首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Mutations in the gene for the pigment-producing enzyme tyrosinase are responsible for type IA (tyrosinase-negative) oculocutaneous albinism (OCA). Most reported mutations have been single base substitutions. We now report three different frameshift mutations in three unrelated individuals with type IA OCA. The first individual has a single base deletion within a series of five guanidines, resulting in a premature stop codon in exon I on one allele and a missense mutation at codon 382 in exon III on the homologous allele. The second individual is a genetic compound of two separate frameshift mutations, including both the same exon I single base deletion found in the first individual and a deletion of a thymidine-guanidine pair, within the sequence GTGTG, forming a termination codon (TAG) in exon I on the homologous allele. The third individual has a single base insertion in exon I on one allele and a missense mutation at codon 373 in exon III on the homologous allele. The two missense mutations occur within the copper Bbinding region and may interfere with either copper binding to the enzyme or oxygen binding to the copper. These five different mutations disrupt tyrosinase function and are associated with a total lack of melanin biosynthesis.  相似文献   

2.
3.
6 out of 14 uncharacterized beta-thalassemia alleles from 187 Thai beta-thalassemia/HbE patients were identified by direct sequencing of DNA amplified by polymerase chain reaction. A novel mutation occurring from an insertion of adenosine in codon 95, which results in a shift of the reading frame with terminator at the new codon 101, was detected in one patient. In addition, two frameshift mutations not previously reported among the Thai population were also detected in 3 patients: one with a deletion of thymidine in codon 15 and two with an insertion of cytidine in codons 27/28. A frameshift mutation that occurred from a cytidine deletion in codon 41 was also found in one patient in this study. The remaining case was an amber mutation, GAG-TAG, in codon 43 in exon 2 of the beta-globin gene. These mutations bring the number of mutations known to be present in the Thai population to a total of 20, 15 of which were detected in beta-thalassemia/HbE patients.  相似文献   

4.
Two new point mutations have been detected in the low density lipoprotein (LDL) receptor gene of a patient with a clinical diagnosis of homozygous familial hypercholesterolemia (FH). The patient is a compound heterozygote, in whom the mutant allele inherited from his English father has a single base substitution of A for G in exon 3, changing the codon for residue 80 in the mature protein from glutamic acid to lysine. The mutant allele inherited from his mother, who is of Irish origin, has a single base pair deletion in the codon for residue 743 in exon 15 that causes a frameshift and introduces a new stop codon in the adjacent position. The glu80 to lys mutation results in a transport-defective phenotype and a mature protein that migrates abnormally slowly on nonreduced SDS-PAGE, but normally under reducing conditions; this was confirmed by site-directed mutagenesis and expression in vitro. The deletion in exon 15 results in a null phenotype in which the putative truncated receptor protein cannot be detected in cultured skin fibroblasts and the amount of mRNA derived from the allele is reduced. The glu80 to lys mutation was found in a further five unrelated individuals in a sample of 200 FH patients from the London area and in 11 from a sample of 77 FH patients from Manchester. Haplotype analysis suggested that all the patients had inherited this allele from a common ancestor. The deletion in exon 15 was not found in the London sample, nor in any unrelated individuals in the Manchester sample.  相似文献   

5.
6.
DNA samples from 60 unrelated Belgian hypercholesterolemic patients were subjected to heteroduplex analysis of exon 4 of the low density lipoprotein receptor (LDLR) gene. Aberrant mobility bands were detected in 2 patients and the underlying mutations were characterized by DNA sequence analysis. Both mutations, a 19-bp insertion at codon 141 and a 23-bp deletion at codon 168, produce premature stop codons in the highly conserved ligand binding domain of the mature LDLR. Sequence data indicated that mispairing between short direct repeats during DNA replication is the most probable mechanism by which these mutations could have arisen. Our observations are consistent with an endogenous sequence-directed mechanism of mutagenesis.  相似文献   

7.
Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here we characterize an LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found neither in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identical LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.  相似文献   

