首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
When the trp operon of Escherichia coli contains either of two deletions that fuse the initial portion of the leader region to the distal segments of the trpE gene, novel fusion polypeptides are produced. The new polypeptides are synthesized efficiently both in vivo and in vitro, and their synthesis is subject to repression by trp repressor. Fingerprint analyses of tryptic and chymotryptic digests of the new polypeptides show that both contain trpE polypeptide sequences and, despite their different sizes, share the same N-terminal sequence. Our results suggest that synthesis of the new polypeptides is initiated at the AUG-centered ribosome-binding site in the leader region and proceeds in phase to the region coding for the C-terminal end of the trpE polypeptide.  相似文献   

2.
We investigated the structural, functional, and regulatory properties of the Shigella dysenteriae tryptophan (trp.) operon in transduction hybrids in which the cysB-trp-region of Escherichia coli is replaced by the corresponding region from S. dysenteriae. Tryptophan biosynthesis was largely blocked in the hybrids, although the order of the structural genes was identical with that of E. coli. Nutritional tests and enzyme assays revealed that the hybrids produced a defective anthranilate synthetase (ASase). Deletion mapping identified two distinct sites in trpE, each of which was partially responsible for the instability and low activity of ASase. We also discovered a pleiotropic site trpP (S) that maps outside the structural gene region and is closely linked to the S. dysenteriae trp operator. trpP (S) reduced the rate of trp messenger ribonucleic acid synthesis, and consequently trp enzyme levels, 10-fold relative to wild-type E. coli. In recombinants in which the structural genes of E coli were under the control of the S. dysenteriae promoter, enzyme levels were also reduced 10-fold. In some fast-growing revertants of the original hybrids, the rates of trp messenger ribonucleic acid synthesis and levels of tryptophan synthetase were restored to values characteristic of wild-type E.coli. Thus, the Trp auxotrophy associated with the S dysenteriae trp operon derives from the combination of a defective ASase and decreased expression of the entire operon imposed by trpP (S).  相似文献   

3.
Escherichia coli minichromosomes are plasmids replicating exclusively from a cloned copy of oriC, the chromosomal origin of replication. They are therefore subject to the same types of replication control as imposed on the chromosome. Unlike natural plasmid replicons, minichromosomes do not adjust their replication rate to the cellular copy number and they do not contain information for active partitioning at cell division. Analysis of mutant strains where minichromosomes cannot be established suggest that their mere existence is dependent on the factors that ensure timely once per cell cycle initiation of replication. These observations indicate that replication initiation in E. coli is normally controlled in such a way that all copies of oriC contained within the cell, chromosomal and minichromosomal, are initiated within a fairly short time interval of the cell cycle. Furthermore, both replication and segregation of the bacterial chromosome seem to be controlled by sequences outside the origin itself.  相似文献   

4.
Nucleotide sequence of the Bacillus subtilis trpE and trpD genes   总被引:17,自引:0,他引:17  
L Band  H Shimotsu  D J Henner 《Gene》1984,27(1):55-65
Several overlapping portions of the tryptophan (trp) operon of Bacillus subtilis have been cloned into plasmid pBR322. The nucleotide sequence of the region comprising the trpE and trpD genes and a portion of the trpC gene has been determined. When the deduced amino acid sequences of these genes are compared with their counterparts in Escherichia coli, several regions of striking homology are seen. The probable initiation codons for the trpE, D and C genes are each preceded by a recognizable Shine-Dalgarno sequence. The coding sequences for the trpE and trpD genes and for the trpD and trpC genes overlap slightly, leaving no intercistronic regions between the genes.  相似文献   

