首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transfer of C4 photosynthetic traits was studied through hybridization of Flaveria trinervia (Spreng.) Mohr (C4) and Flaveria brownii A.M. Powell (C4-like) with Flaveria linearis Lag. (C3-C4) and the C3 species Flaveria pringlei Gandoger (C3). Fertility was low, based on irregular chromosome pairing and low pollen stainability, except in F. brownii × F. linearis which had bivalent pairing and 76% stainable pollen. Hybrids had apparent photosynthesis values of 71 to 148% of the midparental means, while the CO2 compensation concentration was similar to the C4 or C4-like parent, except in hybrids having the C3 species F. pringlei as a parent. Inhibition of apparent photosynthesis by O2, and phosphoenolpyruvate carboxylase and NADP-malic enzyme activities and subunit levels in the hybrids were closer to the C3 or C3-C4 parent. The species F. brownii and F. trinervia were equal in their capacity to transfer reduced O2 inhibition of AP and CO2 compensation concentration values to hybrids with F. linearis (C3-C4), although hybrids with F. trinervia had higher PEPC activity. The O2 inhibition of AP was correlated with the logarithm of activities of phosphoenolpyruvate carboxylase (r = −0.95) and NADP-malic enzyme (r = −0.87). These results confirm that C4 traits can be transferred by hybridization of C3-C4 and C4 or C4-like species, with a higher degree of C4 photosynthesis than exists in C3-C4 species, and at least in F. brownii × F. linearis, fertile progeny are obtained.  相似文献   

2.
Brown RH  Byrd GT  Black CC 《Plant physiology》1992,100(2):947-950
Hybrids have been made between species of Flaveria exhibiting varying levels of C4 photosynthesis. The degree of C4 photosynthesis expressed in four interspecific hybrids (Flaveria trinervia [C4] × F. linearis [C3-C4], F. brownii [C4-like] × F. linearis, and two three-species hybrids from F. trinervia × [F. brownii × F. linearis]) was estimated by inhibiting phosphoenolpyruvate carboxylase in vivo with 3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate (DCDP). The inhibitor was fed to detached leaves at a concentration of 4 mm, and apparent photosynthesis was measured at atmospheric levels of CO2 and at 20 and 210 mL L−1 of O2. Photosynthesis at 210 mL L−1 of O2 was inhibited 32% by DCDP in F. linearis, by 60% in F. brownii, and by 87% in F. trinervia. Inhibition in the hybrids ranged from 38 to 52%. The inhibition of photosynthesis by 210 mL L−1 of O2 was increased when DCDP was used, except in the C4 species, F. trinervia, in which photosynthesis was insensitive to O2. Except for F. trinervia, control plants with less O2 sensitivity (more C4-like) exhibited a progressively greater change in O2 inhibition of photosynthesis when treated with DCDP. This increased O2 inhibition probably resulted from decreased CO2 concentrations in bundle sheath cells due to inhibition of phosphoenolpyruvate carboxylase. The inhibition of photosynthesis by DCDP is concluded to underestimate the degree of C4 photosynthesis in the interspecific hybrids because increased direct assimilation of atmospheric CO2 by ribulose bisphosphate carboxylase may compensate for inhibition of phosphoenolpyruvate carboxylase.  相似文献   