8.
The molecular and genetic basis of a compound heterozygote for dys- and hypoprothrombinemia was analyzed. Abnormal nucleotide sequences of the human prothrombin gene were screened by PCR-single-strand conformation polymorphism (PCR-SSCP) with endonuclease digestion and mutated primer-mediated PCR-RFLP. A single nucleotide substitution responsible for dysprothrombinemia of prothrombin Tokushima was detected, as were three polymorphisms. The mutation for hypoprothrombinemia was detected by PCR-single-strand conformation polymorphism (PCR-SSCP) with endonuclease digestion in exon 6, near MboII-RFLP and NcoI-RFLP. Sequencing of PCR-amplified genomic DNA revealed a single base insertion of thymine (T) at position 4177. The resulting frameshift mutation caused both an altered amino acid sequence from codon 114 and a premature termination codon (i.e., TGA) at codon 174 in exon 7. Because exon 7 encodes the kringle 2 domain preceding the thrombin sequence, this frameshift leads to the null prothrombin phenotype. The inheritance of the hypoprothrombinemia gene from the father to the proband was proved by PCR-SSCP with endonuclease digestion and mutated primer-mediated PCR-RFLP.  相似文献   

9.
Certain mutant alleles at the low density lipoprotein (LDL) receptor locus produce receptors that bind LDL normally, but fail to cluster in coated pits and therefore cannot transport LDL into cells. We prepared genomic DNA libraries from cells of two individuals with this phenotype (internalization-defective familial hypercholesterolemia) and isolated the segment of the gene encoding the COOH-terminal cytoplasmic domain of the receptor. One mutant gene contains a single base substitution that changes a tryptophan codon (TGG) to a termination codon (TGA). This produces a receptor with only two amino acids in the cytoplasmic domain. The second mutant gene contains a four-base duplication, producing a frameshift that alters the reading frame. The cytoplasmic tail of this receptor has six of the normal amino acids plus eight additional amino acids. These data suggest that the signal for targeting the LDL receptor to coated pits resides in the cytoplasmic domain of the molecule.  相似文献   

10.
A generalized deficiency of the mitochondrial matrix enzyme ornithine aminotransferase (OAT) is the inborn error in gyrate atrophy (GA), an autosomal recessive degenerative disease of the retina and choroid of the eye. Mutations in the OAT gene show a high degree of molecular heterogeneity in GA, reflecting the genetic heterogeneity in this disease. Using the combined techniques of PCR, denaturing gradient gel electrophoresis, and direct sequencing, we have identified three nonsense-codon mutations and one nonsense codon-generating mutation of the OAT gene in GA pedigrees. Three of them are single-base substitutions, and one is a 2-bp deletion resulting in a reading frameshift. A nonsense codon created at position 79 (TGA) by a frameshift and nonsense mutations at codons 209 (TAT----TAA) and 299 (TAC----TAG) result in abnormally low levels of OAT mRNA in the patient's skin fibroblasts. A nonsense mutation at codon 426 (CGA----TGA) in the last exon, however, has little effect on the mRNA level. Thus, the mRNA level can be reduced by nonsense-codon mutations, but the position of the mutation may be important, with earlier premature-translation termination having a greater effect than a later mutation.  相似文献   

11.
We report studies of two unrelated Japanese patients with 17α-hydroxylase deficiency caused by mutations of the 17α-hydroxylase (CYP17) gene. We amplified all eight exons of the CYP17 gene, including the exon-intron boundaries, by the polymerase chain reaction and determined their nucleotide sequences. Patient 1 had novel, compound heterozygous mutations of the CYP17 gene. One mutant allele had a guanine to thymine transversion at position +5 in the splice donor site of intron 2. This splice-site mutation caused exon 2 skipping, as shown by in vitro minigene expression analysis of an allelic construct, resulting in a frameshift and introducing a premature stop codon (TAG) 60 bp downstream from the exon 1-3 boundary. The other allele had a missense mutation of His (CAC) to Leu (CTC) at codon 373 in exon 6. These two mutations abolished the 17α-hydroxylase and 17,20-lyase activities. Restriction fragment length polymorphism (RFLP) analysis with a mismatch oligonucleotide showed that the patient’s mother and brother carried the splice-site mutation, but not the missense mutation. Patient 2 was homozygous for a novel 1-bp deletion (cytosine) at codon 131 in exon 2. This 1-bp deletion produces a frameshift in translation and introduces a premature stop codon (TAG) proximal to the highly conserved heme iron-binding cysteine at codon 442 in microsomal cytochrome P450 steroid 17α-hydroxylase (P450c17). RFLP analysis showed that the mother was heterozygous for the mutation. Received: 15 November 1997 / Accepted: 15 March 1998  相似文献   

