首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radial optic neurotomy (RON) has been proposed as a surgical treatment to alleviate the neurovascular compression and to improve the venous outflow in patients with central retinal vein occlusion. Glaucoma is characterized by specific visual field defects due to the loss of retinal ganglion cells and damage to the optic nerve head (ONH). One of the clinical hallmarks of glaucomatous neuropathy is the excavation of the ONH. The aim of this work was to analyze the effect of RON in an experimental model of glaucoma in rats induced by intracameral injections of chondroitin sulfate (CS). For this purpose, Wistar rats were bilaterally injected with vehicle or CS in the eye anterior chamber, once a week, for 10 weeks. At 3 or 6 weeks of a treatment with vehicle or CS, RON was performed by a single incision in the edge of the neuro-retinal ring at the nasal hemisphere of the optic disk in one eye, while the contralateral eye was submitted to a sham procedure. Electroretinograms (ERGs) were registered under scotopic conditions and visual evoked potentials (VEPs) were registered with skull-implanted electrodes. Retinal and optic nerve morphology was examined by optical microscopy. RON did not affect the ocular hypertension induced by CS. In eyes injected with CS, a significant decrease of retinal (ERG a- and b-wave amplitude) and visual pathway (VEP N2-P2 component amplitude) function was observed, whereas RON reduced these functional alterations in hypertensive eyes. Moreover, a significant loss of cells in the ganglion cell layer, and Thy-1-, NeuN- and Brn3a- positive cells was observed in eyes injected with CS, whereas RON significantly preserved these parameters. In addition, RON preserved the optic nerve structure in eyes with chronic ocular hypertension. These results indicate that RON reduces functional and histological alterations induced by experimental chronic ocular hypertension.  相似文献   

2.
Glaucoma is an optic neuropathy in which retinal ganglion cells die probably through an apoptotic process. Apoptosis is known to involve free radicals in several systems including the retina. In this context, the aim of the present work was to analyze retinal oxidative damage in rats with glaucoma induced by the chronic injection of hyaluronic acid in the eye anterior chamber. The results showed a significant decrease in total retinal superoxide dismutase and catalase activities after 6 and 3 weeks of treatment with hyaluronic acid, respectively. Also, although GPX activity increased after 10 weeks of ocular hypertension, GSH levels significantly decreased at 6 weeks of treatment with hyaluronic acid. Moreover, retinal lipid peroxidation significantly increased in a time-of-hypertension-dependent manner. On the other hand, a significant decrease in both diurnal and nocturnal retinal melatonin content was detected at 3, 6, or 10 weeks of treatment with hyaluronic acid. The present results suggest that retinal oxidative stress may be involved in glaucomatous cell death. Thus, manipulation of intracellular redox status using antioxidants may be a new therapeutic tool to prevent glaucomatous neurodegeneration.  相似文献   

3.
Glaucoma is defined as a chronic and progressive optic nerve neuropathy, characterized by apoptosis of retinal ganglion cells (RGC) that leads to irreversible blindness. Ocular hypertension is a major risk factor, but in glaucoma RGC death can persist after ocular hypertension is normalized. To understand the mechanism underlying chronic RGC death we identified and characterized a gene product, alpha2-macroglobulin (alpha2M), whose expression is up-regulated early in ocular hypertension and remains up-regulated long after ocular hypertension is normalized. In ocular hypertension retinal glia up-regulate alpha2M, which binds to low-density lipoprotein receptor-related protein-1 receptors in RGCs, and is neurotoxic in a paracrine fashion. Neutralization of alpha2M delayed RGC loss during ocular hypertension; whereas delivery of alpha2M to normal eyes caused progressive apoptosis of RGC mimicking glaucoma without ocular hypertension. This work adds to our understanding of the pathology and molecular mechanisms of glaucoma, and illustrates emerging paradigms for studying chronic neurodegeneration in glaucoma and perhaps other disorders.  相似文献   