3.
Photosynthetic rates and related anatomical characteristics of leaves developed at three levels of irradiance (1200, 300 and 80 umol · m–2 · s–1) were determined in the C4-like species Flaveria brownii A.M. Powell, the C3–C4-intermediate species F. linearis Lag., and the F1 hybrid between them (F. brownii × F. linearis). In the C3–C4 and F1 plants, increases in photosynthetic capacity per unit leaf area were strongly correlated with changes in mesophyll area per unit leaf area. The C4-like plant F. brownii, however, showed a much lower correlation between photosynthetic capacity and mesophyll area per unit leaf area. Plants of F. brownii developed at high irradiance showed photosynthetic rates per unit of mesophyll cell area 50% higher than those plants developed at medium irradiance. These results along with an increase in water-use efficiency are consistent with an increase of C4 photosynthesis in high-irradiance-grown F. brownii plants, whereas in the other two genotypes such plasticity seems to be absent. Photosynthetic discrimination against 13C in the three genotypes was less at high than at low irradiance, with the greatest change occurring in F. brownii. Discrimination against 13C expressed as 13C was linearly correlated (r 2 = 0.81; P<0.001) with the ratio of bundle-sheath volume to mesophyll cell area when all samples from the three genotypes were combined. This tissue ratio increased for F. brownii and the F1 hybrid as growth irradiance increased, indicating a greater tendency towards Kranz anatomy. The results indicated that F. brownii had plasticity in its C4-related anatomical and physiological characteristics as a function of growth irradiance, whereas plasticity was less evident in the F1 hybrid and absent in F. linearis.Abbreviations A leaf surface area - Ama, Amn, Alm total ma, mn or lm cell surface area - bs vascular bundle sheath - lm large spongy-mesophyll cells - ma mesophyll cells adjacent to bundle sheath - mn mesophyll cells not adjacent to bundle sheath - Pn net photosynthesis - (H, M, L) PPFD (high, medium, low) photosynthetic photon flux density - SLDW specific leaf dry wight - Vbs bs volume - V(ma + mn + bs) total photosynthetic tissue volume - 13C 13C discrimination We thank Mrs. Lisa Smith for technical assistance in light microscopy and Dr. Ned Friedman (Department of Botany, University of Georgia, Athens, GA, USA) for the use of digitizing equipment. Participation of Dr. J.L. Araus in this work was supported by a grant Beca de Especialización para Doctores y Tecnólogos en el Extranjero, from Ministerio de Educatión y Ciencia, Spain.  相似文献   

4.
In the present study, we aimed to elucidate how strategies of reactive oxygen species (ROS) regulation and the antioxidant defense system changed during transition from C3 to C4 photosynthesis, by using the model genus Flaveria, which contains species belonging to different steps in C4 evolution. For this reason, four Flaveria species that have different carboxylation mechanisms, Flaveria robusta (C3), Flaveria anomala (C3–C4), Flaveria brownii (C4-like) and Flaveria bidentis (C4), were used. Physiological (growth, relative water content (RWC), osmotic potential), and photosynthetical parameters (stomatal conductance (gs), assimilation rate (A), electron transport rate (ETR)), antioxidant defense enzymes (superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), glutathione reductases(GR)) and their isoenzymes, non-enzymatic antioxidant contents (ascorbate, glutathione), NADPH oxidase (NOX) activity, hydrogen peroxide (H2O2) content and lipid peroxidation levels (TBARS) were measured comparatively under polyethylene glycol (PEG 6000) induced osmotic stress. Under non-stressed conditions, there was a correlation only between CAT (decreasing), APX and GR (both increasing) and the type of carboxylation pathways through C3 to C4 in Flaveria species. However, they responded differently to PEG-induced osmotic stress in regards to antioxidant defense. The greatest increase in H2O2 and TBARS content was observed in C3F. robusta, while the least substantial increase was detected in C4-like F. brownii and C4F. bidentis, suggesting that oxidative stress is more effectively countered in C4-like and C4 species. This was achieved by a better induced enzymatic defense in F. bidentis (increased SOD, CAT, POX, and APX activity) and non-enzymatic antioxidants in F. brownii. As a response to PEG-induced oxidative stress, changes in activities of isoenzymes and also isoenzymatic patterns were observed in all Flaveria species, which might be related to ROS produced in different compartments of cells.  相似文献   

5.
Leaves of Flaveria brownii exhibited slightly higher amounts of oxygen inhibition of photosynthesis than the C4 species, Flaveria trinervia, but considerably less than the C3 species, Flaveria cronquistii. The photosynthetic responses to intercellular CO2, light and leaf temperature were much more C4-like than C3-like, although 21% oxygen inhibited the photosynthetic rate, depending on conditions, up to 17% of the photosynthesis rate observed in 2% O2. The quantum yield for CO2 uptake in F. brownii was slightly higher than that for the C4 species F. trinervia in 2% O2, but not significantly different in 21% O2. The quantum yield was inhibited 10% in the presence of 21% O2 in F. brownii, yet no significant inhibition was observed in F. trinervia. An inhibition of 27% was observed for the quantum yield of F. cronquistii in the presence of 21% O2. The photosynthetic response to very low intercellular CO2 partial pressures exhibited a unique pattern in F. brownii, with a break in the linear slope observed at intercellular CO2 partial pressure values between 15 and 20 μbar when analyzed in 21% O2. No significant break was observed when analyzed in 2% O2. When taken collectively, the gas-exchange results reported here are consistent with previous biochemical studies that report incomplete intercellular compartmentation of the C3 and C4 enzymes in this species, and suggest that F. brownii is an advanced, C4-like C3-C4 intermediate.  相似文献   