12.
Familial adenomatous polyposis (FAP) is an inherited predisposition to colorectal cancer characterized by the development of numerous adenomatous polyps predominantly in the colorectal region. Germline mutations in the adenomatous polyposis coli (APC) gene are responsible for most cases of FAP. Mutations at the 5′ end of APC are known to be associated with a relatively mild form of the disease, called attenuated adenomatous polyposis coli (AAPC). We identified a frameshift mutation in the 3′ part of exon 15, resulting in a stop codon at 1862, in a large Dutch kindred with AAPC. Western blot analysis of lymphoblastoid cell lines derived from affected family members from this kindred, as well as from a previously reported Swiss family carrying a frameshift mutation at codon 1987 and displaying a similar attenuated phenotype, showed only the wild-type APC protein. Our study indicates that chain-terminating mutations located in the 3′ part of APC do not result in detectable truncated polypeptides and we hypothesize that this is likely to be the basis for the observed AAPC phenotype. Received: 18 June 1996 / Revised: 8 July 1996  相似文献   

13.
This report concerns two new mutations in the sterol 27-hydroxylase gene in two patients with cerebrotendinous xanthomatosis (CTX). In a Surinam-Creole patient (patient A), a G deletion on position cDNA 546/547 in exon 3 led to a frameshift and the introduction of a premature termination codon. In a Dutch patient (patient B), a C→T transition at position 496 in exon 3 also led to a premature termination codon. Patient A was homozygous for the mutation, whereas patient B was compound heterozygous, a C→T transition also being found in exon 6 at position 1204. The two new mutations were confirmed by restriction analysis with the restriction enzymes FokI and MaeI, respectively. Received: 24 July 1996 / Revised: 9 August 1996  相似文献   

14.
A novel complex mutation with the presence of both deletion and insertion in very close proximity in the same region was detected in exon 8 of the LDL receptor gene from two apparently unrelated Japanese families with familial hypercholesterolemia (FH). In this mutant LDL receptor gene, the nine bases from nucleotide (nt) 1115 to nt 1123 (AGGGTGGCT) were replaced by six different bases (CACTGA), and consequently the four amino acids from codon 351 to 354, Glu-Gly-Gly-Tyr, were replaced by three amino acids, Ala-Leu-Asn, in the conserved amino acid region of the growth factor repeat B of the LDL receptor. The nature of the amino acid substitution and data on the families suggest that this mutation is very likely to affect the LDL receptor function and cause FH. The generation of this complex mutation can be explained by the simultaneous occurrence of deletion and insertion through the formation of a hairpin-loop structure mediated by inverted repeat sequences. Thus this mutation supports the hypothesis that inverted repeat sequences influence the stability of a given gene and promote human gene mutations.  相似文献   

15.
Two deletions of the low-density lipoprotein (LDL) receptor gene were previously shown to account for about two thirds of all mutations causing familial hypercholesterolemia (FH) in Finland. We screened the DNA samples from a cohort representing the remaining 30% of Finnish heterozygous FH patients by amplifying all the 18 exons of the receptor gene by PCR and searching for DNA variations with the SSCP technique. Ten novel mutations were identified, comprising two nonsense and seven missense mutations as well as one frameshift mutation caused by a 13-bp deletion. A single nucleotide change, substituting adenine for guanidine at position 2533 and resulting in an amino acid change of glycine to aspartic acid at codon 823, was found in DNA samples from 14 unrelated FH probands. This mutation (FH-Turku) affects the sequence encoding the putative basolateral sorting signal of the LDL receptor protein; however, the exact functional consequences of this mutation are yet to be examined. The FH-Turku gene and another point mutation (Leu380-->His or FH-Pori) together account for approximately 8% of the FH-causing genes in Finland and are particularly common among FH patients from the southwestern part of the country (combined, 30%). Primer-introduced restriction analysis was applied for convenient assay of the FH-Turku and FH-Pori point mutations. In conclusion, this paper demonstrates the unique genetic background of FH in Finland and describes a commonly occurring FH gene with a missense mutation closest to the C terminus thus far reported.  相似文献   

