe revealed a homolog of budding yeast Vba2p, a vacuolar transporter of basic amino acids. GFP-tagged Vba2p in fission yeast was localized to the vacuolar membrane. Upon disruption of vba2, the uptake of several amino acids, including lysine, histidine, and arginine, was impaired. A transient increase in lysine uptake under nitrogen starvation was lowered by this mutation. These findings suggest that Vba2p is involved in basic amino acid transport in S. pombe under diverse conditions.  相似文献   

14.
The effects of various amino acids and phosphorylated forms of glucose on the release of digestive enzymes from particulate cellular pools, particularly zymogen granules, were evaluated in rat pancreas. Whole tissue homogenates, as well as zymogen granules isolated either by differential centrifugation in 0.3 M sucrose or by preparation in buffered sucrose and subsequent centrifugation in a Percoll gradient, were studied. The basic amino acids L-arginine and L-lysine, sites of tryptic cleavage, caused the release of trypsinogen, but not chymotrypsinogen, whereas the aromatic amino acids L-phenylalanine and L-tryptophan, sites of chymotryptic cleavage, caused release of both trypsinogen and chymotrypsinogen. Neither led to the release of the starch-splitting enzyme amylase. All effects occurred within the range of normal plasma concentrations for these amino acids in the rat. Two amino acids, L-threonine and hydroxy-L-proline, that are not sites of cleavage by trypsin or chymotrypsin, and a nonmammalian amino acid, aminoadipic acid, did not lead to release of trypsinogen, chymotrypsinogen, or amylase. Two phosphorylated forms of glucose, glucose 1-phosphate and glucose 1,6-diphosphate, caused the release of amylase, but of neither trypsinogen nor chymotrypsinogen. Contrary to previous results, D-glucose was without effect, as was glucose 6-phosphate. We propose that certain digestive end products, by direct action on zymogen granules, cause the selective release of the enzymes involved in their evolution from polymeric substrates during digestion.  相似文献   

15.
The effects of the excitatory amino acid analogs kainate (KA) and N-methyl- -aspartate (NMDA) on release of amino acids from astrocytes in primary culture were investigated. Under basal conditions, glutamine was present in the medium at 15 μM. The levels of serine and taurine were 1.5 and 2.0 μM, respectively, while the concentration of other amino acids was below 1 μM. At 10 μM, KA did not affect amino acid release, whereas 100 μM KA enhanced glutamine release by 34% and taurine release by 85%. At 1 mM, KA stimulated the release of all amino acids measured. However, while most amino acids increased by 50–150%, glutamate and aspartate were elevated by more than 3000%. The effect of KA was greatly reduced by 1 mM kynurenate, an excitatory amino acid receptor antagonist. 1 mM NMDA did not stimulate amino acid release from the cultures. The results indicate that astrocytes are endowed with KA-receptive sites, but they do not seem to possess NMDA receptors.  相似文献   

16.
Acetyl-l-carnitine (ALCAR) was found to have beneficial effects in senile patients. In recent years many of its effects on the nervous system have been examined, but its mechanism(s) of action remains to be elucidated. We previously reported that it causes release of dopamine in the striatum. In the present paper we report that ALCAR, when administered at intracerebral sites via microdialysis, stimulates the release of amino acids in a concentration-dependent and regionally heterogeneous manner. The effect was strong in the striatum and cerebellum, less so in the frontal cortex, and weak in the thalamus. Seven amino acids were measured: the increase in the level of aspartate, glutamate, and taurine was substantial, and the increase in the level of glycine, serine, threonine, alanine, and glutamine in the microdialysate was minor. The stimulatory effect of ALCAR on the release of amino acids in the striatum was inhibited by the muscarinic antagonist atropine, but was not inhibited by the nicotinic antagonist mecamylamine. The effect of ALCAR on the levels of most of the amino acids tested was independent of the presence of Ca2+ in the perfused. These results indicate that ALCAR, when administered intracerebrally at fairly high concentrations, can affect the level and the release not only of such neurotransmitters as acetylcholine and dopamine, but also of amino acids. The mechanism of action of ALCAR on the release of cerebral amino acids may involve the participation of muscarinic receptors or may be mediated through the release of dopamine, but the lack of Ca2+ dependence indicates a release from the cytoplasmic amino acid pool, possibly through the effect of ALCAR on cell membrane permeability.  相似文献   

17.
In most other studies the release of amino acid neurotransmitters and modulators in vitro has been studied mostly using labeled preloaded compounds. For several reasons the estimated release may not reliably reflect the release of endogenous compounds. The magnitudes of the release cannot thus be quite correctly estimated using radioactive labels. The basal and K+-evoked release of the neuroactive endogenous amino acids γ-aminobutyrate (GABA), glycine, taurine, glutamate and aspartate was now studied in slices from the striatum from 7-day-old to 3-month-old mice under control (normoxic) and ischemic conditions. The release of alanine, threonine and serine was assessed as control. GABA and glutamate release was much greater in 3-month-old than in 7-day-old mice, whereas with taurine the situation was the opposite. Ischemia markedly enhanced the release of all these three amino acids. The release of aspartate and glycine was markedly enhanced as well whereas no effects were discernible in the release of glutamine, alanine, serine and threonine. K+ stimulation (50 mM) enhanced the release of GABA, glutamate, taurine, aspartate and glycine in most cases, except with taurine in 3-month-old mice under the ischemic conditions and with aspartate in 7-day-old mice under the control conditions. K+ stimulation did not affect the release of glutamine, alanine, serine or threonine. The results on endogenous amino acids are qualitatively similar to those obtained in our earlier experiments with labeled preloaded amino acids. In conclusion, in developing mice only inhibitory taurine is released in such amounts that may counteract the harmful effects of excitatory amino acids in ischemia.  相似文献   

