首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The raw potato-starch-digesting alpha-amylase gene of Bacillus circulans F-2 was cloned for the first time in Escherichia coli C600, using plasmid pYEJ001. The recombinant plasmid, named pYKA3, has a 5.4 kb insert from a chromosome of the donor bacterium. Subcloning of this amylase gene gave plasmid pHA300 which carried 3.15 kb of the inserted DNA. The transformed bacterium, E. coli C600 (pYKA3), produced the amylase in the periplasmic space, whereas it is secreted outside the cell in the donor bacterium. The cloned raw-starch-digesting alpha-amylase has a molecular weight of 93,000 on SDS-PAGE, and its action pattern was absolutely the same as that of the potent raw-starch-digestible amylase produced by B. circulans F-2. The periplasmic amylase produced by the transformed E. coli (pHA300) could digest raw starch granules such as potato, corn and barley raw starch granules, indicating that the raw-starch-digesting amylase is active in E. coli. Furthermore, this amylase crossreacted with the rabbit antiserum raised against the raw potato-digesting alpha-amylase of B. circulans F-2. From these results it was concluded that the cloned amylase is the same amylase protein as B. circulans F-2 amylase, which has a potent raw-starch digestibility. Thus, this paper is to our knowledge the first describing the molecular cloning of raw-starch-digesting alpha-amylase from Bacillus species and its successful expression in E. coli.  相似文献   

2.
An amylase gene from Drosophila pseudoobscura was isolated from a genomic library constructed in pBR322 and cloned in Escherichia coli by selecting for the ability of its product to hydrolyze starch, a carbon source not normally utilized by E. coli. Hybridization of pAMY17F to D. pseudoobscura polytene chromosomes shows a positive signal at the amylase pseudogene locus (bank 78, chromosome 3). The chimeric plasmid pAMY17F, has been altered in such a way as to increase amylase expression. Southern and Northern hybridizations to the cloned amylase DNA indicate that the source of the gene is from D. pseudoobscura. Biochemical properties such as pH optima, substrate specificities, electrophoretic analyses, inhibitor sensitivities, heat stabilities, temperature responsiveness and molecular weights indicate that the amylases produced by the fly and bacterial clone are similar and have similar properties. It appears that E. coli/pAMY17F is producing an amylase like that found in D. pseudoobscura.  相似文献   

3.
A gene coding for a thermostable extracellular alpha-amylase, carried by a 5.7 kb BamHI chromosomal DNA fragment isolated from Streptomyces thermoviolaceus strain CUB74, was cloned into Escherichia coli JM107 using, as a cloning vector, the high-copy-number plasmid pUC8. E. coli containing a recombinant plasmid pQR300 expressed the amylase gene and exported the enzyme into the periplasmic space and the culture medium. The amylase protein expressed by E. coli had the same molecular mass (50 kDa) as that expressed by the Streptomyces parent strain, which suggests that the enzyme is processed similarly by both strains. The amylase gene was also cloned into Streptomyces lividans TK24 using pIJ702 as vector. The enzyme was stable at 70 degrees C when CaCl2 was present.  相似文献   

4.
5.
The primary amine coupling reagents succinimidyl-6-biotinamido-hexanoate (NHS-A-biotin) and sulfosuccinimidyl-6-biotinamido-hexanoate (NHS-LC-biotin) were tested for their ability to selectively label Escherichia coli cell envelope proteins in vivo. Probe localization was determined by examining membrane, periplasmic, and cytosolic protein fractions. Both hydrophobic NHS-A-biotin and hydrophilic NHS-LC-biotin were shown to preferentially label outer membrane, periplasmic, and inner membrane proteins. NHS-A- and NHS-LC-biotin were also shown to label a specific inner membrane marker protein (Tet-LacZ). Both probes, however, failed to label a cytosolic marker (the omega fragment of beta-galactosidase). The labeling procedure was also used to label E. coli cells grown in low-salt Luria broth medium supplemented with 0, 10, and 20% sucrose. Outer membrane protein A (OmpA) and OmpC were labeled by both NHS-A- and NHS-LC-biotin at all three sucrose concentrations. In contrast, OmpF was labeled by NHS-A-biotin but not by NHS-LC-biotin in media containing 0 and 10% sucrose. OmpF was not labeled by either NHS-A- or NHS-LC-biotin in E. coli cells grown in medium containing 20% sucrose. Coomassie-stained gels, however, revealed similar quantities of OmpF in E. coli cells grown at all three sucrose concentrations. These data indicate that there was a change in outer membrane structure due to increased osmolarity, which limits accessibility of NHS-A-biotin to OmpF.  相似文献   