16.
A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in a Glu-->Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis-Dutch type Glu-->Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambiguously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groups tested, and linkage was formally excluded beyond theta = .10 for the Volga German kindreds, theta = .20 for early-onset non-Volga Germans, and theta = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds.  相似文献   

17.
Four cases of Crouzon syndrome, one familial and three sporadic, were investigated for mutations in exon B of the fibroblast growth factor receptor 2 (FGFR2) gene. In the familial case, a mutation was found at codon 340 that exchanged tyrosine for histidine. Mutations at codon 342, detected in the three sporadic cases, replaced a cysteine by another amino acid. While three of the mutations have been described before, the fourth mutation, a CG transversion at codon 342 in one of the sporadic cases, has not been recognized previously. Compilation of all exon B mutations in Crouzon syndrome described to date revealed that 6 of the 8 sporadic and 2 of the 9 familial cases have mutations in codon 342. These mutations caused the substitution of cysteine for another amino acid. Given that a mutation in codon 342 was found in 8 out of 17 cases and that in 9 cases the mutation occurred at five additional positions, codon 342 of exon B of the FGFR2 gene may be predisposed to mutations in Crouzon syndrome.  相似文献   

18.
Familial hypercholesterolemia is caused by mutations in the low density lipoprotein (LDL) receptor gene. Analysis of single-strand conformation polymorphisms of exons 10 and 11 of the LDL receptor gene from familial hypercholesterolemia heterozygotes indicated the presence of two mutations, which were characterized by DNA sequencing. One mutation (N466) was a 3-bp deletion in exon 10 that deletes Asn in codon 466. The other (intron 11+1,GT) was a splice donor mutation at position +1 of intron 11.  相似文献   

19.
We used heteroduplex analysis to screen for mutations in the porphobilinogen deaminase gene in 21 patients with acute intermittent porphyria (AIP). Unique banding patterns were investigated by direct sequencing of polymerase chain reaction products and, when indicated, sequencing of cloned DNA containing the exon of interest. Two frameshift mutations were found, a 2-bp deletion in exon 5 and a 1-bp insertion in exon 7. Both mutations generate a premature stop codon. Two point mutations, in exons 10 and 14, were also observed. The CT mutation in exon 10 codes for an Arg173 to Trp substitution, while a GA mutation in exon 14 changes Trp283 into a premature stop codon. This study extends the spectrum of mutations that cause AIP and demonstrates the utility of heteroduplex analysis as a screening technique.  相似文献   

20.
Kim DW  Jeong S  Kim DS  Kim HS  Seo SB  Hahn Y 《Gene》2012,496(1):17-21
Loss of gene function is implicated in the emergence of novel phenotypes during organism evolution. Here, we report the inactivation of the MSLNL gene encoding mesothelin-like protein in African great ape evolution. Human MSLNL has a nonsense mutation in exon 10 and two polymorphic mutations: a frameshift in exon 3 and a nonsense codon in exon 8. The gorilla gene also shows multiple deleterious mutations, including a premature stop codon, a deletion, and a splice site mutation. Molecular evolutionary analysis indicated relaxed selection pressure on MSLNL in African great ape lineages, which suggested that MSLNL might have become inactivated before the divergence of human, chimpanzee and gorilla. The mouse Mslnl gene is highly expressed in olfactory epithelium and moderately expressed in several other tissues. We propose that the loss of MSLNL may be associated with the evolution of the olfactory system in African great apes including human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号