4.
5.
6.
Müller cells are closely related to diabetic retinopathy (DR). Aquaporin-4 (AQP4) can effectively promote the diffusion of water across cellular membranes. However, the dynamic balance of water plays key role in many diseases, such as cerebral edema. Meanwhile, the unusual expression and distribution of AQP4 in the retina are the significant causes of ocular hypertension and reperfusion injury. To explore the functional significance between microRNA-320a (miR-320a) and AQP4 in pathological hypoxia-induced DR related retinal edema, we hypothesized that miR-320a regulates AQP4 expression and internalization to relieve the edema of Müller cells under the pathological retinal hypoxia stress by targeting AQP4, thereby attenuate the damage of Müller cells. Results demonstrated that miR-320a mimics inhibited the expressions of AQP4 in Müller cells. Furthermore, overexpression miR-320a protected Müller cells by suppressing superoxide anion. In addition, overexpression miR-320a markedly attenuated hypoxia-induced injury, significantly increased the cell viability, and promoted the internalization of AQP4. Furthermore, miR-320a can also regulate the stable anchoring of AQP4 on the cell membrane. Our study indicated that miR-320a may be a potential modulator which can mediate AQP4 expression and attenuate the hypoxia damage of Müller cells. In conclusion, miR-320a may be a potential target for DR therapy by targeting AQP4.  相似文献   

7.
Glaucoma is one of the leading eye diseases resulting in blindness due to the death of retinal ganglion cells. This study aimed to develop novel protocol to promote the differentiation of retinal Müller cells into ganglion cells in vivo in a rat model of glaucoma. The stem cells dedifferentiated from rat retinal Müller cells were randomized to receive transfection with empty lentivirus PGC-FU-GFP or lentivirus PGC-FU-Atoh7-GFP, or no transfection. The stem cells were induced further to differentiate. Ocular hypertension was induced using laser photocoagulation. The eyes were injected with Atoh7 expression vector lentivirus PGC-FU-Atoh7-GFP. Eyeball frozen sections, immunohistochemistry, RT-PCR, Western bolt, and apoptosis assay were performed. We found that the proportion of ganglion cells differentiated from Atoh7-tranfected stem cells was significantly higher than that of the other two groups. The mean intraocular pressure of glaucomatous eyes was elevated significantly compared with those of contralateral eyes. Some retinal Müller cells in the inner nuclear layer entered the mitotic cell cycle in rat chronic ocular hypertension glaucoma model. Atoh7 contributes to the differentiation of retinal Müller cells into retinal ganglion cells in rat model of glaucoma. In conclusion, Atoh7 promotes the differentiation of Müller cells-derived retinal stem cells into retinal ganglion cells in a rat model of glaucoma, thus opening up a new avenue for gene therapy and optic nerve regeneration in glaucoma.  相似文献   

8.
Open angle glaucoma is defined as a progressive and time-dependent death of retinal ganglion cells concomitant with high intraocular pressure, leading to loss of visual field. Because neurotrophins are a family of growth factors that support neuronal survival, we hypothesized that quantitative and qualitative changes in neurotrophins or their receptors may take place early in ocular hypertension, preceding extensive cell death and clinical features of glaucoma. We present molecular, biochemical, and phenotypic evidence that significant neurotrophic changes occur in retina, which correlate temporally with retinal ganglion cell death. After 7 days of ocular hypertension there is a transient up-regulation of retinal NGF, while its receptor TrkA is up-regulated in a sustained fashion in retinal neurons. After 28 days of ocular hypertension there is sustained up-regulation of retinal BDNF, but its receptor TrkB remains unchanged. Throughout, NT-3 levels remain unchanged but there is an early and sustained increase of its receptor TrkC in Müller cells but not in retinal ganglion cells. These newly synthesized glial TrkC receptors are truncated, kinase-dead isoforms. Expression of retinal p75 also increases late at day 28. Asymmetric up-regulation of neurotrophins and neurotrophin receptors may preclude efficient neurotrophic rescue of RGCs from apoptosis. A possible rationale for therapeutic intervention with Trk receptor agonists and p75 receptor antagonists is proposed.  相似文献   

9.
The optic disc develops at the interface between optic stalk and retina, and enables both the exit of visual fibres and the entrance of mesenchymal cells that will form the hyaloid artery. In spite of the importance of the optic disc for eye function, little is known about the mechanisms that control its development. Here, we show that in mouse embryos, retinal fissure precursors can be recognised by the expression of netrin 1 and the overlapping distribution of both optic stalk (Pax2, Vax1) and ventral neural retina markers (Vax2, Raldh3). We also show that in the absence of Bmp7, fissure formation is not initiated. This absence is associated with a reduced cell proliferation and apoptosis in the proximoventral quadrant of the optic cup, lack of the hyaloid artery, optic nerve aplasia, and intra-retinal misrouting of RGC axons. BMP7 addition to organotypic cultures of optic vesicles from Bmp7-/- embryos rescues Pax2 expression in the ventral region, while follistatin, a BMP7 antagonist, prevents it in early, but not in late, optic vesicle cultures from wild-type embryos. The presence of Pax2-positive cells in late optic cup is instead abolished by interfering with Shh signalling. Furthermore, SHH addition re-establishes Pax2 expression in late optic cups derived from ocular retardation (or) embryos, where optic disc development is impaired owing to the near absence of SHH-producing RGC. Collectively, these data indicate that BMP7 is required for retinal fissure formation and that its activity is needed, before SHH signalling, for the generation of PAX2-positive cells at the optic disc.  相似文献   

