首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary In the montane herb Ipomopsis aggregata, size and placement of stamens and pistils vary substantially among flowers within plants, among nearby plants, and among groups of plants separated by 50–100 m. We trained captive hummingbirds to feed from flowers of this species in a flight cage, and explored the effects of different degrees of floral variability on carryover of fluorescent dyes that act as pollen mimics. We found that the slopes of linear dye carryover functions generally became more shallow as floral variability increased; this led to substantially longer carryover in the treatment with greatest variability. On the other hand, total amounts of dye transferred did not appear to be sensitive to the degree of variability. Floral variability may have a subtle but important effect on plant fitness by influencing the distance of pollen transfer.  相似文献   

2.
Pollen dynamics of bumble-bee visitation on Echium vulgare   总被引:2,自引:1,他引:1  
1. We quantified pollen deposition on the stigma, pollen removal from the anthers and pollen losses in Echium vulgare , visited by workers of Bombus terrestris under controlled conditions. We used dye as a pollen analogue. Bumble-bees were trained to visit a sequence of non-emasculated flowers to estimate pollen carryover and to visit individual flowers to estimate pollen loss.
2. Carryover of pollen grains and dye particles between flowers was similar, which justifies using dye as a pollen analogue. On average 93·8% of the dye particles on the bee were carried over to the next flower. Only a small fraction of the pollen grains was deposited on the stigma (0·15%). A much larger fraction (6·1%) was lost in another way: passively during flight, through grooming or on floral parts other than the stigma. The bees removed 44% of the pollen grains from a fresh flower and 50·3% of this removed pollen adhered to the bee.
3. We predict that, using the parameters mentioned above, during a single visit to a newly opened flower, a bee collects an amount of pollen grains which will bring about 60% geitonogamous self-pollination in the next flower visited. The expected percentage of self-pollination is considerably less if bees visit flowers that have been visited before.  相似文献   

3.
Pollinators that forage indiscriminately can transfer pollen from one species to another, reducing the amount that reaches conspecific flowers. I present evidence that the presence of another plant species visited by the same pollinators can also reduce pollen dispersal distances and outcrossing. This has the potential to influence gene flow and reproductive success. Pollen carryover and movement patterns were measured for the shared insect pollinators of Stellaria pubera and Claytonia virginica in North Carolina. Bee flies deposited similar amounts of Stellaria pollen on a series of pistillate Claytonia flowers as on a series of pistillate Stellaria flowers. In arrays of potted plants, flies and solitary bees visited most flowers on a plant before leaving and then flew to a nearby plant chosen independently of species; 95% of moves were to one of 12 nearest neighbors. These measures of pollen carryover and movement patterns were used in a set of computer simulations to predict pollen dispersal distances. The simulations suggested that C. virginica substantially reduces outcrossing and pollen flow in S. pubera. These predictions were tested by tracking dye movement from anthers in populations of potted plants. Addition of C. virginica reduced the mean squared distance moved by dye to receptive S. pubera flowers by 23% and reduced the amount of dye moved by 51%. The estimated pollen component of gene flow was also much lower in a natural population of 5. pubera mixed with C. virginica than in the synthetic single-species populations.  相似文献   

4.
Lau P  Bosque C 《Oecologia》2003,135(4):593-600
The Disassortative Pollen Flow Hypothesis proposed by Darwin postulates that the relative position of anthers and stigmas in distylous flowers enhances pollen flow between flowers of different morphs (legitimate pollination), in comparison to flow between flowers of the same morph (illegitimate pollination). In order to test this hypothesis, we measured pollen transport, mediated by a trained Copper-rumped Hummingbird (Amazilia tobaci), between flowers of the distylous Palicourea fendleri under laboratory conditions. In individual tests, we offered to the hummingbird a pollen donor flower and two emasculated recipient flowers in a controlled sequence. After each foraging bout, we counted the number of pollen grains transported from the donor flower to the stigmas of both recipient flowers. In agreement with Darwin's hypothesis, we found that hummingbirds transport pollen of "pin" flowers in significantly higher numbers to legitimate "thrum" stigmas, even if previously visiting a "pin" flower. However, "thrum" pollen was deposited in greater numbers on illegitimate "thrum" stigmas. We interpret this asymmetry largely as the consequence of floral morphology; pollen flow was greater between anthers and stigmas that exhibit greater spatial matching. In P. fendleri, the position of floral organs along the corolla tube does not always precisely correspond. In our experimental system, the probability that the pollinator extracts a pollen grain from the anther and the probability of self-pollination were both dependent on the type of floral morph. We discuss the relevance of the latter findings in relation to other studies of pollen flow in heterostylous species.  相似文献   