6.
7.
Oxygen Stimulation of Apparent Photosynthesis in Flaveria linearis   总被引:3,自引:1,他引:2       下载免费PDF全文
A plant was found in the C3-C4 intermediate species, Flaveria linearis, in which apparent photosynthesis is stimulated by atmospheric O2 concentrations. A survey of 44 selfed progeny of the plant showed that the O2 stimulation of apparent photosynthesis was passed on to the progeny. When leaves equilibrated at 210 milliliters per liter O2 were transferred to 20 milliliters per liter O2 apparent photosynthesis was initially stimulated, but gradually declined so that at 30 to 40 minutes the rate was only about 80 to 85% of that at 210 milliliters per liter O2. Switching from 20 to 210 milliliters per liter caused the opposite transition in apparent photosynthesis. All other plants of F. linearis reached steady rates within 5 minutes after switching O2 that were 20 to 24% lower in 210 than in 20 milliliters per liter O2. At low intercellular CO2 concentrations and low irradiances, O2 inhibition of apparent photosynthesis of the aberrant plant was similar to that in normal plants, but at an irradiance of 2 millimoles quanta per square meter per second and near 300 microliters per liter CO2 apparent photosynthesis was consistently higher at 210 than at 20 milliliters per liter O2. In morphology and leaf anatomy, the aberrant plant is like the normal plants in F. linearis. The stimulation of apparent photosynthesis at air levels of O2 in the aberrant plant is similar to other literature reports on observations with C3 plants at high CO2 concentrations, high irradiance and/or low temperatures, and may be related to limitation of photosynthesis by triose phosphate utilization.  相似文献   

8.
Flaveria pringlei exhibits C3 CO2 compensation concentration (Г) values averaging 53 μl CO2/l at 21% (v/v) O2 and 25 ± 2°C. When this species is hybridized with the C4 species, F. brownii (male) (Г = 6 μl CO2/l), the F1 hybrid plants exhibit an average Г value of 31 μl CO2/l at 21% O2.Although light micrographs of leaf cross-sections show that the leaves of the hybrid plants possess the mesophyll arrangement characteristic of F. pringlei leaves, the hybrid plants have some bundle-sheath chloroplasts. However, the numbers of these organelles do not appear to be intermediate with respect to the numbers in the parents and are closest to the small number present in the bundle-sheath cells of F. pringlei leaves. The activities of key C4 enzymes (in μmol · mg Chl?1 · h?1) are: phosphoenolpyruvate (PEP) carboxylase, 121; pyruvate, orthophosphate (Pi) dikinase, 26; NADP-malate dehydrogenase, 2529; and NADP-malic enzyme, 82. All of these activities are substantially higher than in F. pringlei, but are only 7–10% of those in F. brownii (with the exception of the NADP-malate dehydrogenase activity). These data suggest that a C4 cycle might be operating to a limited extent in the hybrid plants resulting in reduced photorespiration.Whether or not C4 photosynthesis occurs in these hybrid plants, they represent the first reported C3 × C4 F1 hybrids to exhibit reduced Γ-values. This cross and its reciprocal should be useful models for studying the anatomical and biochemical factors determining the development of limited C4 photosynthesis in C3 species.  相似文献   

9.
We report the successful transformation, via Agrobacterium tumefaciens infection, and regeneration of two species of the genus Flaveria: F. brownii and F. palmeri. We document the expression of a C3 plant gene, an abundantly expressed ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit gene isolated from petunia, in these C4 plants. The organ-specific expression of this petunia gene in Flaveria brownii is qualitatively identical to its endogenous pattern of expression.  相似文献   