6.
Mal+ lacZ operon fusions, inducible by maltose, were isolated in Escherichia coli, strain MC4100. One fusion strain, SF1707, was analyzed in detail. This fusion did not map in any of the known genes of the malA or malB region, but its expression was under control of malT, the positive regulator gene of the maltose regulon. The gene in which the fusion occurred mapped between xyl and mtl at 80 min on the linkage map and was transcribed clockwise. We define this gene as malS. The malS-lacZ fusion was transferred onto a phage lambda vector and the 5' portion of malS was subcloned into pBR322. The resulting plasmid was used as a probe to identify the intact malS gene in a lambda library of E. coli chromosomal HindIII fragments. The phage that hybridized with the probe contained a 12-kilobase insert. The malS containing portion was subcloned into pBR322 as a 4-kilobase ClaI-HindIII fragment. This plasmid directed the malT and maltose-dependent synthesis of a periplasmic protein of 66,000 apparent molecular weight. The purified enzyme hydrolyzed maltodextrins longer than maltose including cyclic dextrins. The primary products of hydrolysis were glucose, maltose, and maltotriose, even when maltotetraose was used as a substrate. These properties differentiate this periplasmic enzyme from the cytoplasmic amylomaltase and define it as an alpha-amylase.  相似文献   

7.
An alpha-amylase gene from Bacillus sp. strain TS-23 was cloned and expressed by using its own promoter on the recombinant plasmid pTS917 in Escherichia coli. A cell fractionation experiment revealed that approximately 60% of the amylase activity was in the periplasmic space. Analysis and activity staining of the concentrated supernatant fraction by SDS-polyacrylamide gel electrophoresis showed an apparent protein band with a mol. wt of approximately 65,000. The amylase gene (amyA) consisted of an open reading frame of 1,845 bp encoding a protein of 613 amino acids with a calculated mol. wt of 69,543. The predicted amino acid sequence showed high homology with Bacillus species, E. coli and Salmonella typhimurium alpha-amylases. Deletion of 96 amino acids from the C-terminal portion of the amylase did not result in the loss of amylolytic activity. The truncated amylase, deletion of the first 50 amino acids from the N-terminus, was overexpressed in E. coli system and refolded to yield an activable enzyme.  相似文献   

8.
The complete nucleotide sequence of two genes from Clostridium thermosulfurogenes EM1 homologous to E. coli genes encoding transport proteins was determined by the dideoxy procedure. The genes were cloned from plasmid pCT4, which contains the alpha-amylase gene from C. thermosulfurogenes EM1 as a 2.9-kbp XbaI fragment, inserted into the XbaI site of pUC18, to yield plasmid pCT401. The proteins encoded by the two identified complete ORFs are very hydrophobic and thus are probably integral membrane proteins. They show over 50% similarity to the maltose transport proteins MalF and MalG and to the glycerol-3-phosphate uptake proteins UgpA and UgpE of Escherichia coli. Since these genes are located immediately upstream of the alpha-amylase gene (amyA) of C. thermosulfurogenes EM1, the encoded proteins might be involved in transport of starch degradation products. The genes were tentatively designated amyC and amyD.  相似文献   