5.
BACKGROUND AND AIMS: Most plant species are visited by a diversity of floral visitors. Pollen transfer of the four most common pollinating bee species and one nectar-robbing bee of the distylous plant Gelsemium sempervirens were compared. METHODS: Naturally occurring pollen loads carried by the common floral visitor species of G. sempervirens were compared. In addition, dyed pollen donor flowers and sequences of four emasculated recipient flowers in field cages were used to estimate pollen transfer, and the utility of fluorescent dye powder as an analogue for pollen transfer was determined. KEY RESULTS: Xylocopa virginica, Osmia lignaria and Habropoda laboriosa carried the most G. sempervirens pollen on their bodies, followed by Bombus bimaculatus and Apis mellifera. However, B. bimaculatus, O. lignaria and H. laboriosa transferred significantly more pollen than A. mellifera. Nectar-robbing X. virginica transferred the least pollen, even when visiting legitimately. Dye particles were strongly correlated with pollen grains on a stigma, and therefore provide a good analogue for pollen in this system. The ratio of pollen : dye across stigmas was not affected by bee species or interactions between bee species and floral morphology. However, dye transfer was more sensitive than pollen transfer to differences in floral morphology. CONCLUSIONS: The results from this study add to a growing body of literature highlighting that floral visitors vary in pollination effectiveness, and that visitors carrying the most pollen on their bodies may not always be the most efficient at depositing pollen on stigmas. Understanding the magnitude of variability in pollinator quality is one important factor for predicting how different pollinator taxa may influence the evolution of floral traits.  相似文献   

6.
The role of pollen odour in resource location by the pollen beetle, Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae), a pollen-feeding insect regarded as a pest of oilseed rape, Brassica napus L., (Brassicaceae) crops, was investigated in a linear track olfactometer. Both male and female beetles were attracted to the odour of whole oilseed rape flowers, indicating that these insects can locate their host plants using floral odours as cues. The attractive odour of flowers was found to emanate from all floral parts tested: the petals/sepals, the anthers, and from pollen itself. Therefore, at least part of the attractive odour of oilseed rape flowers emanates from pollen. Beetles were more attracted to floral samples containing anthers than those without anthers when these odours were directly compared in a choice-test, and this indicates that there were detectable differences between them. Anthers and pollen may therefore release distinctive odours that are quantitatively and/or qualitatively different from the odour of the rest of the flower. These experiments support the hypothesis that pollen-seeking insects use pollen odour cues to locate this food source.  相似文献   

7.
Summary In the Colorado Rocky Mountains the glacier lily Erythronium grandiflorum exhibits a striking dimorphism in pollen color and is commonly pollinated by the bumble bee Bombus occidentalis. We induced bees to visit sequences of flowers in a flight cage, and compared dispersal of distinctively-colored pollen and fluorescent pigment (dye) that the bee had picked up at a single donor flower. Nonparametric and parametric analyses showed that dispersal properties of pollen and dye differed; consistently less pollen was deposited and it was carried consistently shorter distances than dye. Dye thus does not provide an accurate means of assessing exacty where or how far pollen travels in this plant-pollinator system. On the other hand, both pollen and dye responded similarly to several experimental manipulations of donor and recipient flowers. Hence dye may well be of value for a qualitative investigation of how floral traits influence pollen dispersal.  相似文献   

