首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus) provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL) mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration.  相似文献   

2.
Turnover of Sex Chromosomes in the Stickleback Fishes (Gasterosteidae)   总被引:1,自引:0,他引:1  
Diverse sex-chromosome systems are found in vertebrates, particularly in teleost fishes, where different systems can be found in closely related species. Several mechanisms have been proposed for the rapid turnover of sex chromosomes, including the transposition of an existing sex-determination gene, the appearance of a new sex-determination gene on an autosome, and fusions between sex chromosomes and autosomes. To better understand these evolutionary transitions, a detailed comparison of sex chromosomes between closely related species is essential. Here, we used genetic mapping and molecular cytogenetics to characterize the sex-chromosome systems of multiple stickleback species (Gasterosteidae). Previously, we demonstrated that male threespine stickleback fish (Gasterosteus aculeatus) have a heteromorphic XY pair corresponding to linkage group (LG) 19. In this study, we found that the ninespine stickleback (Pungitius pungitius) has a heteromorphic XY pair corresponding to LG12. In black-spotted stickleback (G. wheatlandi) males, one copy of LG12 has fused to the LG19-derived Y chromosome, giving rise to an X1X2Y sex-determination system. In contrast, neither LG12 nor LG19 is linked to sex in two other species: the brook stickleback (Culaea inconstans) and the fourspine stickleback (Apeltes quadracus). However, we confirmed the existence of a previously reported heteromorphic ZW sex-chromosome pair in the fourspine stickleback. The sex-chromosome diversity that we have uncovered in sticklebacks provides a rich comparative resource for understanding the mechanisms that underlie the rapid turnover of sex-chromosome systems.  相似文献   

3.
Sex chromosomes undergo rapid turnover in certain taxonomic groups. One of the mechanisms of sex chromosome turnover involves fusions between sex chromosomes and autosomes. Sexual antagonism, heterozygote advantage, and genetic drift have been proposed as the drivers for the fixation of this evolutionary event. However, all empirical patterns of the prevalence of multiple sex chromosome systems across different taxa cannot be simply explained by these three mechanisms. In this study, we propose that female meiotic drive may contribute to the evolution of neo‐sex chromosomes. The results of this study showed that in mammals, the XY1Y2 sex chromosome system is more prevalent in species with karyotypes of more biarmed chromosomes, whereas the X1X2Y sex chromosome system is more prevalent in species with predominantly acrocentric chromosomes. In species where biarmed chromosomes are favored by female meiotic drive, X‐autosome fusions (XY1Y2 sex chromosome system) will be also favored by female meiotic drive. In contrast, in species with more acrocentric chromosomes, Y‐autosome fusions (X1X2Y sex chromosome system) will be favored just because of the biased mutation rate toward chromosomal fusions. Further consideration should be given to female meiotic drive as a mechanism in the fixation of neo‐sex chromosomes.  相似文献   

4.
How consistent are the evolutionary trajectories of sex chromosomes shortly after they form? Insights into the evolution of recombination, differentiation, and degeneration can be provided by comparing closely related species with homologous sex chromosomes. The sex chromosomes of the threespine stickleback (Gasterosteus aculeatus) and its sister species, the Japan Sea stickleback (G. nipponicus), have been well characterized. Little is known, however, about the sex chromosomes of their congener, the blackspotted stickleback (G. wheatlandi). We used pedigrees to obtain experimentally phased whole genome sequences from blackspotted stickleback X and Y chromosomes. Using multispecies gene trees and analysis of shared duplications, we demonstrate that Chromosome 19 is the ancestral sex chromosome and that its oldest stratum evolved in the common ancestor of the genus. After the blackspotted lineage diverged, its sex chromosomes experienced independent and more extensive recombination suppression, greater X–Y differentiation, and a much higher rate of Y degeneration than the other two species. These patterns may result from a smaller effective population size in the blackspotted stickleback. A recent fusion between the ancestral blackspotted stickleback Y chromosome and Chromosome 12, which produced a neo-X and neo-Y, may have been favored by the very small size of the recombining region on the ancestral sex chromosome. We identify six strata on the ancestral and neo-sex chromosomes where recombination between the X and Y ceased at different times. These results confirm that sex chromosomes can evolve large differences within and between species over short evolutionary timescales.  相似文献   