10.
Glaucoma, the most common cause of irreversible blindness, is a neuropathy commonly initiated by pathological ocular hypertension due to unknown mechanisms of trabecular meshwork degeneration. Current antiglaucoma therapy does not target the causal trabecular pathology, which may explain why treatment failure is often observed. Here we show that the chemokine CXCL12, its truncated form SDF-1(5-67), and the receptors CXCR4 and CXCR3 are expressed in human glaucomatous trabecular tissue and a human trabecular cell line. SDF-1(5-67) is produced under the control of matrix metallo-proteinases, TNF-α, and TGF-β2, factors known to be involved in glaucoma. CXCL12 protects in vitro trabecular cells from apoptotic death via CXCR4 whereas SDF-1(5-67) induces apoptosis through CXCR3 and caspase activation. Ocular administration of SDF-1(5-67) in the rat increases intraocular pressure. In contrast, administration of a selective CXCR3 antagonist in a rat model of ocular hypertension decreases intraocular pressure, prevents retinal neurodegeneration, and preserves visual function. The protective effect of CXCR3 antagonism is related to restoration of the trabecular function. These data demonstrate that proteolytic cleavage of CXCL12 is involved in trabecular pathophysiology, and that local administration of a selective CXCR3 antagonist may be a beneficial therapeutic strategy for treating ocular hypertension and subsequent retinal degeneration.  相似文献   

11.
The human eye is constantly exposed to sunlight and artificial lighting. Exogenous sources of reactive oxygen species (ROS) such as UV light, visible light, ionizing radiation, chemotherapeutics, and environmental toxins contribute to oxidative damage in ocular tissues. Long-term exposure to these insults places the aging eye at considerable risk for pathological consequences of oxidative stress. Furthermore, in eye tissues, mitochondria are an important endogenous source of ROS. Over time, all ocular structures, from the tear film to the retina, undergo oxidative stress, and therefore, the antioxidant defenses of each tissue assume the role of a safeguard against degenerative ocular pathologies. The ocular surface and cornea protect the other ocular tissues and are significantly exposed to oxidative stress of environmental origin. Overwhelming of antioxidant defenses in these tissues clinically manifests as pathologies including pterygium, corneal dystrophies, and endothelial Fuch's dystrophy. The crystalline lens is highly susceptible to oxidative damage in aging because its cells and their intracellular proteins are not turned over or replaced, thus providing the basis for cataractogenesis. The trabecular meshwork, which is the anterior chamber tissue devoted to aqueous humor drainage, has a particular susceptibility to mitochondrial oxidative injury that affects its endothelium and leads to an intraocular pressure increase that marks the beginning of glaucoma. Photo-oxidative stress can cause acute or chronic retinal damage. The pathogenesis of age-related macular degeneration involves oxidative stress and death of the retinal pigment epithelium followed by death of the overlying photoreceptors. Accordingly, converging evidence indicates that mutagenic mechanisms of environmental and endogenous sources play a fundamental pathogenic role in degenerative eye diseases.  相似文献   

12.
Ocular hypertension is a symptom of a glaucomatous condition characterized by a severe vision decrease. Blindness caused by the apoptotic death of the retinal ganglion cells and of the astrocytes of the optic nerve may eventually result. Experimental hypertension was induced by inoculation of methylcellulose in the anterior chamber. Chromatin staining, TUNEL assay, and inter-nucleosomal DNA fragmentation observed in retina and optic nerve strongly suggest that hypertension causes apoptosis. Immunolocalization of the fibrillary acidic glial protein, specific of cell stress, and caspase-3 in the same tissues, further support this mode of cell death. Activation of the ubiquitin dependant proteolytic system was also observed. Protection from apoptosis exerted by administration of the peroxide scavenger trolox, suggests that the apoptotic pathway is activated by an oxidative stress. The data presented here show that the experimental hypertensive insult induces degenerative and apoptotic events comparable to those observed in human glaucoma.  相似文献   