9.
The relationship between cyclic adenosine 3',5'-monophosphate (cyclic AMP) metabolism and the induction of tryptophanase and beta-galactosidase was studied in several strains of Escherichia coli grown with succinate, acetate, glycerol, or glucose as the carbon source. No consistent relationship between the intracellular concentration of cyclic AMP in the several strains cultured and the various carbon sources was discerned. In E. coli K-12-1 the induction of tryptophanase was found to vary in the order: succinate greater than acetate greater than glycerol greater than glucose, and that of beta-galactosidase was found in the order: glycerol greater than acetate greater than succinate greater than glucose. Rate of accumulation of cyclic AMP in the culture filtrate was in the order: succinate greater than acetate greater than glycerol greater than glucose. The addition of glycerol to E. coli K-12-1 grown in acetate caused inhibition of tryptophanase and slight inhibition of accumulation of extracellular cyclic AMP. These same conditions caused beta-galactosidase induction to be stimulated. The addition of exogenous cyclic AMP to cultures grown with four different carbon sources had an effect characteristic for each of the two enzymes studied as well as each individual carbon source. The results suggest that there are control elements distinct from cyclic AMP and its receptor protein which respond to the catabolic situation of the cell.  相似文献   

10.
Strain MM6-13 (ptsI suc lacI sup) of Escherichia coli contains a suppressor of the succinate-negative phenotype. In MM6-13, sup caused enhanced growth in glycerol, maltose, melibiose, and succinate media and increased activity of beta-galactosidase and tryptophanase relative to an isogenic strain without sup. In strain A61 (cya sup), sup partially suppressed cya. Cyclic guanosine monophosphate increased beta-galactosidase activity sevenfold in A61 and enabled this strain to grow on maltose, galactose, succinate, and arabinose. Strain A61 responded to much lower concentrations of cyclic adenosine monophosphate than cyclic guanosine monophosphate. It appears that sup is located in the crp locus. These results suggest that sup mutants have an altered cyclic adenosine monophosphate receptor protein which is activated by cyclic guanosine monophosphate and has an increased affinity for cyclic adenosine monophosphate.  相似文献   

11.
The microbial production of alpha-amylase from Bacillus amyloliquefaciens was investigated. The microorganism was grown using media containing glucose or maltose at 37 degrees C and under aerobic conditions in a 16-L fermentor. The alpha-amylase synthesis from maltose was not found to be inducible but was found to be subject to catabolite repression. The maltose uptake rate was observed to be the rate-limiting step compared to the conversion rate of maltose to glucose by intracellular alpha-glucosidase. The alpha-amylase activity achieved with maltose as a substrate was higher than that achieved with glucose. A slower growth rate and a higher cell density were obtained with maltose. The enzyme production pattern depended upon the nutrient composition of the medium.  相似文献   

12.
Thermotoga maritima MSB8 has a chromosomal alpha-amylase gene, designated amyA, that is predicted to code for a 553-amino-acid preprotein with significant amino acid sequence similarity to the 4-alpha-glucanotransferase of the same strain and to alpha-amylase primary structures of other organisms. Upstream of the amylase gene, a divergently oriented open reading frame which can be translated into a polypeptide with similarity to the maltose-binding protein MalE of Escherichia coli was found. The T. maritima alpha-amylase appears to be the first known example of a lipoprotein alpha-amylase. This is in agreement with observations pointing to the membrane localization of this enzyme in T. maritima. Following the signal peptide, a 25-residue putative linker sequence rich in serine and threonine was found. The amylase gene was expressed in E. coli, and the recombinant enzyme was purified and characterized. The molecular mass of the recombinant enzyme was estimated at 61 kDa by denaturing gel electrophoresis (63 kDa by gel permeation chromatography). In a 10-min assay at the optimum pH of 7.0, the optimum temperature of amylase activity was 85 to 90 degrees C. Like the alpha-amylases of many other organisms, the activity of the T. maritima alpha-amylase was dependent on Ca2+. The final products of hydrolysis of soluble starch and amylose were mainly glucose and maltose. The extraordinarily high specific activity of the T. maritima alpha-amylase (about 5.6 x 10(3) U/mg of protein at 80 degrees C, pH 7, with amylose as the substrate) together with its extreme thermal stability makes this enzyme an interesting candidate for biotechnological applications in the starch processing industry.  相似文献   