5.
Drosophila nasuta albomicans (with 2n = 6), contains a pair of metacentric neo-sex chromosomes. Phylogenetically these are products of centric fusion between ancestral sex (X, Y) chromosomes and an autosome (chromosome 3). The polytene chromosome complement of males with a neo-X- and neo-Y-chromosomes has revealed asynchrony in replication between the two arms of the neo-sex chromosomes. The arm which represents the ancestral X-chromosome is faster replicating than the arm which represents ancestral autosome. The latter arm of the neo-sex chromosome is synchronous with other autosomes of the complement. We conclude that one arm of the neo-X/Y is still mimicking the features of an autosome while the other arm has the features of a classical X/Y-chromosome. This X-autosome translocation differs from the other evolutionary X-autosome translocations known in certain species ofDrosophila.  相似文献   

6.
Tandem arrays of TTAGG repeats show a highly conserved location at the telomeres across the phylogenetic tree of arthropods. In giant water bugs Belostoma, the chromosome number changed during speciation by fragmentation of the single ancestral X chromosome, resulting in a multiple sex chromosome system. Several autosome–autosome fusions and a fusion between the sex chromosome pair and an autosome pair resulted in the reduced number in several species. We mapped the distribution of telomeric sequences and interstitial telomeric sequences (ITSs) in Belostoma candidulum (2n = 12 + XY/XX; male/female), B. dentatum (2n = 26 + X1X2Y/X1X1X2X2), B. elegans (2n = 26 + X1X2Y/X1X1X2X2), B. elongatum (2n = 26 + X1X2Y/X1X1X2X2), B. micantulum (2n = 14 + XY/XX), and B. oxyurum (2n = 6 + XY/XX) by FISH with the (TTAGG)n probes. Hybridization signals confirmed the presence of TTAGG repeats in the telomeres of all species examined. The three species with reduced chromosome numbers showed additional hybridization signals in interstitial positions, indicating the occurrence of ITS. From the comparison of all species here analyzed, we observed inverse relationships between chromosome number and chromosome size, and between presence/absence of ITS and chromosome number. The ITS distribution between these closely related species supports the hypothesis that several telomere–telomere fusions of the chromosomes from an ancestral diploid chromosome number 2n = 26 + XY/XX played a major role in the karyotype evolution of Belostoma. Consequently, our study provide valuable features that can be used to understand the karyotype evolution, may contribute to a better understanding of taxonomic relationships, and also elucidate the high plasticity of nuclear genomes at the chromosomal level during the speciation processes.  相似文献   

7.
8.
A Yoshido  K Sahara  F Marec  Y Matsuda 《Heredity》2011,106(4):614-624
Geographical subspecies of wild silkmoths, Samia cynthia ssp. (Lepidoptera: Saturniidae), differ considerably in sex chromosome constitution owing to sex chromosome fusions with autosomes, which leads to variation in chromosome numbers. We cloned S. cynthia orthologues of 16 Bombyx mori genes and mapped them to chromosome spreads of S. cynthia subspecies by fluorescence in situ hybridization (FISH) to determine the origin of S. cynthia neo-sex chromosomes. FISH mapping revealed that the Z chromosome and chromosome 12 of B. mori correspond to the Z chromosome and an autosome (A1) of S. c. ricini (Vietnam population, 2n=27, Z0 in female moths), respectively. B. mori chromosome 11 corresponds partly to another autosome (A2) and partly to a chromosome carrying nucleolar organizer region (NOR) of this subspecies. The NOR chromosome of S. c. ricini is also partly homologous to B. mori chromosome 24. Furthermore, our results revealed that two A1 homologues each fused with the W and Z chromosomes in a common ancestor of both Japanese subspecies S. c. walkeri (Sapporo population, 2n=26, neo-Wneo-Z) and S. cynthia subsp. indet. (Nagano population, 2n=25, neo-WZ1Z2). One homologue, corresponding to the A2 autosome in S. c. ricini and S. c. walkeri, fused with the W chromosome in S. cynthia subsp. indet. Consequently, the other homologue became a Z2 chromosome. These results clearly showed a step-by-step evolution of the neo-sex chromosomes by repeated autosome–sex chromosome fusions. We suggest that the rearrangements of sex chromosomes may facilitate divergence of S. cynthia subspecies towards speciation.  相似文献   