5.
The minimal replicon from IncP-9 plasmid pM3, consisting of oriV and rep, is able to replicate in Pseudomonas putida but not in Escherichia coli, unless production of Rep protein is increased. The Rep protein, at 20kDa, is the smallest replication protein so far identified for a theta replicating plasmid. Rep was purified and shown to bind in three blocks across the oriV region that do not correlate with a single unique binding sequence. The block closest to rep is not necessary for oriV function. Rep forms at least two types of complex--one rendering the DNA entirely resistant to cleavage, the other occupying one side of the helix. No short segment of oriV showed the same affinity for Rep as the whole of oriV. The oriV region did not bind purified DnaA from E. coli, P. putida or P. aeruginosa but when Rep was present also, super-shifts were found with DnaA in a sequence-specific manner. Scrambling of the primary candidate DnaA box did not inactivate oriV but did increase the level of Rep required to activate oriV. The general pattern of Rep-DNA recognition sequences in oriV indicates that the IncP-9 system falls outside of the paradigms of model plasmids that have been well-studied to date.  相似文献   

6.
7.
8.
9.
10.
11.
Magnoni F  Sala C  Forti F  Dehò G  Ghisotti D 《Plasmid》2006,56(3):216-222
The genetic element P4 propagates in its host Escherichia coli both as a satellite phage and as a plasmid. Two partially overlapping replicons coexist, namely replicon I and replicon II. The former is composed of two sites, ori1 and crr, and depends on P4 alpha gene product for replication. The P4 alpha protein has primase and helicase activities, and binds specifically to both ori1 and crr. Replicon II is composed of two sites, ori2 and crr, and its replication also depends on P4 alpha primase and helicase activities. In replicon II, the alpha protein binds only crr. Here we show that for replicon II the relative orientation of ori2 and crr is essential for replication to occur. Furthermore we delimit ori2 to a 22 bp region (6234-6255), internal to the alpha gene, sufficient for replicon II replication. We mutagenized this region and identified two mutants, which carry one and two base substitutions, respectively, that prevent replicon II replication. In electrophoretic mobility shift experiments of ori2, ori1, and crr DNA fragments with E. coli extracts, ori2 was not shifted, whereas both ori1 and crr were specifically bound, suggesting that other host protein(s), beside P4 alpha, are able to bind to these cis essential regions. Apparently, no binding to ori2 could be identified, thus suggesting that neither alpha nor other bacterial proteins specifically bind to this region.  相似文献   

12.
13.
14.
15.
Two anthranilate synthase gene pairs have been identified in Pseudomonas aeruginosa. They were cloned, sequenced, inactivated in vitro by insertion of an antibiotic resistance gene, and returned to P. aeruginosa, replacing the wild-type gene. One anthranilate synthase enzyme participates in tryptophan synthesis; its genes are designated trpE and trpG. The other anthranilate synthase enzyme, encoded by phnA and phnB, participates in the synthesis of pyocyanin, the characteristic phenazine pigment of the organism. trpE and trpG are independently transcribed; homologous genes have been cloned from Pseudomonas putida. The phenazine pathway genes phnA and phnB are cotranscribed. The cloned phnA phnB gene pair complements trpE and trpE(G) mutants of Escherichia coli. Homologous genes were not found in P. putida PPG1, a non-phenazine producer. Surprisingly, PhnA and PhnB are more closely related to E. coli TrpE and TrpG than to Pseudomonas TrpE and TrpG, whereas Pseudomonas TrpE and TrpG are more closely related to E. coli PabB and PabA than to E. coli TrpE and TrpG. We replaced the wild-type trpE on the P. aeruginosa chromosome with a mutant form having a considerable portion of its coding sequence deleted and replaced by a tetracycline resistance gene cassette. This resulted in tryptophan auxotrophy; however, spontaneous tryptophan-independent revertants appeared at a frequency of 10(-5) to 10(6). The anthranilate synthase of these revertants is not feedback inhibited by tryptophan, suggesting that it arises from PhnAB. phnA mutants retain a low level of pyocyanin production. Introduction of an inactivated trpE gene into a phnA mutant abolished residual pyocyanin production, suggesting that the trpE trpG gene products are capable of providing some anthranilate for pyocyanin synthesis.  相似文献   