13.
Using a variety of double and triple labeling techniques, we have reevaluated the death of retinal neurons in a mouse model of hereditary glaucoma. Cell-specific markers and total neuron counts revealed no cell loss in any retinal neurons other than the ganglion cells. Within the limits of our ability to define cell types, no group of ganglion cells was especially vulnerable or resistant to degeneration. Retrograde labeling and neurofilament staining showed that axonal atrophy, dendritic remodeling, and somal shrinkage (at least of the largest cell types) precedes ganglion cell death in this glaucoma model. Regions of cell death or survival radiated from the optic nerve head in fan-shaped sectors. Collectively, the data suggest axon damage at the optic nerve head as an early lesion, and damage to axon bundles would cause this pattern of degeneration. However, the architecture of the mouse eye seems to preclude a commonly postulated source of mechanical damage within the nerve head.  相似文献   

14.
The retinal degeneration characterized with death of retinal ganglion cells is a pathological hallmark and the final common pathway of various optic neuropathies. Thus, there is an urgent need for identifying potential therapeutic compounds for retinal protection. Tetramethylpyrazine has been suggested to be neuroprotective for central neurons by acting as an antioxidant and a calcium antagonist. In this study, we tested the effects of tetramethylpyrazine on the viability of both neuronal and non-neuronal cells in mixed rat retinal cell cultures during a long-term cultivation or following hydrogen peroxide treatments. Cellular and biochemical analyses demonstrated that 50 microM tetramethylpyrazine significantly preserved neuronal morphology and survival in retinal cell cultures following 4-week in vitro cultivation as well as lethal exposures to hydrogen peroxide (10 microM or 50 microM for 24h). Hydrogen peroxide treatments induced remarkable increases in lipid peroxidation and mitochondrial reactive oxygen species (ROS) generation paralleled by the loss of mitochondrial membrane potential, microtubule-associated protein-2 (MAP-2) in neuronal soma and rattin peptide in cultured cells. Addition of tetramethylpyrazine in the cultures efficiently attenuated the signs of oxidative stress and retained abundance of MAP-2 and rattin in association with cell survival. In addition, siRNA-mediated downregulation of MAP-2 or rattin significantly increased the vulnerability of retinal neurons or the number of degenerating cells in the cultures, respectively, whereas exogenous humanin peptide, an analog of rattin, promoted cell survival in cultures under hydrogen peroxide attacks. These results suggest that tetramethylpyrazine protect retinal cells through multiple pathways and might be a potential therapeutic candidate for retinal protection in certain optic neuropathies.  相似文献   

15.
Hemangioblastomas of the retina, central nervous system, and kidney are observed in patients with mutations in the von Hippel-Lindau (VHL) tumor suppressor gene. Mutations in the VHL lead to constitutive activation of hypoxia-inducible-factor (HIF) pathway. HIF-mediated expression of pro-angiogenic genes causes extensive pathological neovascularization in hemangioblastomas. A number of studies have shown coexistence of pro-angiogenic and stem cell markers in ‘tumorlet-like stromal cells’ in the retinal and optic nerve hemangioblastomas, leading to suggestions that hemangioblastomas originate from developmentally arrested stem cells or embryonic progenitors. Since recent studies have shown that the HIF pathway also plays a role in the maintenance/de-differentiation of normal and cancerous stem cells, we evaluated the role of the HIF pathway in the expression of stem cell markers in VHL−/− renal cell carcinoma cells under normoxia or VHL+/+ retinal pigment epithelial cells under hypoxia. Here we show that the expression of stem cell markers in hemangioblastomas is due to activation of the HIF pathway. Further, we show that honokiol, digoxin, and doxorubicin, three recently identified HIF inhibitors from natural sources, blocks the expression of stem cell markers. Our results show the mechanism for the cytological origin of neoplastic stromal cells in hemangioblastomas, and suggest that inhibition of the HIF pathway is an attractive strategy for the treatment of hemangioblastomas.  相似文献   