9.
Anoles are a clade of iguanian lizards that underwent an extensive radiation between 125 and 65 million years ago. Their karyotypes show wide variation in diploid number spanning from 26 (Anolis evermanni) to 44 (A. insolitus). This chromosomal variation involves their sex chromosomes, ranging from simple systems (XX/XY), with heterochromosomes represented by either micro- or macrochromosomes, to multiple systems (X1X1X2X2/X1X2Y). Here, for the first time, the homology relationships of sex chromosomes have been investigated in nine anole lizards at the whole chromosome level. Cross-species chromosome painting using sex chromosome paints from A. carolinensis, Ctenonotus pogus and Norops sagrei and gene mapping of X-linked genes demonstrated that the anole ancestral sex chromosome system constituted by microchromosomes is retained in all the species with the ancestral karyotype (2n?=?36, 12 macro- and 24 microchromosomes). On the contrary, species with a derived karyotype, namely those belonging to genera Ctenonotus and Norops, show a series of rearrangements (fusions/fissions) involving autosomes/microchromosomes that led to the formation of their current sex chromosome systems. These results demonstrate that different autosomes were involved in translocations with sex chromosomes in closely related lineages of anole lizards and that several sequential microautosome/sex chromosome fusions lead to a remarkable increase in size of Norops sagrei sex chromosomes.  相似文献   

10.
In an attempt to unveil the origin of neo‐sex chromosomes in Ronderosia Cigliano grasshoppers, we performed a combined phylogenetic analysis based on morphological (external morphology and male genitalia) and molecular data (COI, COII, 16S and ITS2) to explore the chromosome evolution within the genus. We also analysed the distributional patterns of the various Ronderosia species and considered the possible role of chromosome rearrangements (CRs) in speciation processes within the genus in the light of ‘suppressed‐recombination’ models. We mapped the states of three chromosomal characters on the combined tree topology. The combined evidence supported Ronderosia as a monophyletic group. The cytogenetic analyses of the genus demonstrated the importance of rearranged karyotypes with single, complex and multiples neo‐sex chromosome determination systems in all species. The chromosome character optimisation suggests X‐autosome centric fusion as the mechanism responsible for neo‐sex chromosome formation in most Ronderosia species, except in R. dubia and R. bergii. Similar autosomes were involved in fusions with the ancestral X chromosome in Ronderosia, supporting previous hypotheses on the unique origin of X‐autosome fusion for the sex chromosome in the genus. As a source of chromosome variation, autosome‐autosome centric fusion played a secondary role in Ronderosia compared with other Dichroplini. Given the homogeneity in the morphological features, the sympatric distribution of closely related species and the intrinsic property of centric fusion as suppressors of the crossing over, we suggest that CRs may have played a key role during the speciation process within Ronderosia.  相似文献   

11.
Classical models suggest that recombination rates on sex chromosomes evolve in a stepwise manner to localize sexually antagonistic variants in the sex in which they are beneficial, thereby lowering rates of recombination between X and Y chromosomes. However, it is also possible that sex chromosome formation occurs in regions with preexisting recombination suppression. To evaluate these possibilities, we constructed linkage maps and a chromosome-scale genome assembly for the dioecious plant Rumex hastatulus. This species has a polymorphic karyotype with a young neo-sex chromosome, resulting from a Robertsonian fusion between the X chromosome and an autosome, in part of its geographic range. We identified the shared and neo-sex chromosomes using comparative genetic maps of the two cytotypes. We found that sex-linked regions of both the ancestral and the neo-sex chromosomes are embedded in large regions of low recombination. Furthermore, our comparison of the recombination landscape of the neo-sex chromosome to its autosomal homolog indicates that low recombination rates mainly preceded sex linkage. These patterns are not unique to the sex chromosomes; all chromosomes were characterized by massive regions of suppressed recombination spanning most of each chromosome. This represents an extreme case of the periphery-biased recombination seen in other systems with large chromosomes. Across all chromosomes, gene and repetitive sequence density correlated with recombination rate, with patterns of variation differing by repetitive element type. Our findings suggest that ancestrally low rates of recombination may facilitate the formation and subsequent evolution of heteromorphic sex chromosomes.  相似文献   