8.
Summary The foraging behavior of the pollinators of tristylous Pontederia cordata was studied to determine if differences in floral morphology would lead to preferential visitation of the floral morphs. Although nectar production is not different in the three floral morphs, differences in the production and size of pollen grains produced by the three anther levels results in the morphs offering variable amounts of resources to pollen-collecting insects. Bumblebees (Bombus spp.) and the solitary bee Melissodes apicata used P. cordata primarily as a nectar source and therefore did not seem to exhibit any morph preference. In contrast, honeybees visited flowers mainly for pollen and preferred to forage on long-level anthers of the short-and mid-styled morphs. An analysis of the composition of corbicular pollen loads indicated that, relative to the frequency of production in the population: 1) honeybees collected an excess of pollen from long-level anthers; 2) bumblebees collected the three types of pollen without any apparent preference; and 3) M. apicata preferentially collected pollen from the short-level anthers — presumably because their proboscides are modified by the presence of tiny hairs. The results suggest that P. cordata in Ontario is serviced by a diverse, unspecialized pollinator fauna which is not co-adapted to the tristylous floral polymorphism.  相似文献   

9.
The sequence of floral events during anthesis was examined in Streptanthus tortuosus to determine the relationship between the male and female floral phases. The flowers are strongly protandrous. In the staminate phase, the anthers mature sequentially over a 3–4-day period. Because pollinators quickly remove pollen from the anthers, sequential anther maturation prolongs the male phase relative to what it would be if anthers did not mature sequentially. Pollen applied to the stigma during the staminate phase does not adhere readily and does not germinate. The length of the pistillate phase depends on pollinator activity, as pollination accelerates the abscission of floral parts. Unpollinated flowers remain pistillate for 3–4 days, during which time stigmatic receptivity declines gradually. In the field, 72% to 80% of flowers are staminate at any time, indicating that the staminate phase is three times longer than the pistillate phase when pollinators have access to the flowers. The consequences of the relative length of the floral phases and the schedule of stigmatic receptivity are discussed in terms of outcrossing mechanism, floral longevity, and sexual selection models.  相似文献   

10.
We quantified the differences in floral characters and attractiveness to flower visitors under natural conditions between the sexual types in the gynodioecious plant Glechoma longituba. We also manipulated flowers by altering corolla size or nectar volume, or by removing anthers, to examine the effect of these primary and secondary attractants (i.e. rewards and advertisements) on attractiveness. A change in corolla size and shape reduced visiting frequency and pollen load. Removal of anthers did not affect visiting rates, but significantly reduced pollination rates and stigmatic pollen load. A decrease in the nectar volume of a flower was associated with a reduction in handling time and pollen loads on stigmas. These results show that corolla size is an important advertisement to pollinators (particularly at greater distance), which associate hermaphrodite flowers with a larger corolla and a larger volume of nectar than female flowers. We found that artificial changes in population structure affected the behavior of pollinators as well as the pollination rates of flowers. We suggest that the pattern of distribution of hermaphrodite and female clones in a population may serve to avoid pollen limitation in a female clone or patch. This effect may ensure female reproductive success and allow for the maintenance of female individuals in natural populations of this gynodioecious plant.  相似文献   

11.
L. Svensson 《Oecologia》1986,70(4):631-632
Summary Secondary pollen carryover is defined as the process whereby a pollinator receives previously deposited pollen grains when visiting a flower and transfers them into a new (secondary) carryover sequence. The secondary pollen carryover in a system of ants, Formica rufibarbis, visiting Scleranthus perennis (Caryophyllaceae) was studied using fluorescent dyes as pollen analogues. The mean secondary carryover was found to be 1.2 flowers compared with 4.5 flowers for the primary carryover. The number of dye grains deposited per flower visited is lower and the frequency of zero deposition is higher in the secondary carryover sequence than in the primary.  相似文献   