13.
A Butyrivibrio fibrisolvens amylase gene was cloned and expressed by using its own promoter on the recombinant plasmid pBAMY100 in Escherichia coli. The amylase gene consisted of an open reading frame of 2,931 bp encoding a protein of 976 amino acids with a calculated Mr of 106,964. In E. coli(pBAMY100), more than 86% of the active amylase was located in the periplasm, and TnphoA fusion experiments showed that the enzyme had a functional signal peptide. The B. fibrisolvens amylase is a calcium metalloenzyme, and three conserved putative calcium-binding residues were identified. The amylase showed high sequence homology with other alpha-amylases in the three highly conserved regions which constitute the active centers. These and other conserved regions were located in the N-terminal half, and no similarity with any other amylase was detected in the remainder of the protein. Deletion of approximately 40% of the C-terminal portion of the amylase did not result in loss of amylolytic activity. The B. fibrisolvens amylase was identified as an endo-alpha-amylase by hydrolysis of the Phadebas amylase substrate, hydrolysis of gamma-cyclodextrin to maltotriose, maltose, and glucose and the characteristic shape of the blue value and reducing sugar curves. Maltotriose was the major initial hydrolysis product from starch, although extended incubation resulted in its hydrolysis to maltose and glucose.  相似文献   

14.
Studies indicated that prior growth of Staphylococcus aureus 196E on glycerol or maltose led to cells with repressed ability to produce staphylococcal enterotoxin A (SEA). A PTS- mutant (196E-MA) lacking the phosphoenolpyruvate phosphotransferase system (PTS), derived from strain 196E, showed considerably less repression of SEA synthesis when cells were grown in glycerol or maltose. Since SEA synthesis is not repressed in the PTS- mutant, repression of toxin synthesis by glycerol, maltose or glucose in S. aureus 196E appears to be related to the presence of a functional PTS irrespective of whether the carbohydrate requires the PTS for cell entry. With lactose as an inducer, glucose, glycerol, maltose or 2-deoxyglucose repressed the synthesis of beta-galactosidase in S. aureus 196E. It is postulated that these compounds repress enzyme synthesis by an inducer exclusion mechanism involving phosphorylated sugar intermediates. However, inducer exclusion probably does not explain the mechanism of repression of SEA synthesis by carbohydrates.  相似文献   

15.
Escherichia coli B strains that have acquired the malB region from E. coli K-12 are able to utilize maltose and to adsorb phage lambda when grown at 30 C, but when grown at 40 C they do not absorb phage lambda and are devoid of amylomaltase activity. These Mal(ts) Lam(ts) cells can be mutated or transduced to become able to grow on maltose at 40 C, but they still have no detectable amylomaltase activity nor functional lambda receptors at that temperature. This Mal(40) phenotype is governed by a gene located near or at malA. It is suggested that the temperature sensitivity of both characters results from a defect in malT. However, transduction of malA from E. coli B to E. coli K-12 results in a wild-type phenotype, whereas E. coli B cells that have acquired malA from E. coli K-12 donors are still temperature sensitive for both amylomaltase and lambda-receptor production.  相似文献   