12.
Several types of sex chromosome systems have been recorded among Gymnotiformes, including male and female heterogamety, simple and multiple sex chromosomes, and different mechanisms of origin and evolution. The X1X1X2X2/X1X2Y systems identified in three species of this order are considered homoplasic for the group. In the genus Brachyhypopomus, only B. gauderio presented this type of system. Herein we describe the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV, which have an X1X1X2X2/X1X2Y sex chromosome system that evolved via fusion between an autosome and the Y chromosome. The morphology of the chromosomes and the meiotic pairing suggest that the sex chromosomes of B. gauderio and B. pinnicaudatus have a common origin, whereas in B . n. sp. FLAV the sex chromosome system evolved independently. However, we cannot discard the possibility of common origin followed by distinct processes of differentiation. The identification of two new karyotypes with an X1X1X2X2/X1X2Y sex chromosome system in Gymnotiformes makes it the most common among the karyotyped species of the group. Comparisons of these karyotypes and the evolutionary history of the taxa indicate independent origins for their sex chromosomes systems. The recurrent emergence of the X1X1X2X2/X1X2Y system may represent sex chromosomes turnover events in Gymnotiformes.  相似文献   

13.
14.
Chromosome fusion and fission are primary mechanisms of karyotype evolution. In particular, the fusion of a sex chromosome and an autosome has been proposed as a mechanism to resolve intralocus sexual antagonism. If sexual antagonism is common throughout the genome, we should expect to see an excess of fusions that join sex chromosomes and autosomes. Here, we present a null model that provides the probability of a sex chromosome autosome fusion, assuming all chromosomes have an equal probability of being involved in a fusion. This closed-form expression is applicable to both male and female heterogametic sex chromosome systems and can accommodate unequal proportions of fusions originating in males and females. We find that over 25% of all chromosomal fusions are expected to join a sex chromosome and an autosome whenever the diploid autosome count is fewer than 16, regardless of the sex chromosome system. We also demonstrate the utility of our model by analysing two contrasting empirical datasets: one from Drosophila and one from the jumping spider genus Habronattus. We find that in the case of Habronattus, there is a significant excess of sex chromosome autosome fusions but that in Drosophila there are far fewer sex chromosome autosome fusions than would be expected under our null model.  相似文献   

15.
Neo-sex chromosomes often originate from sex chromosome–autosome fusions and constitute an important basis for the study of gene degeneration and expression in a sex chromosomal context. Neo-sex chromosomes are known from many animal and plant lineages, but have not been reported in birds, a group in which genome organization seems particularly stable. Following indications of sex linkage and unexpected sex-biased gene expression in warblers (Sylvioidea; Passeriformes), we have conducted an extensive marker analysis targeting 31 orthologues of loci on zebra finch chromosome 4a in five species, representative of independent branches of Passerida. We identified a region of sex linkage covering approximately the first half (10 Mb) of chromosome 4a, and associated to both Z and W chromosomes, in three Sylvioidea passerine species. Linkage analysis in an extended pedigree of one species additionally confirmed the association between this part of chromosome 4a and the Z chromosome. Markers located between 10 and 21 Mb of chromosome 4a showed no signs of sex linkage, suggesting that only half of the chromosome was involved in this transition. No sex linkage was observed in non-Sylvioidea passerines, indicating that the neo-sex chromosome arose at the base of the Sylvioidea branch of the avian phylogeny, at 47.4–37.6 millions years ago (MYA), substantially later than the ancestral sex chromosomes (150 MYA). We hypothesize that the gene content of chromosome 4a might be relevant in its transition to a sex chromosome, based on the presence of genes (for example, the androgen receptor) that could offer a selective advantage when associated to Z-linked sex determination loci.  相似文献   

16.
Harttia is a genus in the subfamily Loricariinae that accommodates fishes popularly known as armored catfishes. They show extensive karyotypic diversity regarding interspecific numerical/structural variation of the karyotypes, with the presence of the XX/XY1Y2 multiple sex chromosome system, as found in H. carvalhoi. In this context, this study aimed to characterize Harttia punctata chromosomally, for the first time, and to infer the rearrangements that originated the X1X1X2X2/X1X2Y multiple sex chromosome system present in this species. The data obtained in this study, with classical (Giemsa, C-banding and AgNORs) and molecular methodologies (fluorescence in situ hybridization) and chromosome microdissection, indicated that a translocation between distinct acrocentric chromosomes bearing rRNA genes, accompanied by deletions in both chromosomes, might have originated the neo-Y chromosome in this species. The data also suggest that the multiple sex chromosome systems present in H. carvalhoi and H. punctata had an independent origin, evidencing the recurrence of chromosome alterations in species from this genus.  相似文献   