10.
Flaveria cronquistii (C3), F. chloraefolia (C3-C4), F. floridana (C3-C4), F. pubescens (C3-C4), F. anomala (C3-C4), F. linearis (C3-C4), F. brownii (C4), F. palmeri (C4), F. trinervia (C4) and F. australasica (C4), comprising 10 out of the 21 known species of the genus Flaveria (Asteraceae), were included in a comparative study of the kinetic and regulatory properties of green leaf phosphoenolpyruvate (PEP) carboxylase. At least three kinetically distinct enzyme-forms were identified on the basis of their affinities for PEP and the degree of allosterism with respect to this substrate. The kinetic properties of PEP carboxylase of most of the species seemingly were modified in vivo depending on the growth conditions of the plants. Km(PEPfree)-values of the enzyme from the five C3-C4 intermediate species ranged from 6 micromolar (F. chloraefolia, low light-grown) to 38 micromolar (F. pubescens, high light-grown). In contrast, the Km for PEP of PEP carboxylase from the C3 species F. cronquistii (13 micromolar) apparently was not influenced by growth conditions. The response of the enzyme from the C3 and C3-C4 species was hyperbolic in all cases. A second isoform with a lower affinity for PEP (88-100 micromolar), but also hyperbolic kinetics was found in the C4 species F. brownii, whereas in the three other C4 species examined a PEP carboxylase with a still lower affinity for PEP (187-221 micromolar) and sigmoidal kinetics was present. These isozyme-related kinetic data were supported by analyses of the elution behavior of the enzyme during anion-exchange chromatography on DEAE-Trisacryl M. The results are discussed with respect to the evolution of C4 photosynthesis in the Flaveria genus.  相似文献   

11.
The activities of key C4 enzymes in gel-filtered, whole-leaf extracts and the photosynthetic characteristics for reciprocal F1 hybrids of Flaveria pringlei (C3) and F. brownii (C4-like species) were measured to determine whether any inherited C4-photosynthetic traits are responsible for their reduced CO2 compensation concentration values (AS Holaday, S Talkmitt, ME Doohan Plant Sci 41: 31-39). The activities of phosphoenolpyruvate carboxylase, pyruvate, orthophosphate dikinase, and NADP-malic enzyme (ME) for the reciprocal hybrids are only about 7 to 17% of those for F. brownii, but are three- to fivefold greater than the activities for F. pringlei. The low activities of these enzymes in the hybrids appear to be the result of a partial dominance of F. pringlei genes over certain F. brownii genes. However, no such dominance occurs with respect to the expression of genes for NADP-malate dehydrogenase, which is as active in the hybrids as in F. brownii. In contrast to the situation with the enzymes above, cytoplasmic factors appear to determine the inheritance of NAD-ME. The NAD-ME activity in each hybrid is comparable to that in the respective maternal parent. Pulse-chase 14CO2 incorporation analyses at ambient CO2 levels indicate that the hybrids initially assimilate 7 to 9% of the total assimilated CO2 into C4 acids as compared to 3.5% for F. pringlei. In the hybrids, the percentage of 14C in malate decreases from an average of 6.5 to 2.1% after a 60-second chase in 12CO2/air. However, this apparent C4-cycle activity is too limited or inefficient to substantially alter CO2 exchange from that in F. pringlei, since the values of net photosynthesis and O2 inhibition of photosynthesis are similar for the hybrids and F. pringlei. Also, the ratio of the internal to the external CO2 concentration and the initial slopes of the plot of CO2 concentration versus net photosynthesis are essentially the same for the hybrids and F. pringlei. At 45 micromoles CO2 per mole and 0.21 mole O2 per mole, the hybrids assimilate nearly fivefold more CO2 into C4 acids than does F. pringlei. Some turnover of the malate pool occurs in the hybrids, but the labelling of the photorespiratory metabolites, glycine and serine, is the same in these plants as it is in F. pringlei. Thus, although limited C4-acid metabolism may operate in the hybrids, we conclude that it is not effective in altering O2 inhibition of CO2 assimilation. The ability of the hybrids to assimilate more CO2 via phosphoenolpyruvate carboxylase at low levels of CO2 than does F. pringlei may result in an increased rate of reassimilation of photorespiratory CO2 and CO2 compensation concentrations below that of their C3 parent. If the hybrids do possess a limited C4 cycle, it must operate intracellularly. They are not likely to have inherited an intercellular compartmentation of C4 enzymes, since F. brownii has incomplete compartmentation of key C3 and C4 enzymes.  相似文献   