18.
The effects of selective adenosine receptor agonists [N6-cyclopentyladenosine (CPA) and N-ethylcarboxamidoadenosine (NECA)] and antagonists [8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and 9-chloro-2-(2-furanyl)-5,6-dihydro-1,2,4-triazolo[1,5-c]quinazoline-5-im ine (CGS-15943A)] on aspartate and glutamate release from the ischemic rat cerebral cortex were studied with the cortical cup technique. Cerebral ischemia (for 20 min) was elicited by four-vessel occlusion. Excitatory amino acid releases were compared from control ischemic rats and drug-treated rats. Basal levels of aspartate and glutamate release were not greatly affected by pretreatment with the adenosine receptor agonists or antagonists. However, CPA (10(-10) M) and NECA (10(-9) M) significantly inhibited the ischemia-evoked release of aspartate and glutamate into cortical superfusates. The ability to block ischemia-evoked release of excitatory amino acids was not evident at higher concentrations of CPA (10(-6) M) or NECA (10(-5) M). The selective A1 receptor antagonist DPCPX also had no effect on release when administered at a low dosage (0.01 mg/kg, i.p.) but blocked the ischemia-evoked release of aspartate and glutamate at a higher dosage (0.1 mg/kg). Evoked release was inhibited by the selective A2 receptor antagonist CGS-15943A (0.1 mg/kg, i.p.). Thus, adenosine and its analogs may suppress ischemia-evoked release of excitatory neurotransmitter amino acids via high-affinity A1 receptors, whereas coactivation of lower-affinity A2 receptors may block (or reverse) the A1-mediated response.  相似文献   

19.
Electrophysiological recording techniques were used to study the Na+ dependence of currents through amiloride-sensitive sodium channels (ASSCs) in rat taste cells from the fungiform and vallate papillae. Perforated patch voltage clamp recordings were made from isolated fungiform and vallate taste receptor cells (TRCs) and Na+ transport was measured across lingual epithelia containing fungiform or vallate taste buds in a modified Ussing chamber. In isolated fungiform TRCs that contain Na+ currents sensitive to the diuretic amiloride, Na+ ions inhibit their own influx through ASSCs, a process known as sodium self-inhibition. Due to the interaction between self-inhibition and the driving force for Na+ entry, self-inhibition is most evident in whole-cell recordings at Na+ concentrations from 50 to 75 mM. In amiloride-sensitive cells, the Na permeability is significantly higher in extracellular solutions containing 35 mM Na+ than in 70 or 140 mM Na+. Compared with the block by amiloride, the development of self-inhibition is slow, taking up to 15 s to become maximally inhibited. Approximately one third of fungiform TRCs and all vallate TRCs lack functional ASSCs. These amiloride-insensitive TRCs show no signs of self-inhibition, tying this phenomenon to the presence of ASSCs. The sulfhydryl reagent, p-hydroxymercuribenzoate (p-HMB; 200 μM), reversibly removed self-inhibition from amiloride-sensitive Na+ currents, apparently by modifying cysteine residues in the ASSC. Na+ currents in amiloride-insensitive TRCs were unaffected by p-HMB. In sodium transport studies in fungiform taste bud–containing lingual epithelia, ∼40% of the change in short-circuit current (Isc) after addition of 500 mM NaCl to the mucosal chamber is amiloride sensitive (0.5 mM). p-HMB significantly enhanced mucosal NaCl-induced changes in these epithelia at mucosal Na+ concentrations of 50 mM and above. In contrast, the vallate-containing epithelia, which are insensitive to amiloride, showed no enhancement of Isc during p-HMB treatment. These findings suggest that sodium self-inhibition is present in ASSCs in taste receptor cells where it may play a crucial role in performance of salt-sensitive pathways in taste tissue during sodium stimulation. This phenomenon may be important in the process of TRC adaptation, in the conservation of cellular resources during chronic sodium exposure, or in the gustatory response to water.  相似文献   

20.
We compared the acute effects of intragastric administration of protein and carbohydrate on tryptophan and 5-hydroxytryptamine (5HT) in rat brain, pineal, intestine, and pancreas. Protein decreased and carbohydrate increased brain indoles relative to water-infused controls. These effects were due to competition between the large neutral amino acids for entry into the brain. This competition does not exist in the pineal. The macronutrients had no effect on pineal tryptophan metabolism. In the intestine, protein resulted in higher tryptophan levels as compared to controls, owing to absorption of tryptophan in the protein. However intestinal 5HT levels were influenced by factors other than precursor availability. Pancreatic indoles were affected in a similar manner to the brain indoles. Competition between the large neutral amino acids for entry into the pancreas was also indicated by the finding that valine administration lowered brain and pancreatic tryptophan, but not the levels in the intestine and pineal. It remains to be seen whether the decrease in pancreatic 5HT after a protein meal and the increase after carbohydrate modulate the release of insulin and glucagon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号