12.
Montgomery BR  Rathcke BJ 《Oecologia》2012,168(2):449-458
Plant species vary greatly in the degree to which floral morphology restricts access to the flower interior. Restrictiveness of flower corollas may influence heterospecific pollen receipt, but the impact of floral morphology on heterospecific pollen transfer has received little attention. We characterized patterns of pollinator visitation and quantities of conspecific and heterospecific pollen receipt for 29 species with a range of floral morphologies in a prairie community dominated by the introduced plant Euphorbia esula (leafy spurge) which has an unrestrictive morphology. Pollinator overlap was significantly greater between Euphorbia and other unrestrictive flowers than restrictive flowers. Compared to flowers with restrictive morphologies, unrestrictive flowers received significantly more Euphorbia pollen, more heterospecific pollen from other sources, and a greater diversity of pollen species, but not more conspecific pollen. However, stigmatic surface area was significantly larger for flowers with unrestrictive morphologies, and the density of Euphorbia and other heterospecific pollen per stigmatic area did not significantly differ between flower types. These findings suggest that the smaller stigma size in restrictive flowers partly accounts for their decreased heterospecific pollen receipt, but that restrictiveness also allows species to increase the purity of pollen loads they receive. Given that restrictive flowers receive fewer heterospecific pollen grains but at a higher density, the effect of restrictiveness on fecundity depends on whether absolute quantity or density of heterospecific pollen affects fecundity more. Our results also indicate that abundant neighbors are not necessarily important heterospecific pollen sources since Euphorbia pollen was rarely abundant on heterospecifics.  相似文献   

13.
Candace Galen  Brian Butchart 《Oikos》2003,101(3):521-528
Flowers of the alpine skypilot, Polemonium viscosum , are attacked by nectar thieving ants of Formica neorufibarbus gelida . Ants exert selection on flower scent, size and shape in skypilots by damaging the pistils. Here, I report on the frequency and nature of contact between ants and pollen-bearing anthers and determine the consequences of such contact for pollen performance and pollen donor paternity. In laboratory trials, ants entered flowers with full intact anthers and emasculated (female) flowers equivalently. Similarly, flower visitation rates of ants foraging naturally were not affected by the frequency of male phase flowers per plant. Ants actively interacted with the pollen-bearing anthers during 21% of flower visits, on average. The rate at which such interactions occurred was predicted by the proportion of flowers in the male phase, under a random foraging model. The effect of ants on pollen fertility was tested experimentally by enclosing ants in male-phase flowers on intact inflorescences. Adjacent control flowers were left un-occupied. Pollen from flowers with a history of ant occupancy had significantly lower germination on virgin recipient stigmas than pollen from unoccupied control flowers. With hand-pollination, sufficient pollen was transferred from ant-occupied flowers to saturate seed set. However, a model based on the relationship between seed set and compatible pollen delivery by natural pollinators indicated that ant damage to pollen should reduce paternity accruing per flower visit by 20–26% on average, in nature. Results support the hypothesis that in P. viscosum , selection on floral traits by nectar-thieving ants operates through male as well as female function.  相似文献   

14.
It has been suggested that the absence of floral rewards in many orchid species causes pollinators to probe fewer flowers on a plant, and thus reduces geitonogamy, i.e. self-pollination between flowers, which may result in inbreeding depression and reduced pollen export. We examined the effects of nectar addition on pollinator visitation and pollen transfer by tracking the fate of colour-labelled pollen in Anacamptis morio, a non-rewarding orchid species pollinated primarily by queen bumble-bees. Addition of nectar to spurs of A. morio significantly increased the number of flowers probed by bumble-bees, the time spent on an inflorescence, pollinarium removal and the proportion of removed pollen involved in self-pollination through geitonogamy, but did not affect pollen carryover (the fraction of a pollinarium carried over from one flower to the next). Only visits that exceeded 18 s resulted in geitonogamy, as this is the time taken for removed pollinaria to bend into a position to strike the stigma. A mutation for nectar production in A. morio would result in an initial 3.8-fold increase in pollinarium removal per visit, but also increase geitonogamous self-pollination from less than 10% of pollen depositions to ca. 40%. Greater efficiency of pollen export will favour deceptive plants when pollinators are relatively common and most pollinaria are removed from flowers or when inbreeding depression is severe. These findings provide empirical support both for Darwin's contention that pollinarium bending is an anti-selfing mechanism in orchids and for the idea that floral deception serves to maximize the efficiency of pollen export.  相似文献   

15.