12.
Light microscopic examination of leaf cross-sections showed that Flaveria brownii A. M. Powell exhibits Kranz anatomy, in which distinct, chloroplast-containing bundle sheath cells are surrounded by two types of mesophyll cells. Smaller mesophyll cells containing many chloroplasts are arranged around the bundle sheath cells. Larger, spongy mesophyll cells, having fewer chloroplasts, are located between the smaller mesophyll cells and the epidermis. F. brownii has very low CO2 compensation points at different O2 levels, which is typical of C4 plants, yet it does show about 4% inhibition of net photosynthesis by 21% O2 at 30°C. Protoplasts of the three photosynthetic leaf cell types were isolated according to relative differences in their buoyant densities. On a chlorophyll basis, the activities of phosphoenolpyruvate carboxylase and pyruvate, Pi dikinase (carboxylation phase of C4 pathway) were highest in the larger mesophyll protoplasts, intermediate in the smaller mesophyll protoplasts, and lowest, but still present, in the bundle sheath protoplasts. In contrast, activities of ribulose 1,5-bisphosphate carboxylase, other C3 cycle enzymes, and NADP-malic enzyme showed a reverse gradation, although there were significant activities of these enzymes in mesophyll cells. As indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the banding pattern of certain polypeptides of the total soluble proteins from the three cell types also supported the distribution pattern obtained by activity assays of these enzymes. Analysis of initial 14C products in whole leaves and extrapolation of pulse-labeling curves to zero time indicated that about 80% of the CO2 is fixed into C4 acids (malate and aspartate), whereas about 20% of the CO2 directly enters the C3 cycle. This is consistent with the high activity of enzymes for CO2 fixation by the C4 pathway and the substantial activity of enzymes of the C3 cycle in the mesophyll cells. Therefore, F. brownii appears to have some capacity for C3 photosynthesis in the mesophyll cells and should be considered a C4-like species.  相似文献   

13.
Two naturally occurring species of the genus Alternanthera, namely A. ficoides and A. tenella, were identified as C3-C4 intermediates based on leaf anatomy, photosynthetic CO2 compensation point (Γ), O2 response of г, light intensity response of г, and the activities of key enzymes of photosynthesis. A. ficoides and A. tenella exhibited a less distinct Kranz-like leaf anatomy with substantial accumulation of starch both in mesophyll and bundle sheath cells. Photosynthetic CO2 compensation points of these two intermediate species at 29°C were much lower than in C3 plants and ranged from 18 to 22 microliters per liter. Although A. ficoides and A. tenella exhibited similar intermediacy in г, the apparent photorespiratory component of O2 inhibition in A. ficoides is lower than in A. tenella. The г progressively decreases from 35 microliters per liter at lowest light intensity to 18 microliters per liter at highest light intensity in A. tenella. It was, however, constant in A. ficoides at 20 to 25 microliters per liter between light intensities measured. The rates of net photosynthesis at 21% O2 and 29°C by A. ficoides and A. tenella were 25 to 28 milligrams CO2 per square decimeter per hour which are intermediate between values obtained for Tridax procumbens and A. pungens, C3 and C4 species, respectively. The activities of key enzymes of C4 photosynthesis, phosphoenolpyruvate carboxylase, pyruvate Pi dikinase, NAD malic enzyme, NADP malic enzyme and phosphoenolpyruvate carboxykinase in the two intermediates, A. ficoides and A. tenella are very low or insignificant. Results indicated that the relatively low apparent photorespiratory component in these two species is presumably the basis for the C3-C4 intermediate photosynthesis.  相似文献   

14.
P. Apel 《Biologia Plantarum》1994,36(2):243-246
The water use efficiency (WUE) of the C3?C4 intermediate speciesFlaveria anomala andF. pubescens was similar to that found inF. cronquistii (C3). Compared to this values, the value inF. brownii (C4-like) was significantly increased and was doubled inF. trinervia (C4).Moricandia arvensis, a species with an enhanced CO2 reassimilation potential has a very similar water use efficiency asM. moricandioides (C3 but a lower transpiration rate.  相似文献   