16.
The species Balantidium coli is the only ciliate that parasitizes humans. It has been described in other primates, and it has been proposed that the species B. suis from pigs and B. struthionis from ostriches are synonyms of B. coli. Previous genetic analysis of pig and ostrich Balantidium isolates found a genetic polymorphism in the ITS region but its taxonomic relevance was not established. We have extended the genetic analysis to Balantidium isolates of pig, gorilla, human and ostrich origin. We have PCR-amplified and sequenced the ITS region of individual Balantidium cells. The predicted ITS secondary structures of the sequences obtained were transferred by homology modelling to the sequences of other Trichostomatia ciliates (Isotricha, Troglodytella, Lacrymaria and Spathidium) and compared to determine the importance of the differences in the primary sequences. The results show that the ITS2 secondary structure of the species considered follows the general pattern of other ciliates, although with some deviations. There are at least two main types of ITS sequence variants in B. coli which could be present in the same cell and they are common to the mammal and avian hosts studied. These data do not support B. suis and B. struthionis as distinct species.  相似文献   

17.
18.
We have determined the DNA sequence of the distal 148 codons of trpE and all of trpG in Pseudomonas aeruginosa. These genes encode, respectively, the large and small (glutamine amidotransferase) subunits of anthranilate synthase, the first enzyme in the tryptophan synthetic pathway. The sequenced region of trpE is homologous with the distal portion of E. coli and Bacillus subtilis trpE, whereas the trpG sequence is homologous to the glutamine amidotransferase subunit genes of a number of bacterial and fungal anthranilate synthases. The two coding sequences overlap by 23 bp. Codon usage in these Pseudomonas genes shows a marked preference for codons ending in G or C, thereby resembling that of trpB, trpA, and several other chromosomal loci from this species and others with a high G + C content in their DNA. The deduced amino acid sequence for the P. aeruginosa trpG gene product differs to a surprising extent from the directly determined amino acid sequence of the glutamine amidotransferase subunit of P. putida anthranilate synthase (Kawamura et al. 1978). This suggests that these two proteins are encoded by loci that duplicated much earlier in the phylogeny of these organisms but have recently assumed the same function. We have also determined 490 bp of DNA sequence distal to trpG but have not ascertained the function of this segment, though it is rich in dyad symmetries.   相似文献   

19.
To increase yields of calf prochymosin (PC) produced in Escherichia coli, PC cDNA was cloned in a plasmid vector under control of the trp promoter. The hybrid plasmid pCR501 constructed for this purpose contains cDNA coding for PC (from the 5th Arg to the C-terminal Ile) fused to the N-terminal fragment of the trpE gene preceded by the trp promoter and attenuator region. E. coli C600 harboring this plasmid produces approx. 300 000 molecules of PC per cell. This is about a tenfold increase above the amount obtained using lacUV5 promoter [Nishimori et al., Gene 19 (1982) 337-344]. A similar plasmid, pCR601, which contains the same coding sequence fused to the trp promoter and N-terminal fragment of the trpL gene, directs the production of PC at the same rate as pCR501. In pCR601 the trp attenuator is deleted. Another plasmid, pCR701, in which construction of a sequence coding for fMet-PC cDNA that was aided by chemical synthesis, was placed under direct control of the trp promoter, produced PC at a much lower rate. Extracts prepared from all these bacterial transformants in the presence of urea showed distinct milk-clotting activity after renaturation and processing.  相似文献   

20.
E J Gren 《Biochimie》1984,66(1):1-29
The structural aspects of recognition by E. coli ribosomes of translational initiation regions on homologous messenger RNAs have been reviewed. Also discussed is the location of initiation region on mRNA, its confines, typical nucleotide sequences responsible for initiation signal, and the influence of RNA macrostructure on protein synthesis initiation. Most of the published DNA nucleotide sequences surrounding the start of various E. coli genes and those of its phages have been collected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号