Given that pollinators usually visit flowers for hidden rewards, they need to rely on floral traits that indicate reward status (“honest signals”). However, the relationship between pollination, honest signals, and floral rewards is little documented in natural conditions. The Scotch broom (Cytisus scoparius) is an invasive shrub with polymorphism in the color of its flowers that can be yellow, orange, or red. In three areas dominated by the Scotch broom, we described the abundance of the floral morphs and estimated bumblebee (Bombus terrestris) visitation rate. We examined whether bumblebee visitation to the floral morphs was related to pollen reward. We collected flowers and classified their stamens according to their function: reward or pollen export. Then, we measured anther size and estimated pollen quantity. The yellow morph was more abundant and more visited by bumblebees than the orange and red morphs. The yellow flowers did indeed offer more pollen than the other morphs and this occurred only for rewarding anthers, suggesting that bumblebees could use yellow color as an honest signal to visit the most rewarding flowers. We discuss whether innate and/or learned preferences of bumblebees can explain why the yellow morph is more visited, pollinated, and abundant, while the other morphs are maintained at a lower frequency. This is one of the few field works that shows that variation in intra-specific floral traits is associated with variation in floral reward and pollinator visitation rate, helping to understand the foraging preferences of pollinators and the coexistence of floral morphs in nature.

Clinical trials registration: Not applicable.

  相似文献   

16.
In a number of previous studies attention has been directed to the selection on corolla dimensions by pollinator preference, but anthers may also be a signal. This experiment examined the relative importance of petals and anthers in the attraction of male Episyrphus balteatus (Diptera, Syrphidae) to individual oil-seed rape flowers (Bracus rapae oleifera). Rape flowers have four petals and six anthers. Nine treatments were created, of flowers with four, two, or zero petals and six, three, or zero anthers. Twenty males were tested for preference among the experimental flowers by recording the sequence and duration of their visits (which were all for feeding) to the flowers. The number of first visits and the duration of visits on each flower were significantly related to the number of anthers but not the number of petals. There was no correlation between petal area and pollen load of control flowers. It is suggested that Syrphidae may not always attend to petals, and variation in preference of different pollinator taxa should be taken into account when discussing the evolution of floral characters.  相似文献   

17.
Some pollination systems, such as buzz‐pollination, are associated with floral morphologies that require a close physical interaction between floral sexual organs and insect visitors. In these systems, a pollinator's size relative to the flower may be an important feature determining whether the visitor touches both male and female sexual organs and thus transfers pollen between plants efficiently. To date, few studies have addressed whether in fact the “fit” between flower and pollinator influences pollen transfer, particularly among buzz‐pollinated species. Here we use Solanum rostratum, a buzz‐pollinated plant with dimorphic anthers and mirror‐image flowers, to investigate whether the morphological fit between the pollinator's body and floral morphology influences pollen deposition. We hypothesized that when the size of the pollinator matches the separation between the sexual organs in a flower, more pollen should be transferred to the stigma than when the visitor is either too small or too big relative to the flower. To test this hypothesis, we exposed flowers of S. rostratum with varying levels of separation between sexual organs, to bumblebees (Bombus terrestris) of different sizes. We recorded the number of visits received, pollen deposition, and fruit and seed production. We found higher pollen deposition when bees were the same size or bigger than the separation between anther and stigma within a flower. We found a similar, but not statistically significant pattern for fruit set. In contrast, seed set was more likely to occur when the size of the flower exceeded the size of the bee, suggesting that other postpollination processes may be important in translating pollen receipt to seed set. Our results suggest that the fit between flower and pollinator significantly influences pollen deposition in this buzz‐pollinated species. We speculate that in buzz‐pollinated species where floral morphology and pollinators interact closely, variation in the visitor's size may determine whether it acts mainly as a pollinator or as a pollen thief (i.e., removing pollen rewards but contributing little to pollen deposition and fertilization).  相似文献   