15.
Leaf anatomical, ultrastructural, and CO2-exchange analyses of three closely related species of Flaveria indicate that they are C3–C4 intermediate plants. The leaf mesophyll of F. floridana J.R. Johnston, F. linearis Lag., and F. chloraefolia A. Gray is typical of that in dicotyledonous C3 plants, but the bundle sheath cells contain granal, starch-containing chloroplasts. In F. floridana and F. chloraefolia, the chloroplasts and numerous associated mitochondria are arranged largely centripetally, as in the closely related C4 species, F. brownii A.M. Powell. In F. linearis, fewer mitochondria are present and the chloroplasts are more evenly distributed throughout the bundle sheath cytosol. There is no correlation between the bundle sheath ultrastructure and CO2 compensation concentration. () values of these C3–C4 intermediate Flaveria species. At 21% O2 and 25°C, for F. chloraefolia, F. linearis, and F. floridana is 23–26, 14–19, and 8–10 l CO2 l-1, respectively. The O2 dependence of is the greatest for F. chloraefolia and F. linearis (similar to that for C3–C4 intermediate Panicum and Moricandia species) and the least for F. floridana, whose O2 response is identical to that for F. brownii from 1.5 to 21% O2, but greater at higher pO2. The variation in leaf anatomy, bundle sheath ultrastructure, and O2 dependence of among these Flaveria species may indicate an active evolution in the pathway of photosynthetic carbon metabolism within this genus.Abbreviations CO2 compensation concentration - IRGA infrared gas analysis Published as Paper No. 7068, Journal Series, Nebraska Agricultural Experiment Station  相似文献   

16.
Carbon isotope ratios of mature leaves from the C3 angiosperm root hemiparasites Striga hermonthica (Del.) Benth (−26.7‰) and S. asiatica (L.) Kuntze (−25.6‰) were more negative than their C4 host, sorghum (Sorghum bicolor [L.] Moench cv CSH1), (−13.5‰). However, in young photosynthetically incompetent plants of S. hermonthica this difference was reduced to less than 1‰. Differences between the carbon isotope ratios of two C3-C3 associations, S. gesnerioides (Willd.) Vatke—Vigna unguiculata (L.) Walp. and Oryza sativa L.—Rhamphicarpa fistulosa (Hochst.) Benth differed by less than 1‰. Theoretical carbon isotope ratios for mature leaves of S. hermonthica and S. asiatica, calculated from foliar gas exchange measurements, were −31.8 and −32.0‰, respectively. This difference between the measured and theoretical δ13C-values of 5 to 6‰ suggests that even in mature, photosynthetically active plants, there is substantial input of carbon from the C4 host. We estimate this to be approximately 28% of the total carbon in S. hermonthica and 35% in S. asiatica. This level of carbon transfer contributes to the host's growth reductions observed in Striga-infected sorghum.  相似文献   

17.
The nucleotide sequences of the complementary DNA of pyruvate, Pi dikinase (PPDK) from Flaveria bidentis, a C4 plant which possesses a cold-sensitive form of PPDK, and Flaveria brownii, a C4-like plant which possesses a cold-tolerant form of PPDK, were determined. PPDK was isolated from the leaves of both Flaveria species and purified and the N-terminal amino acid sequences characterised. Together with a maize PPDK cDNA, cDNA inserts which code for the mature form of PPDK of F. bidentis and of F. brownii were expressed in bacteria and the cold sensitivity of the expressed PPDK studied. The cold sensitivity of the PPDK expressed in bacteria mimics the cold sensitivity of PPDK found in vivo in all three plant species. This study indicates that the cold sensitivity of plant PPDK is controlled by the primary structure of the enzyme.  相似文献   