16.
Hyperglycemia-induced retinal oxidative and nitrative stress can accelerate vascular cell aging, which may lead to vascular dysfunction as seen in diabetes. There is no information on whether this may contribute to the progression of diabetic retinopathy (DR). In this study, we have assessed the occurrence of senescence-associated markers in retinas of streptozotocin-induced diabetic rats at 8 and 12 weeks of hyperglycemia as compared to normoglycemic aging (12 and 14 months) and adult (4.5 months) rat retinas. We have found that in the diabetic retinas there was an up-regulation of senescence-associated markers SA-β-Gal, p16INK4a and miR34a, which correlated with decreased expression of SIRT1, a target of miR34a. Expression of senescence-associated factors primarily found in retinal microvasculature of diabetic rats exceeded levels measured in adult and aging rat retinas. In aging rats, retinal expression of senescence associated-factors was mainly localized at the level of the retinal pigmented epithelium and only minimally in the retinal microvasculature. The expression of oxidative/nitrative stress markers such as 4-hydroxynonenal and nitrotyrosine was more pronounced in the retinal vasculature of diabetic rats as compared to normoglycemic aging and adult rat retinas. Treatments of STZ-rats with the anti-nitrating drug FeTPPS (10mg/Kg/day) significantly reduced the appearance of senescence markers in the retinal microvasculature. Our results demonstrate that hyperglycemia accelerates retinal microvascular cell aging whereas physiological aging affects primarily cells of the retinal pigmented epithelium. In conclusion, hyperglycemia-induced retinal vessel dysfunction and DR progression involve vascular cell senescence due to increased oxidative/nitrative stress.  相似文献   

17.
The chick embryo is an excellent model for studying eye morphogenesis, retinal cell fate determination, and retinotectal projections due to its accessibility and the available molecular tools. Avian replication-competent retroviruses allow efficient infection of proliferating cells and stable integration of the viral genome, including up to 2.3kb of foreign cDNA, into the host chromosome. High-titer retroviruses are produced by transient transfection of avian DF-1 cells followed by centrifugation of the culture medium. Targeted infection of the optic vesicle, the lens vesicle, the retina and pigmented epithelium, the periocular mesenchyme, and the tectum can be performed at different developmental stages in ovo. In addition, retroviruses can be used to transduce genes of interest into various ocular tissue explants or cells in vitro. Virus-mediated gene expression can be detected within 12h of infection. Therefore, avian replication-competent retroviruses serve as powerful tools to misexpress wild-type and mutant gene products and to study molecular mechanisms underlying vertebrate visual system development.  相似文献   

18.
19.
Because as many as half of glaucoma patients on intraocular pressure (IOP)-lowering therapy continue to experience optic nerve toxicity, it is imperative to find other effective therapies. Iron and calcium ions play key roles in oxidative stress, a hallmark of glaucoma. Therefore, we tested metal chelation by means of ethylenediaminetetraacetic acid (EDTA) combined with the permeability enhancer methylsulfonylmethane (MSM) applied topically on the eye to determine if this noninvasive treatment is neuroprotective in rat optic nerve and retinal ganglion cells exposed to oxidative stress induced by elevated IOP. Hyaluronic acid (HA) was injected into the anterior chamber of the rat eye to elevate the IOP. EDTA–MSM was applied topically to the eye for 3 months. Eyeballs and optic nerves were processed for histological assessment of cytoarchitecture. Protein–lipid aldehyde adducts and cyclooxygenase-2 (COX-2) were detected immunohistochemically. HA administration increased IOP and associated oxidative stress and inflammation. Elevated IOP was not affected by EDTA–MSM treatment. However, oxidative damage and inflammation were ameliorated as reflected by a decrease in formation of protein–lipid aldehyde adducts and COX-2 expression, respectively. Furthermore, EDTA–MSM treatment increased retinal ganglion cell survival and decreased demyelination of optic nerve compared with untreated eyes. Chelation treatment with EDTA–MSM ameliorates sequelae of IOP-induced toxicity without affecting IOP. Because most current therapies aim at reducing IOP and damage occurs even in the absence of elevated IOP, EDTA–MSM has the potential to work in conjunction with pressure-reducing therapies to alleviate damage to the optic nerve and retinal ganglion cells.  相似文献   

20.
The eyes of the marine snail Bulla gouldiana act as circadian pacemakers. The eyes exhibit a circadian variation in spontaneous optic nerve compound action potential frequency in constant darkness, and are involved in controlling circadian rhythms in behavioral activity expressed by the animal. To initiate an investigation of the molecular aspects of circadian rhythmicity in the Bulla eye and to identify specific molecular markers in the nervous system, we raised monoclonal antibodies (MAb) to the eye and screened them for specific patterns of staining in the eye and brain. Several MAb recognize antigens specific to groups of neurons in the brain, whereas others stain antigens found only in the eye. In addition, some antigens are shared by the eye and the brain. The antigens described here include molecules that mark the lens, retina, neural pathways between the eye and the brain, specific groups of neurons within the central ganglia, and an antigen that is shared by basal retinal neurons (putative ocular circadian pacemaker cells) and glia. These molecular markers may have utility in identifying functionally related groups of neurons, elucidating molecular specializations of the retina, and highlighting pathways used in transmission of information between the retina and the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号