首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Infection with the human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi''s sarcoma-associated herpesvirus (KSHV), is associated with several cancers. During lytic replication of herpesviruses, viral genes are expressed in an ordered cascade. However, the mechanism by which late gene expression is regulated has not been well characterized in gammaherpesviruses. In this study, we have investigated the cis element that mediates late gene expression during de novo lytic infection with murine gammaherpesvirus 68 (MHV-68). A reporter system was established and used to assess the activity of viral late gene promoters upon infection with MHV-68. It was found that the viral origin of lytic replication, orilyt, must be on the reporter plasmid to support activation of the late gene promoter. Furthermore, the DNA sequence required for the activation of late gene promoters was mapped to a core element containing a distinct TATT box and its neighboring sequences. The critical nucleotides of the TATT box region were determined by systematic mutagenesis in the reporter system, and the significance of these nucleotides was confirmed in the context of the viral genome. In addition, EBV and KSHV late gene core promoters could be activated by MHV-68 lytic replication, indicating that the mechanisms controlling late gene expression are conserved among gammaherpesviruses. Therefore, our results on MHV-68 establish a solid foundation for mechanistic studies of late gene regulation.  相似文献   

9.
10.
Murine gammaherpesvirus 68 (MHV-68), Kaposi's sarcoma-associated herpesvirus (HHV-8), and Epstein-Barr virus (EBV) are all members of the gammaherpesvirus family, characterized by their ability to establish latency in lymphocytes. The RTA protein, conserved in all gammaherpesviruses, is known to play a critical role in reactivation from latency. Here we report that HHV-8 RTA, not EBV RTA, was able to induce MHV-68 lytic viral proteins and DNA replication and processing and produce viable MHV-68 virions from latently infected cells at levels similar to those for MHV-68 RTA. HHV-8 RTA was also able to activate two MHV-68 lytic promoters, whereas EBV RTA was not. In order to define the domains of RTA responsible for their functional differences in viral promoter activation and initiation of the MHV-68 lytic cycle, chimeric RTA proteins were constructed by exchanging the N-terminal and C-terminal domains of the RTA proteins. Our data suggest that the species specificity of MHV-68 RTA resides in the N-terminal DNA binding domain.  相似文献   

11.
12.
13.
14.
15.
Murine gammaherpesvirus 68 (MHV-68) has been developed as a model for the human gammaherpesviruses Epstein-Barr virus and human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus (HHV-8/KSHV), which are associated with several types of human diseases. Open reading frame 45 (ORF45) is conserved among the members of the Gammaherpesvirinae subfamily and has been suggested to be a virion tegument protein. The repression of ORF45 expression by small interfering RNAs inhibits MHV-68 viral replication. However, the gene product of MHV-68 ORF45 and its function have not yet been well characterized. In this report, we show that MHV-68 ORF45 is a phosphorylated nuclear protein. We constructed an ORF45-null MHV-68 mutant virus (45STOP) by the insertion of translation termination codons into the portion of the gene encoding the N terminus of ORF45. We demonstrated that the ORF45 protein is essential for viral gene expression immediately after the viral genome enters the nucleus. These defects in viral replication were rescued by providing ORF45 in trans or in an ORF45-null revertant (45STOP.R) virus. Using a transcomplementation assay, we showed that the function of ORF45 in viral replication is conserved with that of its KSHV homologue. Finally, we found that the C-terminal 23 amino acids that are highly conserved among the Gammaherpesvirinae subfamily are critical for the function of ORF45 in viral replication.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号