18.
The degree of C4 photosynthesis was assessed in four hybrids among C4, C4-like, and C3-C4 species in the genus Flaveria using 14C labeling, CO2 exchange, 13C discrimination, and C4 enzyme activities. The hybrids incorporated from 57 to 88% of the 14C assimilated in a 10-s exposure into C4 acids compared with 26% for the C3-C4 species Flaveria linearis, 91% for the C4 species Flaveria trinervia, and 87% for the C4-like Flaveria brownii. Those plants with high percentages of 14C initially fixed into C4 acids also metabolized the C4 acids quickly, and the percentage of 14C in 3-phosphoglyceric acid plus sugar phosphates increased for at least a 30-s exposure to 12CO2. This indicated a high degree of coordination between the carbon accumulation and reduction phases of the C4 and C3 cycles. Synthesis and metabolism of C4 acids by the species and their hybrids were highly and linearly correlated with discrimination against 13C. The relationship of 13C discrimination or 14C metabolism to O2 inhibition of photosynthesis was curvilinear, changing more rapidly at C4-like values of 14C metabolism and 13C discrimination. Incorporation of initial 14C into C4 acids showed a biphasic increase with increased activities of phosphoenolpyruvate carboxylase and NADP-malic enzyme (steep at low activities), but turnover of C4 acids was linearly related to NADP-malic enzyme activity. Several other traits were closely related to the in vitro activity of NADP-malic enzyme but not phosphoenolpyruvate carboxylase. The data indicate that the hybrids have variable degrees of C4 photosynthesis but that the carbon accumulation and reduction portions of the C4 and C3 cycles are well coordinated.  相似文献   

19.
A mutant plant of Flaveria linearis Lag. expresses reversed O2 response of photosynthesis (i.e. its apparent photosynthesis is stimulated at atmospheric O2 levels). The objectives of this study were to determine the genetic inheritance of this trait and to investigate the biochemical mechanism for its expression. The mutant plant was crossed reciprocally with a plant of the closely related species Flaveria oppositifolia (DC.) Rydb. and also with another plant of F. linearis. Data on O2 inhibition of apparent photosynthesis were analyzed on F2 and F3 progeny from these F1 hybrids. In addition, test crosses (mutant × F1 hybrid) and S1 progeny from the mutant plant were also analyzed. All F1 hybrids expressed inhibition of apparent photosynthesis and their progeny segregated in acceptable 3:1 and 13:3 (normal:reversed) ratios. There was little effect of environment on expression of the reversed O2 response. Selected F2 plants and the original mutant plant produced progeny in normal:reversed ratios which indicated the trait is controlled by two major genes which show dominant and recessive epistasis. Plants with greater than 20 nanomoles per gram fresh weight per minute of fructose-1, 6-bisphosphatase activity in the cytosol had normal O2 response of photosynthesis. However, when plants had less than 20 nanomoles per gram fresh weight per minute of this enzyme activity in the cytosol, the O2 was normal in some and reversed in others. It is proposed that low fructose bisphosphatase activity in the cytosol is controlled by a recessive gene (fbp). A second dominant gene is speculated to be hypostatic to the normal fructose bisphosphatase gene and controls the expression of an unknown factor that determines whether O2 response of AP is reversed in the presence of fbp (i.e. when fructose bisphosphatase activity is low).  相似文献   

20.
Photosynthetic carbon metabolism of a marine grass   总被引:9,自引:4,他引:5       下载免费PDF全文
The δ13C value of a tropical marine grass Thalassia testudinum is −9.04‰. This value is similar to the δ13C value of terrestrial tropical grasses. The δ13C values of the organic acid fraction, the amino acid fraction, the sugar fraction, malic acid, and glucose are: −11.2‰, −13.1‰, −10.1‰, −11.1‰, and −11.5‰, respectively. The δ13C values of malic acid and glucose of Thalassia are similar to the δ13C values of these intermediates in sorghum leaves and attest to the presence of the photosynthetic C4-dicarboxylic acid pathway in this marine grass. The inorganic HCO3 for the growth of the grass fluctuates between −6.7 to −2.7‰ during the day. If CO2 fixation in Thalassia is catalyzed by phosphoenolpyruvate carboxylase (which would result in a −3‰ fractionation between HCO3 and malic acid), the predicted δ13C value for Thalassia would be −9.7 to −5.7‰. This range is close to the observed range of −12.6 to −7.8‰ for Thalassia and agree with the operation of the C4-dicarboxylic acid pathway in this plant. The early products of the fixation of HCO3 in the leaf sections are malic acid and aspartic acid which are similar to the early products of CO2 fixation in C4 terrestrial plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号