18.
Gynodioecy, the phenomenon of having both hermaphrodite and female (i.e. male‐sterile) individuals within the same population, is an important intermediate step in the evolution of separate sexes in flowering plants. In this study, we investigated the floral micromorphology and microsporogenesis of the gynodioecious herb Glechoma longituba from four natural populations in Korea. The floral micromorphological characters of the different sex morphs were examined and compared using scanning electron microscopy (SEM), and the ultrastructure of microspores during microsporogenesis was studied. We also examined the development of anthers and pollen grains in the three sexual morphs (i.e. hermaphrodites, females, and gynomonoecious, i.e. individuals with a mixture of female and hermaphroditic flowers) by embryological investigation. The major difference in anther development between the three phenotypes was the early disintegration of the tapetal cells in the anthers of female flowers. While mature fertile pollen grains were found in both hermaphrodite and gynomonoecious phenotypes, females did not produce any pollen grains. In addition, both fertile and sterile pollen grains in gynomonoecious phenotypes were frequently observed. The results of the present study indicate that floral micromorphological characters were not distinct between sexual morphs of G. longituba, except for the structure of the inner cell surfaces of the anther. The observed tapetum abnormalities and degeneration of pollen grains in both gynomonoecious phenotypes and females may be the consequence of inbreeding depression in hermaphrodites.  相似文献   

19.
MURRAY  B. G. 《Annals of botany》1990,65(6):691-698
Observations on the floral biology of Luculia gratissima (Rubiaceae)showed that this species is distylous with complementary positioningof anthers and stigmas in the two floral forms. Unusual featuresof distyly in this species include the larger size of the corolla,the stigma surface and the stigmatic papillae in the thrum flowerscompared to the pin ones. Stigmatic surfaces have similar secretionsbut they appear more copious in thrum than pin. The floral dimorphismwas accompanied by a very effective self-incompatibility systemand no seed was set on selfing. Seed number per capsule on crossingwas significantly greater in thrum flowers compared to pin.Incompatible pollen tubes were inhibited within 24 h at thebase of the stigma/top of the style in both morphs. Amputationof this region of the gynoecium removed the self-incompatibilityreaction in thrum but not pin flowers. Pollination with a mixtureof compatible and incompatible pollen and sequential pollinationwith self followed by cross pollen showed that there were interactionsbetween the two types of pollen tube. The presence of compatibletubes was found to cause the excessive swelling of the pollen-tubetip of the incompatible ones. The incompatible tubes did notappear to have any effect on the growth of compatible ones. Luculia gratissima, distyly, floral biology, self-incompatibility, pollen-tube interactions  相似文献   

20.
Pollination limitation is common in flowering plants and is thought to be a factor driving the evolution of floral traits.The plasticity of floral longevity to pollination may be an adaptation of plants to pollen limitation.However,this adaptation is less critical in short-lived flowers.To evaluate pollen limitation and the plasticity of floral longevity to pollination in Potentilla tanacetifolia,a gynodioecious herb with short-lived flowers,we analyzed its breeding system,tested sex-differential pollen limitation,and compared variations in floral display size in natural populations in Duolun County,Inner Mongolia,China.Hand pollination experiments and pollinator exclusion treatments revealed that P tanacetifolia is self-compatible and non-autonomously apomictic and shows sex-differential pollen limitation.The plasticity of floral longevity to pollination was observed; the floral duration of female plants was prolonged by approximately 3-4 hours with pollination exclusion treatment.Moreover,the percentage of flowers displayed on female plants during pollination exclusion treatment was significantly higher than that during natural pollination.Under natural pollination conditions,the percentage of flowers displayed on female plants was significantly higher than on hermaphrodite plants.Furthermore,approximately 50% of the pollen grains spread out of the anthers of hermaphrodite flowers within 2 h of anthesis; the number of pollen grains adhering to the stigmas of hermaphrodite flowers was significantly higher than that adhering to female flowers when flowers shed their petals.These results indicate that variation in floral longevity may be an adaptive strategy to pollination conditions for gynodioecious P tanacetifolia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号