16.
Catabolite repression of tryptophanase in Escherichia coli   总被引:16,自引:14,他引:2       下载免费PDF全文
Catabolite repression of tryptophanase was studied in detail under various conditions in several strains of Escherichia coli and was compared with catabolite repression of beta-glactosidase. Induction of tryptophanase and beta-galactosidase in cultures grown with various carbon sources including succinate, glycerol, pyruvate, glucose, gluconate, and arabinose is affected differently by the various carbon sources. The extent of induction does not seem to be related to the growth rate of the culture permitted by the carbon source during the course of the experiment. In cultures grown with glycerol as carbon source, preinduced for beta-galactosidase or tryptophanase and made permeable by ethylenediaminetetraacetic acid (EDTA) treatment, catabolite repression of tryptophanase was not affected markedly by the addition of cAMP (3',5'-cyclic adenosine monophosphate). Catabolite repression by glucose was only partially relieved by the addition of cAMP. In contrast, under the same conditions, cAMP completely relieved catabolite repression of beta-galactosidase by either pyruvate or glucose. Under conditions of limited oxygen, induction of tryptophanase is sensitive to catabolite repression; under the same conditions, beta-galactosidase induction is not sensitive to catabolite repression. Induction of tryptophanase in cells grown with succinate as carbon source is sensitive to catabolite repression by glycerol and pyruvate as well as by glucose. Studies with a glycerol kinaseless mutant indicate that glycerol must be metabolized before it can cause catabolite repression. The EDTA treatment used to make the cells permeable to cAMP was found to affect subsequent growth and induction of either beta-galactosidase or tryptophanase much more adversely in E. coli strain BB than in E. coli strain K-12. Inducation of tryptophanase was reduced by the EDTA treatment significantly more than induction of beta-galactosidase in both strains. Addition of 2.5 x 10(-3)m cAMP appeared partially to reverse the inhibitory effect of the EDTA treatment on enzyme induction but did not restore normal growth.  相似文献   

17.
18.
The B. subtilis alpha-amylase promoter and signal peptide are functional in E. coli cells. DNA fragments coding for signal peptides with different lengths (28, 31, 33 and 41 amino acids from the translation initiator Met) were prepared and fused with the E. coli beta-lactamase structural gene. In B. subtilis cells, the sequences of 31, 33 and 41 amino acids were able to secrete beta-lactamase into the surrounding media, but the 28 amino acid sequence was not. In contrast, all of the four sequences were able to export beta-lactamase into the periplasmic space of E. coli cells. Thus, the recognition of the B. subtilis alpha-amylase signal peptide in E. coli cells seems to be different from that in B. subtilis cells.  相似文献   

19.
The effect of cyclic 3',5'-adenosine monophosphate (cAMP) on the rate of beta-galactosidase biosynthesis was studied in the cells of Escherichia coli M-17 growing in MPB and mineral media with glucose and maltose, i.e. under the conditions of various catabolite repression, as well as upon lac-operon induction by isopropyl-beta-D-galactopyranoside (IPGP). The stimulating action of exogenous cAMP was found only in a medium with salts and glucose. The induction by IPGP was highest during the growth in a medium with glucose and maltose. When the medium contained IPGP, cAMP accelerated the enzyme synthesis in all media, but only at the early growth phases, while cAMP eliminated the effect of IPGP at the stationary phase of growth. The regulation of beta-galactosidase biosynthesis by cAMP demonstrated for the first time that this effect depended on the physiological state of E. coli: the expression of catabolite-sensitive E. coli genes was subject to both positive and negative regulation in one and the same inducible system. The effect exerted by cAMP depended on the nature of a carbon source in the growth medium.  相似文献   

20.
Hog pancreas alpha-amylase (alpha-1-4-glucan-glucan hydrolase, E.C. 3.2.1.1) lost its structural calcium by action of EDTA at 20 degrees C. Enzymatic activity experimented a decrease whereas a big increase in proteolytic susceptibility to bovine pancreas trypsin (E.C. 3.4.4.4) was shown. Native alpha-amylase had an activity of 2,730 mg maltose/min X mg enzyme and a Km of 0.222% amylose, the activity of calcium depleted amylase being of 1,640 mg maltose/min X mg enzyme and Km 0.571% amylose. Simple methods for evaluating proteolytic susceptibility of alpha-amylase micro-amounts against trypsin action, and for the measurement of alpha-amylase activity in polyacrylamide rod gels were also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号