17.
Entelegyne spiders rarely show fusions yielding neo‐Y chromosomes, which M. J. D. White attributed to a constraint in spiders, namely their proximal chiasma localization acting to upset meiotic segregation in males with fusions. Of the 75 taxa of Habronattus and outgroups studied, 47 have X1X20 sex chromosomes in males, 10 have X1X2Y, 15 have X1X2X3Y, 2 have X0, and one has both X1X20 and X1X2X3Y. Chromosome numbers and behavior suggest neo‐Ys formed by an autosome‐X fusion to make X1X2Y, with a second fusion to an autosome to make X1X2X3Y. Phylogeny shows at least 8–15 gains (or possibly some losses) of neo‐Y (i.e., X‐autosome fusions), a remarkable number for such a small clade. In contrast to the many X‐autosome fusions, at most one autosome–autosome fusion is indicated. Origins of neo‐Y are correlated significantly with distal localization of chiasmata, supporting White's hypothesis that evolution of neo‐Y systems is facilitated by looser pairing (distal chiasmata) at meiosis. However, an alternative (or contributing) explanation for the correlation is that X‐autosome fusions were selected to permit isolation of male‐favored alleles to the neo‐Y chromosome, aided by distal chiasmata limiting recombination. This intralocus sexual conflict hypothesis could explain both the many X‐autosome fusions, and the stunning complexity of male Habronattus courtship displays.  相似文献   

18.
Yi S  Charlesworth B 《Genetics》2000,156(4):1753-1763
In Drosophila miranda, a chromosome fusion between the Y chromosome and the autosome corresponding to Muller's element C has created a new sex chromosome system. The chromosome attached to the ancestral Y chromosome is transmitted paternally and hence is not exposed to crossing over. This chromosome, conventionally called the neo-Y, and the homologous neo-X chromosome display many properties of evolving sex chromosomes. We report here the transposition of the exuperantia1 (exu1) locus from a neo-sex chromosome to the ancestral X chromosome of D. miranda. Exu1 is known to have several critical developmental functions, including a male-specific role in spermatogenesis. The ancestral location of exu1 is conserved in the sibling species of D. miranda, as well as in a more distantly related species. The transposition of exu1 can be interpreted as an adaptive fixation, driven by a selective advantage conferred by its effect on dosage compensation. This explanation is supported by the pattern of within-species sequence variation at exu1 and the nearby exu2 locus. The implications of this phenomenon for genome evolution are discussed.  相似文献   

19.
Comparative mapping and sequencing show that turnover of sex determining genes and chromosomes, and sex chromosome rearrangements, accompany speciation in many vertebrates. Here I review the evidence and propose that the evolution of therian mammals was precipitated by evolution of the male‐determining SRY gene, defining a novel XY sex chromosome pair, and interposing a reproductive barrier with the ancestral population of synapsid reptiles 190 million years ago (MYA). Divergence was reinforced by multiple translocations in monotreme sex chromosomes, the first of which supplied a novel sex determining gene. A sex chromosome‐autosome fusion may have separated eutherians (placental mammals) from marsupials 160 MYA. Another burst of sex chromosome change and speciation is occurring in rodents, precipitated by the degradation of the Y. And although primates have a more stable Y chromosome, it may be just a matter of time before the same fate overtakes our own lineage. Also watch the video abstract .  相似文献   

20.
BACKGROUND: Many different environmental and genetic sex-determination mechanisms are found in nature. Closely related species can use different master sex-determination switches, suggesting that these developmental pathways can evolve very rapidly. Previous cytological studies suggest that recently diverged species of stickleback fish have different sex chromosome complements. Here, we investigate the genetic and chromosomal mechanisms that underlie sex determination in the threespine stickleback (Gasterosteus aculeatus). RESULTS: Genome-wide linkage mapping identifies a single chromosome region at the distal end of linkage group (LG) 19, which controls male or female sexual development in threespine sticklebacks. Although sex chromosomes are not cytogenetically visible in this species, several lines of evidence suggest that LG 19 is an evolving sex chromosome system, similar to the XX female/XY male system in many other species: (1) males are consistently heterozygous for unique alleles in this region; (2) recombination between loci linked to the sex-determination region is reduced in male meiosis relative to female meiosis; (3) sequence analysis of X- and Y-specific bacterial artificial chromosome (BAC) clones from the sex-determination region reveals many sequence differences between the X- and Y-specific clones; and (4) the Y chromosome has accumulated transposable elements and local duplications. CONCLUSIONS: Taken together, our data suggest that threespine sticklebacks have a simple chromosomal mechanism for sex determination based on a nascent Y chromosome that is less than 10 million years old. Further analysis of the stickleback system will provide an exciting window into the evolution of sex-determination pathways and sex chromosomes in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号